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 Utilizing lignocellulosic biomass into valuable products, such as chemicals and fuels, 
has attracted global interest. One of lignocellulosic biomass, palm oil empty fruit 
bunch (EFB), has major content of cellulose (30-40%), which is highly potential to 
be a raw material for fermentable sugar production. In this research, a series of 
sulfonated carbon catalysts with various concentrations of sulfuric acid (H2SO4, 10-
30 v/v%) solutions have been successfully prepared and applied for a single stage of 
heterogeneous acid-catalyzed hydrolysis over microcrystalline cellulose and EFB 
under moderate temperature condition and ambient pressure. The catalysts’ physical 
and chemical properties were characterized by using a Thermogravimetric Analyzer 
(TGA), X-ray diffractometer, surface area analyzer, and Fourier-transform infrared 
spectrophotometer. The characterization results showed that sulfonated carbon had 
relatively similar physical properties with the parent of active carbon. The hydrolysis 
activity of sulfonated carbon catalysts gave various Total Reducing Sugar (TRS). The 
effects of sulfate loading amount in catalyst samples and various ionic liquids were 
investigated. The hydrolysis of pure microcrystalline cellulose powder (Avicel) using 
30%-sulfonated carbon (30-SC) catalyst in 1-butyl-3-methylimidazolium chloride 
([BMIM]Cl) ionic liquid at 150°C yielded the highest TRS of 16.11%. Subsequently, the 
catalyst of 30-SC was also tested for hydrolysis of EFB and produced the highest TRS 
of 40.76% in [BMIM]Cl ionic liquid at 150°C for 4 h. The obtained results highlight 
the potential of sulfonated carbon catalysts for hydrolysis of EFB into fermentable 
sugar as an intermediate product for ethanol production. 

 

1. Introduction 

Lignocellulose is a relatively low-cost carbon 
resource to produce essential platform chemicals and 
fuels [1, 2]. It consists mainly of cellulose (30–55%), 
hemicellulose (25–30%), and lignin (25–30%) [3]. 
Cellulose is a carbon-neutral feedstock because the CO2 
generated is recaptured at the end of their use. The 
monomer of cellulose i.e., glucose, can be applied as an 
intermediate compound for various useful chemicals, 
such as polymers, medicines, surfactants, and fuels [1, 2, 
3, 4]. This utilization of cellulose as an alternative 
feedstock will reduce the fossil fuel demand and 
contribute toward the mitigation of CO2 driven climate 

change [5]. Many types of research have explored 
hydrolysis of cellulose using enzymes [6], dilute acids [7], 
and sub- or super-critical water [8]. On the other hand, 
these methods have many drawbacks due to technical and 
cost issues. The high cost of enzymes, difficulty in 
separation, corrosion of reactors, undesirable waste and 
extreme reaction conditions become serious problems. 
Therefore, a breakthrough in the cellulose hydrolysis 
method is required. 

The investigation of more environmentally 
sustainable chemical processes has stimulated the use of 
heterogeneous solid acids as replacements for the 
homogeneous liquid acid catalysts, such as H2SO4 [9]. The 
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heterogeneous solid acid catalyst is potentially applicable 
for the efficient cellulose hydrolysis due to the easily 
separated from the product, recyclable, and low energy 
consumption [3, 10, 11, 12]. The hydrolysis of cellulose has 
been reported using various heterogeneous solid 
catalysts [10, 11, 12], such as magnetic solid acid catalyst 
[13], sulfonated zirconia [14], sulfonated activated-
carbon [15], hetero poly acids [16], Amberlyst® 15 [17], 
H-form zeolite, montmorillonite, and acid-activated 
montmorillonite [18]. Among various types of 
heterogeneous solid catalysts, carbon-based solid acid 
exhibited superior catalytic activities. The excellent 
recyclability, inexpensive, and naturally existing raw 
materials of carbon-based solid acid catalyst shows its 
potential application in the production of intermediate 
products from cellulose. 

