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Glucose oxidase (GOD) is an oxidoreductase enzyme that catalyzes the oxidation 
of glucose to gluconolactone and hydrogen peroxide. Then, gluconolactone will 
be hydrolyzed to gluconic acid. The wide application of gluconic acid in various 
industries has increased production demand. However, glucose concentrations 
higher than 40% (w/w) inhibited the conversion of glucose to gluconic acid due 
to a decrease in the oxygen solubility concentration at pH 6, 30℃, and 1 bar 
pressure. Therefore, decreasing the value of Km is predicted to reduce saturation 
and enhance gluconic acid production. This study aimed to analyze the interaction 
between the IPBCC.08.610 GOD mutant with β-D-Glucose in improving gluconic 
acid production by decreasing the Km value. Mutations were performed in silico 
using Chimera and then docked using AutoDock Vina. The mutations resulted in 
distinct ligand poses in the binding pocket, different -OH conformations of the 
ligands, and changes in the T554M/D578P mutant’s hydrophobicity index (554 
mutated from threonine to methionine, and 578 mutated from aspartate to 
proline), and decreased ΔG and Km values in the H559D mutant (559 mutated 
from histidine to aspartate), D578P and T554M/D578P. This decrease might 
strengthen the ligand-receptor interaction, increasing gluconic acid production. 
The H559D was the best mutant to increase production based on the ΔG, Km 
value, and stability due to the addition of hydrogen bonds. 

 

1. Introduction 

Glucose oxidase (GOD) is an oxidoreductase enzyme 
consisting of two identical subunits measuring 80 kDa [1]. 
This enzyme catalyzes the oxidation of β-D-glucose to β-
D-glucono-1,5-lactone and H2O2 using molecular oxygen 
as an electron acceptor. Then β-D-glucono-1,5-lactone 
will be hydrolyzed by lactonase into gluconic acid. 
However, the presence of these enzymes is unnecessary 
because the hydrolysis step can occur spontaneously [2]. 
GOD can be produced by various organisms, such as 
bacteria, plants, animals, and fungi; however, GOD from 
fungi has a broader spectrum of applications. The fungi 
used to produce GOD enzymes are mainly from Aspergillus 
and Penicillium [3]. The GOD derived from Aspergillus niger 
is classified as an intracellular enzyme and is the most 

widely commercialized due to its stability in a wide pH 
and temperature range (pH 4–7 and temperature of 20–
50℃) [4]. 

GOD can be applied as a biosensor in measuring blood 
sugar levels, detecting fruit ripeness [5, 6], and a micro-
fuel cell [7]. The H2O2 produced by GOD is used as a bleach 
in the textile industry. Furthermore, the resulting H2O2 
can also act as an antibacterial agent [8, 9]. Another GOD 
product—gluconic acid—also has many benefits and 
potential applications in various industries, including 
beverage, food, animal feed, pharmaceutical, textile, and 
construction [10]. According to Ramachandran et al. [11], 
some of the benefits of gluconic acid include preventing 
milkstone formation during the heating of milk and iron 
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deposition in textiles, cleaning aluminum cans, food 
preservatives, and nutritional additives in animal feed. 

The widespread use of gluconic acid has increased 
the production demands. According to Ramachandran et 
al. [11], worldwide gluconic acid production reaches 
100,000 tons/year. Research by Tomotani et al. [12] 
regarding gluconic acid production from glucose 
oxidation by glucose oxidase using a membrane 
bioreactor resulted in a GOD activity value of 75.2x10-3 
U/mL for Vmax and 29 mM for Km. The amount of 
gluconic acid produced by GOD dramatically depends on 
the amount of substrate and dissolved oxygen present. 
Glucose concentration higher than 40% (w/w) can inhibit 
the conversion of glucose into gluconic acid due to a 
decrease in oxygen solubility concentration with 
increasing solids concentration, causing it to become 
saturated. This occurs at pH 6, temperature 30℃, and 
1 bar pressure [13, 14]. Therefore, decreasing the Km value 
is expected to reduce saturation and increase gluconic 
acid production. One practical approach that can be done 
to minimize the Km value is by mutating the catalytic 
residue or residue that can increase enzyme activity. 

