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Li7La3Zr2O12 (LLZO) is a garnet-type electrolyte for all-solid-state lithium-ion 
batteries (ASSB). It has good chemical and electrochemical stability against 
lithium and a relatively high ionic conductivity. However, the ionic conductivity 
needs to be further increased to provide a high specific capacity of the ASSB. 
Element doping into LLZO is an effort to increase molecular defect, known to 
enhance the conductivity. This research studied the effect of the Na2B4O7 addition 
on the LLZO synthesis, producing LLZBO(A). The investigation aims to 
understand whether the sodium ions dope into the LLZO structure during 
synthesis, or it is only B ions to enter into the structure. Therefore, another 
synthesis with B2O3 of B precursor was conducted for comparison (LLZBO(B)). The 
precursors were mixed stoichiometrically by following the formula of Li7-xLa3-

xZr2-xBxNaxO12 (LLZBO, x= 0.15; 0.20; 0.30). XRD analysis equipped with Le Bail 
refinement found that LLZBO(A) and LLZBO(B) mainly consist of cubic and 
tetragonal LLZO with a %mol of 69.06 – 69.84 %, and the main secondary phase 
is La2Zr2O7. The surface morphology of LLZBO(A) and LLZBO(B) is almost similar 
to the irregular form of large aggregates. The particles become more dispersed 
when 0.3 %mol dopant was submitted. Impedance analysis found a high ionic 
conductivity of LLZBAO(A)0.3 1.042x10-3 Scm-1. 

 

1. Introduction 

The rechargeable lithium-ion batteries are still 
essential for various electrical devices as an extensive 
energy storage system [1, 2, 3, 4, 5, 6]. However, recently 
all-solid-state solid lithium-ion batteries, ASSB, have 
been investigated more due to the high power, high 
energy, and long life cycles with non-flammable solid 
electrolyte [7, 8, 9]. Various types of solid electrolytes 
have been reported, such as lithium superionic conductor 
(LISICON) [10], perovskite-type [11], sodium superionic 
conductor (NASICON) [12], garnet-type [13], and so forth. 
Li7La3Zr2O12 (LLZO) is a garnet type electrolyte family 
reported as a promising candidate with chemical and 
electrochemical stability against lithium and relatively 
high ionic conductivity [14, 15]. LLZO can be crystallized 
in the cubic phase and tetragonal phase. At room 
temperature, the cubic phase’s ionic conductivity is 
higher than that of the tetragonal phase [16]. Various 
elements such as Al [17], Ga [18], Ge [19], Nb [20], Ta [21], 
W [22], Sm [23], Mg [24], and Gd [25] have been doped to 

stabilize the cubic phase of LLZO and increase the ionic 
conductivity. 

Boron, B, is within a similar group with Aluminium, 
Al with three valence electrons, which potentially 
replaces Zr4+ within the structure, providing a vacancy 
site of oxygen ion. The addition of Boron from B2O3 

precursor has been reported to reduce sintering 
temperatures and time of sintering [26], which is usually 
1200°C for 36 hours or even more [27]. Glass can 
effectively promote the process of sintering by forming a 
liquid phase at high temperatures [28]. It can also 
increase the maximum relative density and ionic 
conductivity values of 92.4% and 1.86 x10-4 Scm-1 [26]. 
Many precursors have been used for B precursors, such as 
H3BO3 [29], Li3BO3 [28], and B2O3 [26]. 

Some researchers also investigated multi-dopants 
insertion, such as Al-Ta doped into LLZO [30] and Ga-Ba-
Ta doped LLZO [31]. Al-Ta doping investigation found 
that some of Li+ was replaced by Al3+ and Ta5+, producing 
cation vacancies due to relatively positive charges when 
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the higher oxidation number atoms replaced the lower 
Li+. The cation vacancy number increases when some of 
Ta5+ also replace Zr4+ producing Li7-3x-yAlxLa3Zr2-yTayO12 
[30]. The cation vacancies were also investigated when 
Ga3+ was replacing Li+ and Ta5+ replacing Zr4+ [31]. 
Meanwhile, Ba2+ replaces La3+, increasing the Li+ 
concentration in the framework, leading to an increase in 
Li-ion conductivity [31]. 