Cellulose is known to be insoluble in most solvents 
commonly used in chemical reactions. Therefore, the use 
of ionic liquids develops a breakthrough. Ionic liquids 
with high thermal stability, low vapor pressure, wide 
liquid temperature range, and good solubility, have 
gained high interest for various chemical reactions. 
Swatloski et al. [19] reported the application of ionic 
liquids for hydrolysis of cellulose at low temperatures, 
which became an important stage for breaking the chain 
between the sugar ethers. Some ionic liquids reported 
were 1-butyl-3-methylimidazolium chloride 
([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate 
([EMIM]OAc), and 1-Ethyl-3-methylimidazolium diethyl 
phosphate ([EMIM]DEP). Hydrolysis of cellulose in 
[BMIM]Cl produced the highest TRS yield and glucose 
selectivity, which were 72.1% and 82.5%, respectively, at 
110°C after 3 h with the weight ratio of [BMIM]Cl to the 
water of 20:1 [20]. Ionic liquid of 1-ethyl-3-
methylimidazolium chloride ([EMIM]Cl) and 
([EMIM]OAc) were also reported to dissolve cellulose at 
135°C in 15 min. While cellulose was more quickly 
dissolved in ([BMIM]Cl) ionic liquid than others [21]. 

Many researchers have reported sulfonated carbon 
catalysts using H2SO4 from 1 to 10% [22, 23, 24, 25, 26] up 
to 30–45% [22, 26, 27, 28, 29, 30] and even more than 
60% [29, 31]. Concentrated H2SO4 (above 50%) had an 
apparent swelling effect on cellulose [32]. Yoon et al. [33] 
reported H2SO4 concentration above 62% had promoted 
the total solubilization of microcrystalline cellulose. 
Although hydrolysis of cellulose using concentrated acids 
can be operated at low temperatures and atmospheric 
pressure, its water content leads to severe corrosion [34]. 
On the other hand, a higher temperature is usually 
required in the hydrolysis of cellulose under dilute acids 
[35]. Harris and Beglinger [36] used 0.5 wt% H2SO4 in a 
continuous reaction with a short residence time to 
minimize the degradation of wood products. Thompson 
and Grethlein [37] used 1 wt% H2SO4 in a continuous 
process at 240°C with a short residence time of 0.22 min 
to produce glucose of 50%. 

The sulfonated carbon catalyst with lower H2SO4 
concentration for hydrolysis reaction of EFB under 
moderate temperature conditions and ambient pressure 
has not been reported elsewhere. In this research, single 
step hydrolysis of cellulose using solid acid catalysts, 

sulfonated carbons prepared using a low concentration of 
H2SO4 (10-30 v/v%), was investigated for the potential 
application in fermentable sugar production from EFB. 
The physical and chemical properties of sulfonated 
carbon catalysts were characterized before tested for 
cellulose hydrolysis. The effects of sulfate loading 
amount in catalyst samples and various ionic liquid were 
investigated. Subsequently, the catalyst sample with the 
best hydrolysis activity was used in the hydrolysis of 
lignocellulosic biomass, EFB. 

2. Methodology 

2.1. Material 

The chemicals employed in this research were 
microcrystalline cellulose (Sigma Aldrich), active carbon 
(Merck), H2SO4 (Merck, 95-97%), 1-Butyl-3-
methylimidazolium chloride (Io-Li-Tec, 95%), 1-Ethyl-
3-methylimidazolium acetate (Io-Li-Tec, 95%). The 
biomass used in this work was oil palm empty fruit bunch 
(EFB), a naturally abundant lignocellulosic biomass 
waste obtained from a local palm oil plant in Sumatera. 

2.2. Experiment 

2.2.1. Preparation of Sulfonated Carbon Catalysts 

The active carbon powder (specific surface area, 
799.07 m2/g; pore volume, 0.41 cm3/g; and pore size, 2.04 
nm) was refluxed in various concentration of H2SO4 (10-
30 v/v%) at 120°C for 24 h, followed by cooling to room 
temperature and filtration to obtain a black precipitate. 
The black precipitate was then washed repeatedly with 
hot distilled water until impurities such as sulfate ions 
were no longer detected in the washed water. 

