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Coronavirus infection (COVID-19) caused by SARS-CoV-2 appears as a pandemic 
that has spread to almost all countries in the world. Antiviral therapy using 
natural compounds is one alternative approach to overcome this infectious 
disease. The therapeutic mechanism is proven effective against the main protease 
(Mpro) of SARS-CoV-2. This research aims to perform bioinformatics studies, 
including ligand-docking simulations and protein-protein docking simulations, 
to identify, evaluate, and explore five compounds' activity on SARS-CoV-2 Mpro 
and their effects against Angiotensin-Converting Enzyme 2 (ACE-2). Protein-
ligand docking simulations show kaempferol, flavonol, and their glycosides 
(Afzelin and Juglanin) and other flavonoids (Quercetin, Naringenin, and 
Genistein) have a high affinity towards SARS-CoV-2 Mpro. These results were 
then confirmed using protein-protein docking simulations to observe the ability 
of five compounds to prevent the attachment of ACE-2 to the active site. Based on 
the results of the bioinformatics studies, Quercetin has the best affinity, with a 
binding free energy value of −33.18 kJ/mol. The five compounds are predicted to 
be able to interact strongly with SARS-CoV-2. The results in this research are 
useful for further studies in the development of novel anti-infective drugs for 
COVID-19 that target SARS-CoV-2 Mpro. 

 

1. Introduction 

The 2019 coronavirus infection (COVID-19) was first 
discovered in Wuhan City, Hubei Province, China, and has 
now become a pandemic due to its rapid spread to 25 
countries worldwide [1]. For this incident, the World 
Health Organization (WHO) announced a global health 
emergency on 30 January 2020 [2, 3]. In its first 
emergency meeting, WHO estimated the COVID-19 
mortality rate to be around 4% [4]. Collaborative efforts 
by researchers worldwide are underway to understand the 
characteristics of the virus that causes this disease, 
namely SARS-CoV-2 (originally named 2019-nCoV), and 
develop effective drug candidates to control and prevent 
it [5]. 

The SARS-CoV-2 genome consists of ~30,000 
nucleotides and functions to encode two overlapping 
polyproteins, namely pp1a and pp1ab. These polyproteins 

are needed for virus replication and transcription [6]. 
Functional polypeptides are released from polyproteins 
through proteolytic processes involving the main 
protease (Mpro) [7]. Preliminary studies also show that 
SARS-CoV-2 has structural similarities to SARS-CoV 
based on complete phylogenetic analysis of the genome 
[8, 9]. Besides, both interact directly with Angiotensin-
Converting Enzyme 2 (ACE-2) to enter the target cell [10]. 

ACE-2 can mediate the entry of SARS-CoV-2 into 
cells so that it acts as a functional receptor for 
coronavirus. SARS-CoV-2 involves ACE-2 with an affinity 
comparable to SARS-CoV [11]. The tight bonding in ACE-
2 can explain part of the efficient transmission of SARS-
CoV-2 in humans, as happened in SARS-CoV [12]. 
Therefore, the inhibition of SARS-CoV-2 attachment to 
ACE-2 is a pathway in developing inhibitors for COVID-19 
infectious diseases. 
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Several herbal antiviral agents have been developed 
to disrupt the viral life cycle [13]. At the beginning of the 
first appearance of SARS in 2002-2003, around 50% of 
patients in mainland China were successfully treated 
using herbal medicines [13]. Kaempferol flavonols and 
their glycosides (Afzelin and Juglanin), as well as other 
flavonoids (Quercetin, Naringenin, and Genistein), have 
been reported to have inhibitory activity against the main 
protease (Mpro) SARS-CoV or viral replication [14]. 
Interestingly, all of these compounds are contained in 
natural Indonesian herbs, such as Afzelin (from Annona 
purpurea, Piper umbellatum, Zingiber zerumbet, Nymphaea 
odorata, and Ginkgo biloba) [15], Juglanin (from 
Polygonum aviculare) [16, 17], Quercetin (from Camellia 
sinensis, Moringa oleifera, Centella asiatica, Apium 
graveolens, and Coriandrum sativum) [18], Naringenin 
(Citrus species, Ficus carica) [19], Genistein (Flemingia 
vestita, Rutaceae family, Fortunella obovata, Erythrina 
variegata, Millettia reticulata, Tetracera scandens, Genista 
sessilifolia, and Amaryllidaceae species) [20]. 