This research conducted Na-B doping into 
Li7La3Zr2O12 simultaneously by sodium tetraborate, 
Na2Ba4O7 addition. Meanwhile, Na’s possibility is melted 
and released during sintering due to a low melting point 
of 97.8°C and a boiling point of 889°C [32]. Moreover, 
Na2B4O7 has a melting point of 743°C. Therefore, for 
comparison, a single B doping was conducted by 
submitting B2O3 into LLZO for comparison. Based on Al 
doping into LLZO, it is estimated that B3+ (0.27 Å) will 
replace Li+ (0.74 Å) [24], and based on the investigation 
result, La3+ can be replaced by a lower oxidation number 
of Ba2+ [31]. Therefore, it is estimated that Na+ may 
replace La3+ producing Li7-xBxLa3-yNayZr2-xO12. However, 
the possibility of Na to release after high-temperature 
sintering of 900°C is high, and the remaining B3+ to enter 
into the host structure producing cation vacancies. 

This research investigated a different precursor of 
Boron source, i.e., a calcined sodium tetraborate 
decahydrate ( Na2B4O7) and Boron Dioxide (B2O3). Borax or 
N2B4O7.10H2O is an inexpensive precursor; therefore, if 
the result is similar to B2O3 doping into LLZO, it will 
reduce many mass-production costs. Product 
characterization was used to confirm the result, including 
crystal structure, phase content, surface morphology, 
and impedance. 

2. Methodology 

Zirconia used to synthesis Li7La3Zr2O12 was a caustic 
fusion result of zircon, ZrSiO4, by crushed the zircon sand 
with NaOH underweight ratio of 1.3: 1, followed by heating 
at 800°C for two hours [33]. Further treatments were 
water leaching in which the powder was soaked within 
distilled water and was stirred for 30 minutes at 100°C 
before filtration. The water leaching was conducted twice, 
followed by acid leaching using 37 % HCl solution under 
100°C heating and stirred until form a homogeneous 
yellowish dispersion. The dispersion was then filtered to 
separate the clear-yellow solution as the ZrOCl2 solution 
(ZOC solution) from the remaining white precipitate. The 
ZOC solution was then added with ammonium solution to 
precipitate the Zr(OH)4 [33]. The precipitate was then 
washed with distilled water to neutralize the pH, followed 
by heating in the oven at 150°C for 3 h and calcined at 
800°C for 5 h [32]. 

The sodium tetraborate decahydrate, 
Na2B4O5(OH)4•10H2O ( Borax), was mashed with mortar 
then was heated at 80-120°C for 2 h. The results obtained 
were then further heated at 170-200°C for 2 h. The second 
stage was gradual calcination at 400-600°C with a 
heating rate of 50°C/min. The result was anhydrous 
Na2B4O7 as expected by equation (1) in which gradual 
heating up to 550°C can change the Na2B4O5 (OH)4 into 

Na2B4O7 [34]. The produced powder was then crushed and 
sifted into 120 mesh. 

Na2B4O5(OH)4 2.75H2O(s) Na2B4O5(OH)4(s) + 
2.75H2O(g) 

Na2B4O5(OH)4(s) Na2B4O7(s) + 2H2O(g)  (1) 