Mutations in this study were conducted on several 
residues in the GOD gene encoding IPBCC.08.610 derived 
from local isolates of Aspergillus niger isolated by Khanza 
[15], and their nucleotide sequences were obtained from 
NCBI with accession code MH593586.1. These residues 
were T554, H559, and D578 (Figure 1). The mutation on 
T554 residue was based on Marín-Navarro et al. [16], 
which mutated the T554 to M554 (T554M) residue of GOD 
1CF3, causing a 40% increase in thermal stability 
compared to wild-type due to the formation of sulfur-pi 
interactions in the mutant. Meanwhile, H559 residue is 
the enzyme’s catalytic residue [17], and D578 residue in 
IPBCC.08.610 GOD is the main element stabilizing the C-
terminus by forming a salt bridge with R545 and R537 
[18]. 

 

Figure 1. Mutated residues of IPBCC.08.610 GOD 

Research on mutations of IPBCC.08.610 GOD has 
been studied by Puspita et al. [19] on H516 to H516R and 
H516D residues for fuel cells. The study resulted in the 
affinity energy value (ΔG) of −6.5 kcal/mol and the Km 
value of 17.187 M for the wild-type and the H516R mutant. 
In contrast, ΔG and the Km value of the H516D mutant 
were 6.2 kcal/mol and 28.517 M, respectively. These 
findings revealed that in the H516D mutation, the ΔG and 
Km values increased, improving the potential for GOD as 

a fuel cell. Meanwhile, no research on IPBCC.08.610 GOD 
mutations to increase gluconic acid production has been 
conducted. Therefore, this study aimed to analyze in silico 
interaction between T554M, H559D, D578P, and 
T554M/D578P mutants of IPBCC.08.610 GOD with β-D-
Glucose as a ligand in order to increase gluconic acid 
production by decreasing the Km value. 

2. Methodology 

2.1. Equipment and Materials 

A laptop with specifications of processor Intel® 
Core™ i7-8550UU equipped with 16 GB of RAM, Microsoft 
Windows™ 10 64-Bit operating system. The software 
used includes AutoDockTools 1.5.6, YASARA, Discovery 
Studio Visualizer 3.5 Client, Chimera 1.14, BioEdit, 
PyMOL, LigPlot+, Open Babel, PROCHECK 
https://saves.mbi.ucla.edu/ dan SWISS-MODEL 
https://swissmodel.expasy.org/. 

The materials in this study consisted of the 
nucleotide sequence of the IPBCC.08.610 GOD enzyme 
obtained from the NCBI online database 
https://www.ncbi.nlm.nih.gov/ with accession code 
MH593586.1, the 3D structure of the ICF3 receptor 
downloaded from RCSB database https://www.rcsb.org/ 
and 3D β-D-Glucose ligand structure obtained from 
PubChem database https://pubchem.ncbi.nlm.nih.gov/. 

2.2. Ligand Preparation 

The ligand employed in this study was β-D-glucose. 
The 3D ligand structure was downloaded from the 
PubChem website in *.sdf file format and converted into 
*.pdb file format, then prepared using Discovery Studio 
Visualizer 3.5 Client and saved as ligand.pdb. Ligand 
preparation involved adding hydrogen atoms and 
removing other structures from the ligand. 

2.3. Receptor Preparation 

The IPBCC.08.610 GOD receptor was downloaded 
from the NCBI online database and stored in *.fasta file 
format. The data obtained was converted into a 3D 
structure in *.pdb file format using the web-based 
software SWISS-MODEL [20] and saved as receptor.pdb. 
The structure of the 1CF3 receptor was also downloaded 
from the RCSB online database in *.pdb file format. All 
unwanted water, residues, and natural ligands were 
removed from the receptor before hydrogen atoms were 
attached using the Discovery Studio Visualizer 3.5 
Client [21] and saved as *.pdb file format. 

2.4. Receptor Mutation 

This procedure cited the studies of [20, 22]. The 
receptor file in the prepared *.pdb file format was opened 
using Chimera 1.14 [23]. The mutation was done by 
highlighting the residue to be mutated. The mutation 
with the highest probability of not colliding with other 
atoms was chosen. The resulting receptor was then saved 
in *.pdb file format. The T554 residue was mutated into 
M554, the H559 residue into D559, the D578 residue into 
P578, and the double mutant T554M/D578P. The 
receptors were minimized using YASARA [24]. 
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2.5. Mutant Structure Analysis 

The structure of the mutant receptor was evaluated 
using the Ramachandran plot on the PROCHECK web 
server [25] and compared with the original receptor 
analyzed by the same method [26]. Using OpenBabel, the 
codon level structure was investigated by converting the 
data format from *.pdb to *.fasta [27]. Nucleotide 
sequence changes can be analyzed using reverse 
translation with BioEdit software [28]. 

