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Gemor (Nothaphoebe coriacea) is one of the plants of Non-Timber Forest Product 
typical of wetlands with secondary metabolite compounds such as alkaloids, 
steroids, flavonoids, triterpenoids, and phenolics. Besides being used as an 
insecticide, gemor bark also has antioxidant activities, anti-influenza, antivirus, 
antiherpes, and anti-inflammatory. This study aimed to encapsulate gemor bark 
extract using cetyltrimethylammonium bromide (CTAB)-modified nanocellulose 
to increase the effectiveness of its use. The result showed that gemor bark extract 
had an IC50 value of 39.97 ppm. In comparison, encapsulated gemor bark extract 
(Gemor-Nc-4 mM CTAB) had an excellent antioxidant activity with an IC50 value 
of 98.41 ppm and encapsulation efficiency of 53.70 %. 

 

1. Introduction 

Gemor (Nothaphoebe coriacea) is known as a plant of 
Non-Timber Forest Product [1]. Gemor bark contains 
secondary metabolite compounds such as alkaloids, 
steroids, flavonoids, triterpenoids, and phenolic [2]. 
Gemor has the potential to have medicinal properties 
from its leaves, twigs, and barks. Phenolic compounds in 
gemor bark can be used as inhibitors of viral activities 
such as anti-influenza, antivirus, and antiherpes. Gemor 
bark has anti-inflammatory activity with a maximum 
inhibitory value of 71.667% [3]. 

Bioactive compounds become unstable in several 
environmental conditions and processing [4]. 
Furthermore, most bioactive compounds also have low 
solubility [5]. Bioactive compounds such as phenolics are 
very susceptible to oxidizing environments, such as light, 
oxygen, moisture due to unsaturated bonds in molecules 
[6]. Therefore, encapsulation can support the delivery of 
bioactive compounds and has a controlled release at 
various time intervals. This method increases the 
protection, safety, and effectiveness of the compound [7]. 
Ching et al. [8] reported that the drug loading capacity of 
curcumin encapsulated with nanocellulose in surfactant 

medium (Tween-80) gave an increase from 0.1 mg/g to 
7.73 mg/g as the surfactant concentration increased. 

Nanocellulose is a natural polymer that can be used 
as a coating material. Nanocellulose is the most 
appropriate feedstock for nanocarrier supply. It is 
because the most abundant natural polymer has unique 
and nanostructured properties such as low density, 
hardness, and abrasiveness, the ability for structural and 
chemical modification, high biocompatibility, and 
biodegradability in nature [9]. Cetyltrimethylammonium 
bromide (CTAB) is quaternary ammonium with the C16 
alkyl chains, a hydrophobic cationic surfactant. A 
modification of nanocellulose using CTAB can increase 
the hydrophobicity of nanocellulose [10]. It makes 
nanocellulose more compatible with the molecules in 
bioactive compounds [11]. Therefore, this study aimed to 
encapsulate gemor bark extract using CTAB-modified 
nanocellulose at various concentrations to control the 
release of gemor bark extract and increase the 
effectiveness of its use. 

2. Methodology 

The methodology included materials, nanocellulose 
synthesis, modification of nanocellulose using CTAB, 
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encapsulation of gemor bark extract using CTAB-
modified nanocellulose, encapsulation efficiency, and 
antioxidant activity. 

2.1. Materials 

Organic solutions included ethanol 96%, distilled 
water, methanol pro analysis, 2,2-diphenyl-1-
picrylhydrazyl, sulfuric acid 96%, microcrystalline 
cellulose (Avicel PH 101), cetyl trimethyl ammonium 
bromide (biochemical A0805), gemor bark extract from 
Pojon village Central Kalimantan. 

2.2. Synthesis of nanocellulose 

The synthesis of nanocellulose was carried out by the 
acid hydrolysis method. Microcrystalline cellulose (MCC) 
was hydrolyzed at 45 ℃ for 2 hours using sulfuric acid 
50% with the ratio of MCC and sulfuric acid were 1:20. 
Hydrolysis was stopped by adding 250 mL distilled water. 
The colloid suspension was centrifuged at 4000 rpm for 
25 minutes. Then, the suspension was dialyzed for seven 
days to neutralize and remove sulfate ions. A neutral 
colloid suspension formed was sonicated for 30 minutes 
to homogenize nanocellulose [12]. 

2.3. Modification of nanocellulose using CTAB 

Nanocellulose and cationic surfactant (CTAB) in 
equal amounts were added to the Erlenmeyer flask. 
Nanocellulose of 0.4% was mixed with 1, 2, 4 mM CTAB. 
The mixtures were heated at 60 ℃ for 3 hours and stirred 
for 24 hours [10]. 