2.2.2. Catalyst Characterization 

The weight loss of catalyst samples was examined 
using the TGA LINSEIS STA instrument under air with a 
heating rate of 10°C/min to understand thermal behavior 
decomposition occurred by increasing activation 
temperatures. Crystallographic phase identification of 
catalyst samples was analyzed using X-ray Diffraction 
(XRD) analysis, Phillip PW 1710 diffractometer, with Cu-
Kα radiation at 40 kV and 30 mA, and secondary graphite 
monochromatic. The specific surface area and porosity of 
catalysts were measured by Tristar II 3020 Micromeritics 
Instrument through nitrogen adsorption-desorption 
isotherms, at 77.3 K on liquid nitrogen. Prior to the 
analysis, the samples were degassed at 350°C for 3 h. The 
surface acidity of catalyst samples was determined by the 
irreversible adsorption of organic base pyridine. The 
amount of base adsorbed was considered as the acidity of 
catalyst samples in mmol/g. The types of groups and acid 
sites in catalyst samples were characterized by FT-IR 
spectroscopy in the KBr phase using a Shimadzu, 
Prestige-21 FT-IR spectrometer after treated adsorption 
of organic base pyridine. 

2.2.3. Catalytic Performance Test 

The catalytic performance of prepared sulfonated 
carbon catalysts was tested for the hydrolysis reaction of 
Avicel in a stainless-steel batch reactor. In this study, the 
effect of sulfate loading amount in catalyst samples and 
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various ionic liquids of ([BMIM]Cl and [EMIM]OAc) were 
investigated. Sulfonated carbon catalyst powder sample 
(0.1 g) was dispersed by magnetically stirring in ionic 
liquid (3.8 g) containing Avicel (0.2 g) and distilled water 
(0.25 mL). The hydrolysis reaction was carried out at 
150°C for 3 h. To terminate the reaction, distilled water (10 
mL) was added into the reaction mixture, followed by 
filtration to separate reaction liquid and the used catalyst. 
The total reducing sugar (TRS) of liquid product was 
analyzed using DNS (3,5-dinitrosalicylic acid) assays 
[18]. The catalyst sample, which showed the best 
performance in the hydrolysis of Avicel, was then applied 
in the hydrolysis of biomass feedstock, EFB. Furthermore, 
the effect of various hydrolysis time was also studied. 

2.2.4. Product Analysis [19] 

A mixture of DNS reagent (0.25 mL) and liquid 
product (0.25 mL) was heated in a water bath at 5-100°C 
for 5 min, cooled to room temperature, and then diluted 
by adding water (2 mL). The color intensity of the 
resulting mixtures was measured using UV-Vis 
Spectroscopy at a wavelength of 540 nm. The 
concentration of TRS was calculated based on the 
standard curve of glucose. The final solution was filtered 
and analyzed by high-performance liquid 
chromatography using a Prevail Carbohydrate ES column 
(4.6 x 250 mm) at 358 K equipped with a PL-ELS 1000 
ELSD detector, with mobile phase was a mixture of water 
and acetonitrile (25:75 v/v) at a flow rate of 1.0 mL/min. 
The products detected in HPLC chromatograms were 
glucose and sucrose. However, the concentration of these 
products was deficient (not shown here). 

3. Results and Discussion 

3.1. Characterization of Catalysts 

The thermal stability of active carbon and sulfonated 
carbon catalysts was studied by TG analysis under air 
condition, and the results are summarized in Figure 1. 
Sulfonated carbon catalysts were denoted by a number 
representing the concentration of H2SO4 used in catalyst 
preparation, followed by -SC. Figure 1(a) shows that the 
weight loss of active carbon was observed at about 17.19% 
at below 150°C and about 61.32% at 450–700°C. The 
initial weight loss at about 100°C might be the loss of 
adsorbed water, while the weight loss at about 450–
700°C was suggested as the decomposition of carbon. The 
weight loss of sulfonated carbon, as shown in Figure 1(b), 
was observed in a higher percentage than active carbon, 
which was about 17.52% at below 150°C and about 80.83% 
at 450–700°C. The second stage’s significant weight loss 
might be associated with the thermal decomposition of –
SO3H groups attached to the surface of carbon support and 
a small mass of carbon support [23, 24, 25]. Compared to 
the active carbon (a), 30-SC catalyst (b) presented more 
apparent decreasing tendencies, indicating that the 30-
SC catalyst has hydrophilic properties [26]. 