The calcined-Na2B4O7 was then analyzed with PXRD 
(Rigaku miniflex 600 Cu-ray) and SEM/EDX (JEOL-JSM-
6510LV). The calcined-Na2B4O7 was then mixed with the 
LLZO precursors, Li2CO3 (99%, Merck), La2O3 (95%, 
Aldrich), and ZrO2 powder that was prepared previously. 
The mixture was under a mole ratio of 7:3:4 for Li2CO3, 
La2O3, and ZrO2, respectively [35]. The Li2CO3 was 
provided a 10% excess to prevent Li loss during sintering. 
The calcined-Na2B4O7 was then added into the mixture 
under a stoichiometric ratio to produce the Li7-xLa3-xZr2-

xBxO12 compound, with x = 0.15; 0.20; 0.30, in which the 
extra addition of 1.4 % was applied to prevent lack of B 
source due to evaporation during sintering. The mixture 
was crushed until homogenous with an agate mortar and 
then pressed under a 10 KPa hydraulic press to form a 
pellet. The pellet was then calcined at 850°C for four hours 
with a heating rate of 5°C/min. The calcined sample was 
then crushed and was dispersed in ethanol and ground in 
a ball mill for four hours at 400 rpm. After ball milling, the 
powder was extracted and then mashed and filtered with 
120 mesh, pressed isostatically (10 KPa) to form pellets, 
and sintered using alumina crush at 900°C for 5 hours 
[36]. 

The produced powder was then analyzed by PXRD 
(Rigaku miniflex 600 Cu-ray) equipped with Le Bail 
refinement to investigate the phase inside and fit with a 
definite- crystal structure and cell parameters. The 
surface morphology of the powder was also investigated 
with SEM-EDX (JEOL-JSM-6510LV). Impedance 
measurement with LCR meter (EUCOL U-2826, frequency 
of 20 Hz-5 MHz) was conducted to understand the 
resistance of a material by extracting resistance value, R, 
from ZView (a software embedded within Corrtest CS-
150) fitting by applying an R-C network model. The 
impedance measurement was conducted at room 
temperature RT, 40, 50, and 100°C. The conductivity value 
was calculated from resistance, R, as a fitted result of the 
impedance curve using equation (2). 

 𝜎 =  
1

𝑅

𝑙

𝐴
 (2) 

3. Results and Discussion 

To characterize the precursors before conducting 
synthesis, the zirconia powder prepared from ZrSiO4 was 
analyzed with XRD at 2 of 10°-80°, as described within 
Figure 1. The diffraction pattern shows that there are two 
phases of monoclinic and tetragonal. Peaks define the 
tetragonal structure are at 2θ of 30.35°; 35.31°; 50.38°; and 
60.49°. Meanwhile, the monoclinic phase reveals at 2θ of 
28.33° and 31.82° [37]. Compared with the standard 
monoclinic ICSD # 172161 and tetragonal ICSD # 93028 
diffraction as depicted in Figure 1, it confirms the 
existence of both phases. 

75 - 170⁰C

70 - 550⁰C
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Figure 1. XRD patterns of ZrO2 compare with the 
standard diffraction of tetragonal ZrO2 ICSD#93028 and 

monoclinic ZrO2 ICD#172161. The □ sign refers to 
tetragonal peaks, and the ○ sign refers to monoclinic 

peaks 

The diffraction pattern of sodium tetraborate 
decahydrate (Na2B4O7.10H2O, Borax) and its calcination 
results are depicted in Figure 2. The highest peak of borax 
before calcination was at 2θ 31.51° and 34.92°. Meanwhile, 
after calcination at 600°C, two high peaks reveal at 2θ of 
13.89° and 36.54° (Figure 2), which are matched well with 
the standard diffraction of Na2B4O7 ICSD#2040. The other 
peaks reveal at the calcined-Na2B4O7 also fit well with the 
characteristic peaks of the ICSD#2040. It seems that 
calcination successfully removes water molecules to be 
anhydrous Na2B4O7. Even though sodium, Na will melt at 
97.72°C [38], however, gradual heating until 600°C seems 
to did not remove Na and keep the core of sodium 
tetraborate to exist. 

 

Figure 2. The XRD pattern of the initial sodium 
tetraborate decahydrate (Na2B4O7.10H2O) and its 

calcination results, compared with the standard Na2B4O7 
ICSD#2040 diffraction. The diffraction pattern of the 
commercial boron oxide (B2O3) and the B2O3 standard 

diffraction ICSD#24711 

The Borax heating treatment follows some reaction 
stages in which at 170°C, about 17% or 3.5 moles of water 

content in borax was released gradually. On subsequent 
heating, i.e., 400-600°C, the bound water molecules were 
released. The release of H2O molecules is explained in 
equation (3) [39]. 