2.4. Encapsulation of gemor bark extract using CTAB-
modified nanocellulose 

About 0.2% gemor bark extract of 40 mL was added 
to CTAB-modified nanocellulose of 20 mL (at various 
concentration 1, 2, 4 mM). The mixtures were stirred for 
2 hours and stored in the refrigerator for 24 hours. The 
encapsulated gemor bark extract was centrifuged at 2000 
rpm for 15 minutes and dried in the oven at 60 ℃ [13]. 

2.5. Encapsulation efficiency 

Determination of gemor bark extract contents was 
carried out by measuring the standard curve of the gemor 
bark extract solution. The measured solution content was 
the gemor bark extract before and after encapsulation. 
The absorbance of the solutions was measured using 
spectrophotometer UV-Vis at 430 nm. The encapsulation 
efficiency can be calculated by the following equation. 

 EE (%) = E1−E2

E1
 × 100%  

EE is encapsulation efficiency, E1 (ppm) is gemor bark 
extract content before encapsulation, and E2 (ppm) is 
gemor bark extract content after encapsulated [14]. 

2.6. Antioxidant activity analysis 

Antioxidant activity of the sample was carried out 
using 2,2- diphenyl-1-picrylhydrazyl (DPPH). A stock 
sample solution of 500 ppm was prepared using methanol 
solvent, then 1 mL of 1 mM DPPH solution was added to 3 
mL of samples at various concentrations (50, 60, 70, and 
80 ppm). The mixtures were homogenized and incubated 
for 30 minutes at room temperature. Furthermore, the 

absorbance was measured using a UV-Vis 
spectrophotometer at 515 nm, and the measurement was 
carried out in triple [15]. 

3. Result and Discussion 

3.1. Synthesis of nanocellulose 

The synthesis nanocellulose process used acid 
hydrolysis as a standard method. It is a fast and easy 
method to produce nanocellulose that can provide a high 
crystallinity index of nanocellulose. Strong acids such as 
H2SO4 and HCl break glycosidic bonds in cellulose [12]. 
This could happen because sulfuric acid could strongly 
isolate nanocellulose by making the nanocellulose 
dispersed as a stable colloid system due to the 
esterification of the hydroxyl group by sulfate ions [16]. 
The reaction mechanism of acid hydrolysis of 
nanocellulose can be seen in Figure 1. 

 
Figure 1. Mechanism of Acid Hydrolysis of Cellulose [17] 

Figure 2 and 3 show that the typical peaks of cellulose 
were still visible in synthesized nanocellulose. Therefore, 
the data proved that the method used to synthesis 
nanocellulose did not damage the basic structure of 
cellulose. 

FTIR spectrum of nanocellulose showed that the 
synthesized nanocellulose had several unique cellulose 
functional groups. A peak at 897.2 cm-1 corresponded to 
glycosidic bonds with glucose of cellulose structure and a 
peak at 1160 cm-1 was corresponded to stretching 
vibration of C-O-C asymmetric bonds of cellulose. 
Moreover, the peaks at 1336-1362 cm-1 were associated 
with bending vibration of C-H and C-O of polysaccharide 
groups. A small band located at 1429 cm-1 was assigned to 
the bending vibration of CH2 symmetric bonds [18]. The 
absorbance peak at 1643 cm-1 corresponded to the 
bending vibration of the O-H bond of cellulose and 
showed the water adsorbed in nanocellulose [10]. The 
intense peaks at 2899 cm-1 and 3334 cm-1 showed the 
stretching vibration of C-H and O-H bonds of cellulose 
[10] [12]. 

Material characterization using a Particle Size 
Analyzer (PSA) was used to identify the particle size of the 
nanocellulose from microcrystalline cellulose. Table 1 and 
Figure 4 show that the distribution of nanocellulose 
particles was dominated by the size of a particle at 
44.94 nm, although several sizes of particles, such as 
46 nm and 166 nm, were also formed. 
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Figure 2. FTIR Spectrum of Cellulose [19] 

 

Figure 3. FTIR Spectrum of Nanocellulose 

Phanthong et al. [20] reported that nanocellulose 
generally has a diameter of less than 100 nm and a length 
of several micrometers. Therefore, in this study, 
nanocellulose was successfully synthesized. The 
polydispersity index of nanocellulose particle 
distribution was 1.0. Polydispersity index indicated the 
uniformity of nanocellulose. Putri et al. [21] stated that if 
the PD index value is less than 0.3, the particle size 
distribution is getting narrower which has a good 
homogeneity of the sample size. This showed that the size 
uniformity of the nanocellulose particles in this study was 
still very small. 