 

Figure 1. Thermogravimetric (TG) patterns of the (a) 
active carbon and (b) sulfonated carbon, 30-SC catalyst. 

Figure 2 shows the XRD patterns of active carbon and 
a series of sulfonated carbon catalysts. For active carbon 
and a series of sulfonated carbon catalysts, the broad C 
(002) at diffraction peak (2θ) about 15–30º might be 
attributed to amorphous carbon composed of aromatic 
carbon sheets oriented in a considerably unordered form. 
The weak and broad C (101) at 2θ about 40–50º was 
possibly caused by the graphite structure [27, 28]. The 
small sharp peak at 2θ of 28° was observed for a 20-SC 
catalyst, which might reveal the structure of intermediate 
between graphite and amorphous carbon. It also has a 
disorderly layer or random layer lattice structure [25]. 
There was no noticeable difference in the XRD patterns 
between active carbon and prepared sulfonated carbon 
catalysts, suggesting that the sulfonation did not affect 
the microstructure of carbon. 

 

Figure 2. X-ray diffraction (XRD) patterns of the active 
carbon (a); and sulfonated carbon catalysts: (b) 10-SC; 

(c) 15-SC; (d) 20-SC; (e) 25-SC; and (f) 30-SC. 

The specific surface area, pore-volume, and pore 
diameter of active carbon and sulfonated carbon catalysts 
are shown in Table 1. Sulfonation treatment resulted in an 
increase in the specific surface area from 789.34 to 846.59 
m2/g, as can be seen in active carbon and 15-SC. The 
different concentrations of H2SO4 to prepare sulfonated 
carbon catalysts did not significantly affect the specific 
surface area, pore-volume, and pore size. This might be 
caused by the leaching of –SO3H groups during washing 
and neutralizing. Li et al. [29] have also reported that 
there was no significant change of physical properties by 
increasing of H2SO4 concentration from 0.1 to 1 M. The 
specific surface area of sulfonated carbon catalysts 
increased at sulfate loading was about 10–15%, but 
decreased at sulfate loading was about 20–30%. 
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Table 1. Surface properties of active carbon and 
sulfonated carbon catalysts prepared 

Sample 
Specific Surface 

Area (m2.g-1) 
Pore Volume 

(cm3.g-1) 
Pore Size 

(nm) 

Active 
Carbon 

789.34 0.41 2.04 

10-SC 844.96 0.08 2.08 

15-SC 846.59 0.27 3.45 

20-SC 811.88 0.08 2.08 

25-SC 800.38 0.09 2.10 

30-SC 801.19 0.08 2.09 

The nature of acid sites can be defined by the 
presence of surface protons leading to the Brønsted sites 
or cationic centers due to unsaturation in coordination as 
Lewis acidity. The quantitative measurements of the 
surface acidity are shown in Table 2. The irreversible 
adsorption of pyridine determined the surface acidity of 
the samples. The acidity of the sulfonated carbon 
catalysts increased from 4.77 to 5.02 mmol/g. However, 
the surface acidity did not change significantly by the 
different concentration of H2SO4. These results were 
comparable with sulfonated carbon catalysts prepared by 
Lathiya et al. [24], various H2SO4 concentration from 0.1 
to 1 M increased the surface acidity from 2.3 to 4.4 
mmol/g. The increase of H2SO4 concentration produced a 
higher number of acidic sites attached to the carbon 
surface. The catalytic performance was expected to 
enhance by increasing the acidity. 