Nowadays, the need to design effective antiviral 
candidates against SARS-CoV-2 is increasing. This 
research aims to observe the molecular interactions 

between several natural compounds in the main protease 
(Mpro) of SARS-CoV-2 and their effects in inhibiting the 
binding of ACE-2. Bioinformatics approaches through 
ligand-protein, and protein-protein docking simulations 
can be used to identify, evaluate, and characterize 
potential components of SARS-COV-2 [21]. Specifically, 
SARS-CoV-2 Mpro is considered a target because it is a 
major part of forming the characteristics of the 
coronavirus. Thus, through this research, it is expected to 
obtain the structure of reference compounds to treat 
COVID-19 infections. 

2. Methodology 

2.1. Macromolecule Preparation 

Macromolecules used in this research were the main 
proteases (Mpro) of SARS-CoV-2, and Angiotensin-
Converting Enzyme (ACE-2) obtained from Protein Data 
Bank (http://www.rcsb.org/pdb) with PDB ID 6LU7 [22] 
and 2AJF [23], respectively. The preparation of these two 
macromolecules was carried out by removing water 
molecules and native ligands, adding polar hydrogen 
atoms, and calculating the Kollman charge using 
AutoDock 4.2 with MGLTools 1.5.6 [24, 25]. 

 

Figure 1. Two-dimensional structure and physicochemical properties of ligands 

2.2. Ligand Preparation 

The ligands used in this research were Kaempferol 
flavonol and their glycosides (Afzelin and Juglanin), as 
well as other flavonoids (Quercetin, Naringenin, and 
Genistein), obtained from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/) (Figure 1). The 
ligand structure was optimized using Quantum 
ESPRESSO 6.6 with Density Functional Theory (DFT) 
method based on the 3-21G basis set [26, 27]. Finally, all 
ligands were prepared by adding a hydrogen atom and 
calculating the Gasteiger charge using AutoDock 4.2 with 
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MGLTools 1.5.6 [24, 25]. Structural preparation aims to 
optimize compounds for use as input in ligand-protein 
docking simulations. 

2.3. Identification of Ligand-Binding Sites in SARS-
CoV-2 Mpro 

Macromolecules of SARS-CoV-2 Mpro that have 
been prepared are then identified, evaluated, and 
explored binding sites that are most responsible for 
biological activity using BIOVIA Discovery Studio 2020 
[28]. All amino acids that occur around the native ligand 
within a spherical radius distance set are prepared for the 
location of protein-ligand binding in ligand-protein 
docking simulations. 

2.4. Ligand-Protein Docking Simulations 

The ligand-protein docking simulations were 
performed using AutoDock 4.2 with MGLTools 1.5.6 [24, 
25]. All ligand molecules for this simulation were added 
hydrogen atoms and partial charges data from the 
Density Functional Theory (DFT) calculations. 
Simulations were created by a grid box 64 × 60 × 60 points 
with 0.375 Å spacing to cover the binding cavity of the 
target [29]. The Lamarckian Genetic Algorithm with 100 
conformations was chosen for each simulation, and other 
docking parameters were set as default. Observation of 
the docking simulation results was performed using 
Discovery Studio 2020 [28]. 

2.5. Protein-Protein Docking Simulations 

Protein-protein docking simulations were 
performed using PatchDock for five complexes from the 
results of ligand-protein docking simulations in SARS-
CoV-2 Mpro [30]. The simulations were accomplished 
against active sites of the Angiotensin-Converting 
Enzyme (ACE-2) macromolecules, including Gln24, 
Lys31, His34, Glu37, Asp38, Tyr41, Gln42, Met82, Tyr83, 
Glu329, Asn330, Lys353, and Gly354. The default 
clustering RMSD 4.0 Å was used, and the complex type 
was chosen to be a protein-protein. The Connolly dot 
surface representation of the molecules into different 
components such as convex, concave, and flat patches 
were generated through the PatchDock algorithm. 
PatchDock was optimized, refined, reshuffled, and 
rescored the side chain interface of the top 10 candidate 
solutions. It also amends the orientation of the relative 
molecules by confining the flexibility to the side-chains 
of the interacting surface and allow the movements of a 
small rigid body. The conformation of the systems was 
verified by visualization analysis with Discovery Studio 
2020 [28]. 