Na2B4O5(OH)4·8H2O Na2B4O5(OH)4·4.5H2O (3.5H2O)int.  

Na2B4O5(OH)4·4.5H2O + 3.5H2O↑ Na2B4O5(OH)4·3H2O + 1.5H2O 

Na2B4O5(OH)4·3H2O Na2B4O5(OH)4(amorph.) + 3H2O↑  

[(Na2B4O7) (crystalline)(Na2B4O5)(amorph)] + 2H2O↑  Na2B4O7(crystalline)  (3) 

At the beginning of heating, 3.5 moles of H2O 
molecules were released at 120°C, then followed by 
releasing 1.5 moles H2O at 133°C, and at 200°C 
Na2B4O5(OH)4 was amorphously formed by releasing 2 
moles of H2O. At 575°C, levels of H2O in borax have been 
released to produce crystalline Na2B4O7 [39]. Meanwhile, 
Boron has a melting and boiling temperature of 2075°C 
and 4000°C [32], respectively, which are very high. That 
ensures Boron, B stays after 600°C heating and receiving 
enough energy to dope into LLZO structure, whether 
through interstitial insertion or by replacing the lattice 
atoms to produce vacancies. Meanwhile, during heating 
at 950°C, sodium would be released by remaining boron 
oxide, B2O3, which melts and mixes with the LLZO 
precursor. To investigate whether B from the calcined-
Na2B4O7 able to diffuse into the LLZO structure during the 
LLZO formation, the calcined-Na2B4O7 was mixed with 
LLZO precursors including Li2CO3, La2O3, and ZrO2. For 
comparison, a commercial B2O3 was also mixed with the 
LLZO precursors. The mixture was stoichiometrically 
weighted based on the composition of x = 0.15, 0.2, and 
0.3. The XRD patterns of the synthesis results are depicted 
in Figure 3 for the reaction of LLZO with Na2B4O7. 
Meanwhile, the synthesis result of B2O3 with LLZO at 
various x produces diffraction patterns, as depicted in 
Figure 4. 

Identical tetragonal LLZO peaks are in the range 2θ 
25°-50°, and cubic LLZO characteristic peak is at 25.6°. 
Meanwhile, the LLZBO(A) in the variation of x = 0.15 0.2 
shows peaks at 2θ 28.18° and 30.62°, which are considered 
typical peaks of tetragonal LLZO. Two peaks reveal at 2θ 
28.84°, and 47.8° are indicating the presence of 
lanthanum zirconate. LLZBO(A) 0.15 and 0.2 moles have 
the same pattern at 2θ 15.9⁰ and 31.8⁰, which correspond 
to the peaks of standard Na2B4O7 #2040. Meanwhile, 
LLZBO (A) 0.3 has a peak at 20.6° according to Na2B4O7 
standard # 2040.  

74°C 120°C

133°C

133-200°C
200-500°C

575°C
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Figure 3. The XRD patterns of LLZBAO(A) at various x, 
compared with the standard diffraction of tetragonal 
LLZO ICSD#246816 and standard diffraction of cubic 

LLZO ICSD#422259 

 

Figure 4. The XRD patterns of LLZBO(B) at various x 
compared with standard diffraction of tetragonal LLZO 