FTIR spectra of the active carbon and sulfonated 
carbon catalysts are shown in Figure 3. The sulfonated 
carbons (Fig. 3, spectrum (b-f)) showed peaks 
corresponding to -SO3H groups. While the peak around 

669–680 cm−1 is associated with C-S stretching. The 
peaks in the range of 748–883 cm−1 correspond to the S-
O stretching, while peaks at 1051 and 1265 cm−1 
correspond to the symmetric and asymmetric stretching 
vibrations of S=O, respectively. The peaks at 1571 and 1687 
cm-1 were associated with the C-O and -COOH stretching, 
respectively. There was no –SO3H group in the active 
carbon (Fig.3, spectrum (a)). These results confirmed that 
the sulfonic acid groups were successfully attached to the 
surface of the sulfonated carbon catalysts. 

Table 2. Surface acidity of active carbon and sulfonated 
carbon catalysts 

Sample Sulfate Loading 
(wt%) 

Surface Acidity 
(mmol.g-1) 

Active Carbon - 4.77 
10-SC 10 5.01 
15-SC 15 5.03 
20-SC 20 4.93 
25-SC 25 5.04 
30-SC 30 5.02 

 

Figure 3. FTIR-pyridine adsorption spectra for (a) AC; 
(b) 10-SC; (c) 15-SC; (d) 20-SC; (e) 25-SC; and (f) 30-SC 

The chemisorption of pyridine, followed by IR 
studies, is a valuable method to determine the nature of 
surface acid sites [38, 39]. The peak of pyridinium ring 
vibrations was observed at 1545 and 1639 cm-1 due to the 
proton transfer from Brønsted acid sites to pyridine [40]. 
As shown in Figure 3 (b-f), sulfonated carbon catalysts 
exhibited prominent bands attributed to pyridine 
adsorbed on the Brønsted acid sites at about 1631 cm-1. 
Therefore, it can be assumed that sulfonated carbon 
catalysts contain only Brønsted acid sites with higher 
intensity than active carbon due to the presence of the 
−SO3H groups on the surface of the catalyst [41]. 

3.2. Catalytic Performance of Sulfonated Carbon 
Catalysts 

 

Figure 4. The effect of ionic liquid on the catalytic 
activity of sulfonated carbon catalysts. Reaction 

condition: 0.2 g of cellulose; 3.8 g of ionic liquid; 0.1 g of 
catalyst; 150°C; 3 h 

The effect of sulfate loading in catalyst samples and 
various ionic liquids were investigated through cellulose 
hydrolysis. The effect of ionic liquid was investigated 
using two ionic liquids, i.e., [EMIM]OAc] and [BMIM]Cl. 
[BMIM]Cl ionic liquid produced higher TRS yield 
compared to [EMIM]OAc in Figure 4. The TRS yield of 
cellulose hydrolysis using [BMIM]Cl increased along with 
higher sulfate loading in sulfonated carbon catalysts, to 
get the highest yield at 16.11%. While different sulfate 
loading in hydrolysis reaction with [EMIM]OAc did not 
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exhibit any significant effect, the TRS yield was similar. 
The highest TRS yield was 30-SC catalyst and [BMIM]Cl 
ionic liquid at 150°C. 

The different performance of [EMIM]OAc and 
[BMIM]Cl might be associated with different chemical 
structures, as shown in Figure 5. The combination of 
different anions and cations in these ionic liquids 
contributes to cellulose’s dissolution [22, 31]. The anion 
in ionic liquids attacked the free hydroxyl group on 
cellulose and deprotonated it. At the same time, the 
hydroxide on the cellulose chain acted as an electron 
donor and interacted with the larger size cation in the 
imidazolium. Cellulose dissolution occurred once the 
hydroxyl groups on cellulose were separated, and the 
hydrogen bonds between cellulose were disrupted. Upon 
the addition of anti-solvent, regenerated cellulose was 
formed when ionic liquids were bonded to the anti-
solvent through preferential solute displacement. The 
action of ionic liquids might be substrate-specific in the 
pretreatment of lignocellulosic biomass. For example, 
[EMIM]OAc showed the best-performing pretreatment 
medium for sugarcane bagasse, as reported by Yoon et al. 
[33]. In this work, [BMIM]Cl showed better performance 
in the cellulose of EFB. It means that an ionic liquid 
suitable for pretreating one substrate might not be 
effective for different substrates. The utilization of 
acetate-based ionic liquid, [EMIM]OAc is limited due to 
less activation of the glycosidic bonds by weakly basic 
anions-containing ionic liquids [34]. Therefore, the 
chloride-based ionic liquids, [BMIM]Cl performed higher 
activity than [EMIM]OAc. 