3. Results and Discussions 

3.1. Ligand-Protein Docking Simulations 

Kaempferol flavonol and their glycosides (Afzelin 
and Juglanin) and other flavonoids (Quercetin, 
Naringenin, and Genistein) were docked into SARS-CoV-
2 Mpro as a macromolecular target. Moreover, molecular 
docking of natural ligands was also performed as a 
comparison against the five tested ligands. All complexes 
from the results from protein-ligand docking were 
selected for further studies using protein-protein 
docking methods against ACE-2. Five ligands have a 
larger negative binding free energy than natural ligands 
to the active site of SARS-CoV-2 Mpro (Table 1). This 
phenomenon shows a promising sign that these ligands 
have an excellent affinity to the target macromolecules. 
Quercetin has the best binding at the active site of SARS-
CoV-2, with a binding free energy value of −33.18 kJ/mol 
better than other ligands. 

Table 1. Binding Free Energy of Ligands to SARS-CoV-2 
Mpro 

Ligand Binding Free Energy (kJ/mol) 

Native ligand −18.58 

Afzelin −27.49 

Juglanin −32.05 

Quercetin −33.18 

Naringenin −30.46 

Genistein −29.33 

All the ligands have related interactions against 
SARS-CoV-2 Mpro (indicated by the binding energy 
value, which is almost similar) (Figure 2). In general, the 
interaction of each ligand with SARS-CoV-2 Mpro was 
dominated by ten hydrogen bonds (with Phe140, Gly143, 
His163, His164, Met165, Glu166, His172, Gln189, and 
Thr190) and seven hydrophobic interactions (with His41, 
Met49, Leu141, Asn142, Met165, Pro168, and Ala191). 
Interestingly, Quercetin, as the ligand with the best 
binding free energy, has more molecular interactions 
than natural ligands. Quercetin can form twelve 
interactions, including seven hydrogen bonds (with 
Gln192, Thr190, Thr190, Glu166, His164, Tyr54, and 
Asp187) and five hydrophobic interactions (with His41, 
Met165, Met165, Met165, and Pro168). Meanwhile, 
natural ligands could only form ten interactions 
consisting of seven hydrogen bonds (with Asn142, 
Phe140, Glu166, Gln189, Thr190, Asn142, and Leu141) and 
three hydrophobic interactions (with Met165, Pro168, 
and Ala191). 
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Figure 2. Overlay the docking pose of Afzelin (pink), Juglanin (yellow), Quercetin (green), Naringenin (blue), Genistein 
(purple), and natural ligand (gray) in the binding site of SARS-CoV-2 Mpro

The molecular interactions that form between 
molecular ligands and the active site of the 
macromolecular target consisted of many hydrogen 
bonds. These ligands act as donor hydrogen bonds and 
protein amino acid residues as hydrogen bond acceptors. 
Most hydrogen bonds between protein-ligands were 
quite strong, with an average bond length below 3 Å. Due 
to the presence of hydrogen bonds, the interaction 
between five ligands and SARS-CoV-2 Mpro was also 
dominated by hydrophobic interactions [31]. It can be 
predicted that hydrogen bonds and hydrophobic 
interactions that contribute against macromolecules 
protein play an important role in stabilizing the complex. 
The best conformation of ligands to the SARS-CoV-2 
Mpro receptor was chosen for performing the protein-
protein docking simulations. 