2.6. The Preparation of Mutant Receptor, Ligand, and 
Molecular Docking Parameters 

This procedure referred to a study from [29]. Both 
mutated and wild-type receptors were opened using 
AutoDockTools 1.5.6 [30]. The docking parameters must 
be validated before the molecular docking simulation by 
determining the grid box size that generates the highest 
negative affinity energy and the smallest RMSD average 
value, both at the lower bound (LB) and the upper bound 
(UB). Molecular docking was conducted at positions 
45.535, 12.575, and 57.350 (x, y, z) with grid box size 26.24 
and 28 (x, y, z) and spacing of 0.453. 

2.7. Molecular Docking Simulation 

Molecular docking performed was oriented docking 
or targeted docking with the help of Command Prompt 
(CMD) [29]. Receptors, ligands, and AutoDock Vina were 
placed in the same folder. The docking command was 
written in CMD. The procedure was repeated 20 times 
using the num_modes command, pairing the pre-
prepared ligands with each prepared receptor (wild-type 
or mutant). The docking results were saved in the working 
folder as log.txt and output.pdbqt file format. The highest 
ΔG value was attained in the first mode. 

2.8. Analysis of Ligand and Receptor Interaction 

The output.pdbqt file generated by molecular 
docking and the receptor file in *.pdbqt file format were 
visualized using Discovery Studio Visualizer 3.5 Client 
[29]. The first mode of output.pdbqt was selected and 
copied into the receptor file, then saved in *.pdb file 
format. The molecular docking results were analyzed for 
ligand-receptor interactions using LigPlot+ [31], PyMOL 
[32], and Discovery Studio Visualizer 3.5 Client. The 
analysis results were in the form of 2D and 3D images. The 
Michaelis-Menten constant (Km) was calculated from 
the ΔG of the ligand, using the equation ΔG = −RT ln 
Km [33]. 

3. Results and Discussion 

3.1. IPBCC.08.610 GOD Structure 

The 3D structure of the IPBCC.08.610 GOD sequence 
was obtained through a homology modeling process 
using the SWISS-MODEL web-server. Homology 
modeling is a procedure for constructing a 3D model of a 
target primary sequence based on an experimentally 
known sequence or structure (template) [34]. The 1CF3 
template was applied for modeling. According to Maulana 
[18], 1CF3 has superior model quality based on MolProbity 
and stereochemical properties compared to 5NIT. The 
obtained 3D structure consisted of 581 residues of the 

glucose oxidase enzyme with Flavin-Adenine 
Dinucleotide (FAD) as a ligand (Figure 2). This receptor’s 
residue sequence initiated at residue 25 and ended at 605, 
providing 22 more residues than the template. These 22 
residues are signal peptide sequences that are not 
integrated as components of the tertiary structure [18]. 

 

Figure 2. 3D structure of IPBCC.08.610 GOD 
modeling results 

The homology modeling generates sequence 
identity, MolProbity, GMQE, and QMEAN values. As a 
result, the sequence identity value was 97.08%. Sequence 
identity indicates the accuracy of the sequence between 
the target and the template. According to Raiyn and Rayan 
[35], the model is considered good if the sequence identity 
is greater than 60%. The greater the sequence identity 
between the target and the template, the closer the model 
is to the real one. The modeling also produced a 
MolProbity value of 0.91. MolProbity performed contact 
analysis between all atoms, Ramachandran plot, and 
rotamer distribution (side chain) [36]. A lower MolProbity 
value indicates a higher structural quality [37]. 

Meanwhile, the resulting GMQE and QMEAN values 
were 0.96 and −0.09. GMQE (Global Model Quality 
Estimation) and QMEAN (Quality Model Energy Analysis) 
are expressed as numbers between zero and one; higher 
numbers indicate higher quality and similarity to 
templates [38, 39]. However, a model with a QMEAN score 
of 4.0 or less is deemed low-quality [40], meaning that 
the modeling has a significant degree of resemblance to 
the protein sequence of the 1CF3 template. 