ICSD#246816 and standard diffraction of cubic LLZO 
ICSD#422259 

A  B  

C  D  

E  F  
Figure 5. Le Bail plots of (a) LLZBO(A)0.15, (b) LLZBO(A)0.2, and (c)LLZBO(A)0.3, (d) LLZBO(B)0.15, (e) LLZBO(B)0.2, 

and (f) LLZBO(B) 0.3 
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Le Bail refinement was used to analyze further the 
phase content, crystal structure, and cell parameters. The 
Le Bail plots are depicted in Figure 5. Meanwhile, Table 1 
provides phase composition in % mol as calculated by the 
refinement. The refinement shows that the main 
components of LLZBO(A) and LLZBO(B) are cubic and 
tetragonal LLZO, with % mol composition of 69.06 – 
69.84 % consist of 34.49 ±0.11 % of cubic LLZO and 
35.35±1.05 % of tetragonal LLZO for LLZBO(A). 
Meanwhile, LLZBO(B) consists of 34.19±0.53 % of cubic 
and 34.87±0.36 % of the tetragonal structure. The main 
secondary phase is La2Zr2O7 with a composition of 
20.163±0.025 %mol and 19.867±0.182 %mol for 
LLZBO(A) and LLZBO(B), respectively. The following 
secondary phase is H3BO3 at around 2%, as listed in Table 
1. The rest are traces like lithium boron oxide and lithium 
zirconate and the remaining precursors. Cell parameters 
between LLZBO(A) and LLZBO(B) as calculated by Le Bail 
refinement are compared within Table 2 to estimate the 
elements that contribute to the solid-state reaction. 

Table 1. Phase content within the prepared materials as 
resulted by Le Bail refinement 

Phase 
LLZBO(A) LLZBO(B) 

x=0.15 x=0.2 x=0.3 x=0.15 x=0.2 x=0.3 

LLZO cubic 34.62 34.41 34.45 33.60 34.65 34.29 

LLZO tetragonal 34.61 36.56 34.89 34.48 34.95 35.19 

La2Zr2O7 cubic 20.19 20.14 20.16 19.72 19.81 20.07 

H3BO3 triclinic 2.16 2.22 2.15 2.12 2.14 2.10 

Traces 8.42 6.66 8.35 10.09 8.42 8.25 

Rp 6.72 10.72 8.03 8.58 7.05 7.11 

Rwp 8.34 10.94 9.31 11.90 9.85 11.31 

Table 2 shows that the cell parameter of cubic 
LLZBO(A) is greater than cubic LLZBAO(B) at about 
0.0508 Å. It indicates different solid reactions due to Na 
ions in the synthesized mixture of LLZBO(A). The reaction 
is proposed in equation (4) according to the principle of 
Kroger-Vink notation for solid reaction. 

Na2B4O7 + Li7La3Zr2O12 → LiLi + 2BLi•• + 4VLi + LaLa + 2NaLa 
+ ZrZr + 2BZr+ OO + 3VO•• (4) 

Na insertion replacing La in its site producing 2- 
relative charge due to the different oxidation number of 
Na and La, which are 1+ and 3+, respectively. The 
production of 2- relative charge causes the formation of 
oxygen vacancies, VO••. Meanwhile, if B2O3 only as a 
dopant, the reaction will produce only 0.5VO•• as depicted 
in equation (5). 

B2O3 + Li7La3Zr2O12 → LiLi + BLi•• + 2VLi +LaLa + ZrZr + BZr + 
OO + 0.5VO•• (5) 

Reaction (4) and (5) clearly show that the anion and 
cation vacancies can be formed more than when the 
dopant is B precursors only. The higher cell parameter of 
LLZBO(A) compares to LLZBO(B) supports the prediction 
by explaining that the anion vacancy, VO•• bearing positive 

charge relative to the previous O2- within site. The 
positive charge increases the bond length between atoms 
within the unit cell due to less electrostatic interaction 
than the interaction between O2- with other cations in the 
LLZO structure. Meanwhile, the a and b side of tetragonal 
LLZBO(A) are lesser than the same side of LLZBO(B) due 
to when Na replace La ions, the long side will be reduced 
because the atomic radius of Na is 2.27 Å, which is less 
than the atomic radii of La, i.e., 2.43 Å [32]. 