Table 1. Diameter of nanocellulose particles 

Peak Size (nm) Number (%) 

1 46.10 0.1 

2 166 0.7 

3 44.94 99.3 

 
Figure 4. Particle Size Distribution of Nanocellulose 

through PSA Analysis 

3.2. Modification of nanocellulose using CTAB 

Modifying nanocellulose was carried out to provide 
amphiphilic properties, which can be used as a coating 
material for bioactive compounds. Natural bioactive 
compounds have a low solubility in water [22]. The 
surface modification of materials using CTAB can 
increase the hydrophobicity of nanocellulose. 
Nanocellulose and CTAB interact electrostatically, which 
the cationic charged head of CTAB interacts non-
covalently with the negatively charged of nanocellulose 
surfaces [10]. 

 
Figure 5. Spectra FTIR of Nc-1 mM-CTAB, Nc-2 mM-

CTAB, Nc-4 mM CTAB, and nanocellulose 
The FTIR spectrum of the nanocellulose and 

modified nanocellulose with various CTAB 
concentrations were measured at a wavenumber of 4000-
500 cm-1. According to the FTIR spectrum in Figure 5, it 
was indicated that nanocellulose was successfully 
modified by CTAB surfactant. A peak centered at 1476 cm-

1 observed in spectra of the modified nanocellulose 
indicated the presence of symmetric N+-CH3 stretching 
band of CTAB surfactant [11]. Additionally, a peak 
centered at 1646 cm-1 was observed and assigned to the 
characteristic asymmetric N+-CH3 stretching band of 
CTAB [23]. The absorbance peaks at 2920 cm-1 and 2853 
cm-1 corresponded to the stretching vibration of -CH2 
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symmetric and asymmetric bonds from the long alkyl 
chain of CTAB [24]. 

3.3. Encapsulation of gemor bark extract using CTAB-
modified nanocellulose 

Gemor bark extract will bind to nanocellulose-CTAB 
through hydrogen bonds, as well as van der Waals 
interactions on the nanocellulose side. It will interact 
electrostatically on the hydrophobic part of 
nanocellulose-CTAB [10, 25]. 

The FTIR spectrum is used to identify the chemical 
groups of gemor bark extract before and after the 
encapsulation process (Figure 6 and 7). The spectrum 
corresponding to gemor extract presented a band at 
1062 cm-1 representing the vibration of C-O bonds of 
gemor bark extract [26]. The peak at 1234 cm-1 
corresponded with the bending vibration of O-H bonds 
[26]. The peak at 3269 cm-1 corresponded with the 
stretching vibration of O-H bonds from phenolic 
compounds of gemor bark extract [27]. Additionally, a 
peak at 1372 cm-1 and a sharp peak at 2918 cm-1 were 
assigned to bending vibration of C-H bonds and 
stretching vibration of C-H bond in an aromatic chain of 
gemor bark extract [26, 27]. The peak at 1515 cm-1 and 
1599 cm-1 were stretching vibrations of C=C bonds of the 
aromatic chain [27], and a peak at 2851 cm-1 corresponded 
to stretching vibration of CH2 symmetric bonds [28]. 

 

Figure 6. Spectra FTIR of gemor bark extract 

Figure 7 shows the FTIR spectrum of the 
encapsulated gemor bark extract with CTAB-modified 
nanocellulose. FTIR spectra of gemor-Nc showed an 
increase and shift of the peak at 3291 cm-1, which was 
indicated the formation of hydrogen bonds between the 
nanocellulose and gemor bark extract [11]. FTIR 
spectrums of gemor-Nc-1 mM CTAB, gemor-Nc-2 mM 
CTAB, and gemor-Nc-4 mM CTAB peaks of 2989 and 
2863 cm-1 were corresponded to stretching vibration of 
CH2 symmetric and asymmetric of the long alkyl chain of 
CTAB [24]. A peak at 1493 cm-1 corresponded to the 
stretching vibration of N+-CH3 from surfactant CTAB [11]. 
Furthermore, the existence of typical absorption peaks of 
gemor bark extract at 1548 cm-1 and 1619 cm-1 assigned to 
stretching vibration of aromatic chain indicated that 
encapsulation using Nc-CTAB did not change the basic 

structure of the gemor bark extract. The characteristic 
appearance spectra of Nc-CTAB and gemor bark extract in 
Figure 7 showed that Nc-CTAB and gemor bark extract 

 

Figure 7. Spectra FTIR of gemor-Nc, gemor-Nc-1 mM 
CTAB, gemor-Nc-2 mM CTAB, and gemor-Nc-4 mM 

CTAB 

3.4. Encapsulation efficiency 

Table 2 shows the encapsulation efficiency (%) of 
gemor bark extract. Gemor-Nc-4 mM CTAB showed the 
highest encapsulation efficiency of the sample. It 
indicated that the higher the CTAB concentration added, 
the better encapsulation efficiency of gemor bark extract. 
The addition of CTAB concentration caused more 
hydrophobic parts to form in the nanocellulose so that the 
hydrophobic interaction of Nc-CTAB with gemor bark 
extract was also more robust. 