 

Figure 5. Chemical structure of ILs: (a) 1-butyl-3-
methylimidazolium chloride ([BMIM]Cl); (b) 1-ethyl-3-

methylimidazolium acetate ([EMIM]OAc) 

The 30-SC catalyst was tested for hydrolysis of EFB, 
which has cellulose content about 30.41%, the hydrolysis 
method is described in Figure 6. The TRS yield increased 
by increasing hydrolysis time from 2 h to 4 h but 
decreased at further prolonged hydrolysis time at 8 h 
(Figure 7). The highest TRS yield of 40.76% was obtained 
over 30-SC catalyst in [BMIM]Cl ionic liquid at 150°C for 
4 h. The decrease of TRS yield at 8 h reaction time might 
be caused by the degradation of sugar product, as 
reported by Yamaguchi et al. [35]. It was reported that 
hydrolysis reaction rates decreased after 6 hours due to a 
shortage of the water required for the reaction and 
blocking of acid sites by the reaction products. 

 

Figure 6. Cellulose derived from lignocellulose biomass 
as a feedstock for sugar production 

 

Figure 7. Catalytic activity test of 30-SC catalyst in EFB 
treated. Reaction condition: 0.2 g of EFB; 3.8 g of 

[BMIM]Cl; 0.1 g of 30-SC catalyst; 150°C 

The catalytic hydrolysis performance reported in this 
work was compared to that of the previous works based 
on sulfonated carbon catalysts [27, 28, 29]. Onda et al. [27] 
prepared sulfonated carbon catalysts by a high 
concentration of H2SO4 heated under argon flow at 150°C 
for 16 h. The catalysts gave cellulose conversion of 43% 
with the glucose yield of 40.5%. Li et al. [29] developed a 
new sulfonation process from carbon materials through a 
plasma process under dilute H2SO4 and produced a 
catalyst that gave 40.1% cellulose conversion with a yield 
of 34.6%. Qin et al. [28] reported a green and universal 
process to sulfonate various carbon materials via 
innovative gas−liquid interfacial plasma (GLIP) under 1 M 
H2SO4 at room temperature. Although the catalyst 
resulted in low glucose selectivity, the catalytic 
performance increased significantly by applying the 
green sulfonation process using a low concentration of 
H2SO4 combined with the plasma method. In this work, 
sulfonated carbon catalysts prepared using a low 
concentration of H2SO4 (10-30 wt%) gave the highest TRS 
yield from EFB, 40.76%. These results highlight the 
potential of sulfonated carbon catalysts prepared using a 
low concentration of H2SO4 to be applied for the 
hydrolysis reaction of lignocellulosic materials into 
fermentable sugars. 

4. Conclusion 

Sulfonated carbon catalysts have been successfully 
prepared, characterized, and tested their catalytic 
performance for a hydrolysis reaction. The prepared 
sulfonated carbon catalysts have similar physical 
properties with the parent of active carbon. The 30-SC 
catalyst exhibited the best catalytic activity for hydrolysis 
of EFB in [BMIM]Cl ionic liquid at 150°C for 4 h to obtain 
a TRS yield of 40.76%. The sulfonated carbon catalysts 
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show potential for hydrolysis of EFB into fermentable 
sugar as an intermediate product in ethanol production. 
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