Table 2. Cell parameters of cubic and tetragonal phases 
as calculated by Le Bail refinement by submitting cubic 
LLZO ICSD#422259 and tetragonal LLZO ICSD#246816 

Cell 
parameters 

LLZBO(A) LLZBO(B) 

Cubic 
structure 

ICSD# 

Tetragonal 
structure 

ICSD# 

Cubic 
structure 

ICSD# 

Tetragonal 
structure 

ICSD# 

a (Å) 13.0304 13.2740 12.9896 13.2971 

b (Å) 13.0304 13.2740 12.9896 13.2971 

c (Å) 13.0304 12.7189 12.9896 12.7186 

 == 90 90 90 90 

Rp (%) 8.03 7.11 

Rwp (%) 9.31 11.31 

The surface morphology of LLZBO(A) and LLZBO(B) 
are presented in Figure 6. LLZBO(A) and LLZBO(B) 
particle is similar to that of an irregular particle 
aggregated into a large particle of more than 10  m 
diameter. 

Figure 6 shows that the dopant composition of 0.3 
mol produced more dispersed powder. LLZBO(A)0.3 more 
dispersed than LLZBO(B)0.3, even though the particle 
size of LLZBO(B) smaller, however the particle aggregates 
to form a larger particle. Small disperse particle size 
support higher surface area. This property, combined 
with more vacancies formed in LLZBO(A), as explained 
according to the refinement result (Table 2) and the 
proposed reactions (equation (4) and (5)), contributes to 
higher ionic conductivity of the LLZBO(A). The 
impedance plots are described in Figure 7, in which by 
increasing dopant composition into 0.3, the impedance 
was significantly decreased for both LLZBO(A) and 
LLZBO(B), allowing the ionic conductivity to increase up 
to 1.042x10-3 Scm-1and 3.452 x 10-5 Scm-1, for LLZBO(A) 
and LLZBO(B), respectively(Table 3). The abnormal grain 
growth, such as by aggregation, which occurred in 
LLZBO(B), as shown by Figure 6, causes the glassy phase 
can increase particle size and reduce its compactness, 
reducing its conductivity [26, 29]. Also, higher Li 
vacancies, VLi of LLZBO(A), as described in equation (4), 
is a significant parameter to explain the higher ionic 
conductivity of LLZBO(A) than the LLZBO(B). The number 
of oxygen vacancies in LLZBO(A) also larger than within 
LLZBO(B). The vacancies as a defect in a crystal structure 
have been known to significantly increase ionic 
conductivity due to defects, whether vacancies or 
interstitial defects are charge carriers within an ionic 
conductor [40]. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. SEM images of (a) (a) LLZBO(A)0.15, (b) LLZBO(A)0.2, and (c)LLZBO(A)0.3, (d) LLZBO(B)0.15, (e) 
LLZBO(B)0.2, and (f) LLZBO(B) 0.3 under similar magnification 

  

Figure 7. Nyquist plot (a) LLZBO(A) (b) LLZBO(B) at various compositions 

Table 3. The ionic conductivity of LLZBO(A) and LLZBO(B) 

X= LLZBO (A) LLZBO (B) 

0.15 9.380 x 10-7 2.980 x 10-9 

0.2 7.980 x 10-7 2.061 x 10-8 

0.3 1.042 x 10-3 3.452 x 10-5 

 

4. Conclusion 

The addition of Na2B4O7 into LLZO synthesis 
produced a material LLZBO(A) with phase composition 
dominated by cubic and tetragonal LLZO structure. The 
presence of Na ions affects the produced crystal. It was 
confirmed by Le Bail refinement in which the cell 
parameters of the cubic structure are higher than the 
cubic cell parameter of the material, which was prepared 

by B2O3 addition. It indicates the different cation and 
anion vacancies as predicted by solid-state reaction. The 
higher number of vacancies seems to contribute to the 
material’s ionic conductivity, proven by the ionic 
conductivity value of LLZBO(A)0.3 1.042x10-3 Scm-1, 
which is two orders higher than the ionic conductivity of 
LLZBO(B)0.3, i.e. 3.452x10-5 Scm-1. 
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