Zainuddin et al. [10] reported that bioactive 
compounds have a benzene chain interaction with the 
hydrophobic part of Nc-CTAB via the electrostatic and 
hydrophobic interaction. It means that many bioactive 
compounds contain a benzene ring in the chain, which 
causes some of these compounds to be more hydrophobic. 
Thus, by modifying nanocellulose using CTAB, the 
bioactive components that tend to be hydrophobic 
contained in gemor bark extract will interact with the 
CTAB-modified cellulose chain through electrostatic 
interactions on the ring portion of the bioactive 
compounds. 

Therefore, the efficiency of the encapsulation of 
bioactive compounds in Nc-CTAB depends on the 
hydrophobicity of the surface. The more hydrophobic the 
Nc-CTAB surface, the more bioactive compounds that can 
be bounded. 

Table 2. Encapsulation efficiency of gemor bark extract 
Sample Encapsulation Efficiency (%) 

Gemor-Nc 17.5 

Gemor-Nc-1 mM CTAB 48 

Gemor-Nc-2 mM CTAB 48.9 

Gemor-Nc-4 mM CTAB 53.7 

Gemor bark extract is insoluble in water, forming an 
aggregate when dissolved in water. Wang et al. [11] 
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reported that nanocellulose has a large surface area and 
hydrogen bonds, creating a smaller structure of 
encapsulated bioactive compounds (gemor bark extract). 
Hydrophilic nanocellulose formed a relatively stable 
gemor-Nc system, reducing aggregation in the resulting 
gemor encapsulation. CTAB was added to provide a 
hydrophobicity of nanocellulose, which made 
nanocellulose more compatible with the molecule of 
gemor bark extract. This made it easier for the 
nanocellulose to encapsulate the bioactive molecules 
through their hydrophobic parts, increasing the particle 
size and stability of the gemor bark extract. 

3.5. Antioxidant activity 

The antioxidant activity of gemor bark extract shown 
in Table 3 indicates that gemor bark extract could prevent 
50% free radical activity at a concentration of 39.97 ppm. 
In addition, Table 3 shows that gemor-Nc, gemor-Nc-1 
mM CTAB, and gemor-Nc-2 mM CTAB have moderate 
antioxidant activity, while gemor-Nc-4 mM CTAB shows 
good antioxidant activity. 

Muttakin et al. [29] stated that bioactive compounds 
have potent antioxidants when the IC50 value is less than 
50 ppm, then IC50 value in the range of 50-100 ppm 
indicates the powerful antioxidant activity, while the 
range of 100-150 ppm indicates the moderate antioxidant 
activity. The better antioxidant activity at gemor-Nc-
4mM CTAB was due to the high content of active 
compounds encapsulated in Nc-4mM CTAB. However, 
the antioxidant activity of unencapsulated gemor bark 
extract tended to be higher than gemor-Nc-4 mM CTAB. 
This activity became lower than unencapsulated gemor 
bark extract because it was influenced by the amount of 
active substance encapsulated in Nc-CTAB. The number 
of bioactive compounds in encapsulated gemor bark 
extract tended to be less than gemor bark extract at the 
same concentration. It can be seen by the percentage of 
encapsulation efficiency, which the largest percentage of 
encapsulated active substance in the encapsulation 
efficiency was 53.7%. 

The result indicated that there were still some 
percentages of gemor bark extract that were not 
encapsulated, so the number of bioactive components 
that can be encapsulated affects its antioxidant ability. 
Therefore, the antioxidant activity correlated with the 
encapsulation efficiency of gemor bark extract. Kurniasih 
et al. [30] reported that the increase in antioxidant activity 
is associated with the number of active compounds 
encapsulated. 

Table 3. Antioxidant activity of encapsulation of gemor 
bark extract 

Sample IC50 (ppm) 

Gemor Bark Extract 39.97 

Gemor-Nc 106.41 

Gemor-Nc-1 mM CTAB 133.55 

Gemor-Nc-2 mM CTAB 145.15 

Gemor-Nc-4 mM CTAB 98.41 

4. Conclusion 

FTIR spectra showed that gemor bark extract was 
successfully encapsulated by CTAB-modified 
nanocellulose with the highest encapsulation efficiency 
at gemor-Nc-4 mM CTAB, namely 53.7%. It showed that 
the encapsulation efficiency of encapsulated gemor bark 
extract was affected by the increase in the concentration 
of added CTAB. Gemor-Nc-4 mM CTAB had a vigorous 
antioxidant activity with the IC50 value of 98.41 ppm, 
while gemor bark extract had an antioxidant activity of 
39.97 ppm. The lower IC50 value of gemor-Nc-4 mM CTAB 
than unencapsulated gemor bark extract because 
antioxidant activity was influenced by the encapsulation 
efficiency of gemor bark extract. 
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