3.2. Protein-Protein Docking Simulations 

After ligand-docking simulations, further 
identifications were conducted using protein-protein 
docking methods. The atomic contact energy evaluated 
the ACE-2 (ACE) score's binding affinity into the 
PatchDock [30]. The purpose of such docking simulations 
was to examine the bonding effect of each ligand with the 
target protein in preventing the attachment of ACE-2 to 
the active site of SARS-CoV-2 Mpro. The preparation of 
ACE-2 macromolecules was demonstrated by removing 
water molecules and native ligands, adding polar 

hydrogen atoms, and calculating the Kollman charge 
using AutoDock 4.2 with MGLTools 1.5.6 [24, 25]. A strong 
ligand bond to the target macromolecule is predicted to 
tend to inhibit the entry of coronavirus into cells due to 
the inability of SARS-CoV-2 Mpro to reach ACE-2 to 
forward the signal [32]. Therefore, the exploration of 
amino acid residues responsible for arresting the 
formation of molecular interactions between the binding 
sites of SARS-CoV-2 Mpro and ACE-2 is also needed. 

Table 2. Atomic Contact Energy of Each Ligand-Protein 
Complex to ACE-2 in Protein-Protein Docking 

Ligand-Protein Complex Atomic Contact Energy 
(kJ/mol) 

SARS-CoV-2 Mpro −1172.98 

Afzelin + SARS-CoV-2 Mpro 1321.39 

Juglanin + SARS-CoV-2 Mpro 1532.14 

Quercetin + SARS-CoV-2 
Mpro 

1684.48 

Naringenin + SARS-CoV-2 
Mpro 

1676.91 

Genistein + SARS-CoV-2 
Mpro 

1654.90 

Afzelin + SARS-CoV-2 Mpro 1321.39 

Data from protein-protein docking simulation 
shows that five ligand-protein complexes have positive 
ACE scores (Table 2). This occurrence can be caused by 
unfavorable interactions between each ligand-protein 
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complex against ACE-2 [33]. Interestingly, Quercetin 
effectively inhibited the attachment of ACE-2 to the 
binding area of SARS-CoV-2 Mpro because it has the 
largest positive ACE, with a score of 1684.48 kJ/mol. Most 
inhibitors work by binding firmly to the active sites of the 
target receptor and competing with its native ligand, as 
well as stabilizing the structure of the receptor 
macromolecules and preventing the conformational 
changes needed to progress the signal further. 

 

Figure 3. Protein-Protein Docking Pose of Quercetin 
Complexes (pink) against ACE-2 (blue) 

Subsequent analysis was performed on the 
conformation of the Quercetin + SARS-CoV-2 Mpro 
complex with ACE-2 (Figure 3). Ten unfavorable bonds 
were formed, namely the amino acid residues Lys313, 
Val316, Val316, Ala387, Gln552, Gln552, Gln552, Gln552, 
Phe555, and Pro321. Besides, other interactions that 
contribute include thirteen hydrogen bonds (with 
Arg306, Asp427, Glu310, Lys309, Thr548, Gln325, 
Thr548, Glu549, Asn546, Gly319, Gly319, Ser420, and 
Gly422), six hydrophobic interactions (with Lys313, 
Pro321, Ala387, Lys313, Pro321, and Phe555), and nine 
electrostatic interactions (with Arg306, Asp427, Asp427, 
Glu310, Glu310, Asp427, Arg306, Lys313, and Phe555). 
Eventually, it can be predicted that Quercetin is a 
potential candidate for SARS-CoV-2 Mpro inhibitor and 
can prevent attachment to ACE-2, which acts as an entry 
point into human cells. 

4. Conclusion 

Several compounds of kaempferol, flavonol, and 
glycoside derivatives (Afzelin and Juglanin) and other 
flavonoids (Quercetin, Naringenin, and Genistein) can 
bind stably against SARS-CoV-2 Mpro. However, 
Quercetin has the strongest interaction with the target 
macromolecular active site, with the binding free energy 
value of −33.18 kJ/mol. The five ligands are also able to 
inhibit the formation of interactions with ACE-2. Thus, 
the study results indicate that the compound can be 

further developed as a SARS-CoV-2 Mpro inhibitor in 
COVID-19 infection therapy. 
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