The structural quality of the receptor can be 
determined using the Ramachandran plot. This plot is a 
coordinate or diagram formed from the distribution of 
amino acid residues that arrange a protein at two types of 
angles; the phi (ϕ) as the x-axis and the psi (ψ) as the y-
axis [41]. The Ramachandran plot is divided into four 
quadrants, including the most favorite regions 
(quadrant I) in red, additional allowed regions (quadrant 
II) in yellow, generously allowed regions (quadrant III) in 
pale yellow, and disallowed regions (quadrant IV) in 
white. The analysis results showed that wild-type 
receptors had 89.4% residues in quadrant I, 10.4% 
residues in quadrant II, 0.2% residues in quadrant III, and 
0% residues in quadrant IV (Figure 3). A good quality 
model or structure is expected to have more than 80% 
residues in the most favored region and less than 1% non-
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glycine residues in disallowed regions [42]. The 3D model 
of the wild-type receptor that has been made has good 
quality because there are more than 80% residues in the 
most favored region. 

 

Figure 3. Ramachandran plot of modeled receptors 
(wild-type) 

3.2. Residual Mutations and Changes in Codon Level 

The IPBCC.08.610 GOD was mutated four times by 
point mutations at residues T554, H559, D578, and 
double mutant T554/D578 (Table 1). A point mutation is 
the alteration of a single base pair into another. This type 
of mutation is classified as non-conservative 
substitution, changing mutation into residues that have 
different properties [43]. According to Clark et al. [44], 
non-conservative substitutions result in significant 
changes to the protein. The success of the mutation 
method can be determined by examining the codon 
sequence and protein structure using the Ramachandran 
plot. 

Table 1. Changes in codon levels due to mutations 

No 
Mutant 
enzyme 

Amino acid residue Codon 

Before 
mutation 

After 
mutation 

Codon 
position 

Before 
mutation 

After 
mutation 

1 T554M T554 M554 1654–1656 ACC ATG 

2 H559D H559 D559 1669–1671 CAT GAT 

3 D578P D578 P578 1726–1728 GAT CCG 

4 
T554M/ 
D578P 

T554 

 D578 

M554 

 P578 

1654–1656 

1726–1728 

ACC 

 GAT 

ATG 

CCG 

Changes in the codon sequence can be analyzed using 
the reverse translate command in the BioEdit software. 
The codon of the receptor was encoded by three 
nucleotides. The T554 residue mutated from the polar 
neutral threonine (T) (ACC) to the non-polar methionine 
(M) (ATG) at positions 1654–1656 in the nucleotide 
sequence. The H559 residue at positions 1669–1671 
altered from the positive polar histidine (H) (CAT) to the 
negative polar aspartate (D) (GAT). The D578 residue 
mutated from a negative polar aspartate (D) (GAT) to a 
non-polar proline (P) (CCG) in the nucleotide sequence at 
1726–1728. The double mutant T554M/D578P combines 
the two previously mentioned mutations (Table 1). 
Meanwhile, the quality of the receptor resulting from the 

mutation can also be observed using the Ramachandran 
plot. All mutant receptors had the same Ramachandran 
plot results as the modeled receptors (wild-type) 
(Figure 3). 

3.2.1. Molecular Docking and Mutant Structural 
Changes 

Molecular docking in this study was categorized as 
oriented docking or targeted docking because the grid box 
was created based on the receptor’s active site, which 
Meyer studied [45]. The active sites include Tyr 68, Thr 
110, Glu 412, Phe 414, Arg 512, Asn 514, His 516, His 559 
for hydrogen-bonded residues, Asp 424, Tyr 515, and Trp 
426 for amino acid residues having hydrophobic bonds. 
Meanwhile, residues that play a role in the enzyme’s 
catalytic site are Glu 412, His 516, and His 559 [17]. 
Molecular docking was performed on the 3D structure of 
the IPBCC.08.610 GOD in the form of Apoenzyme (without 
FAD) as a receptor (both wild and mutant types), the 
structure of glucose oxidase 1CF3 as a comparison 
receptor, and β-D-glucose as a ligand. 

Aside from preparation, the docking parameters and 
methods were validated 20 times with the RMSD 
parameter and ΔG value (Supplementary 1). The smallest 
average RMSD values at both the lower bound (LB) and 
the upper bound (UB) of wild-type receptor were 
employed for docking. According to Rollando [46], the 
docking method will be more effective if the RMSD value 
is less than 2.5 Å. Meanwhile, the ΔG with the most 
negative value was employed since it indicated a strong 
ligand affinity for the active region of the receptor [47]. 
The docking was accomplished at 45.535, 12.575, and 
57.350 (x, y, z) with grid box sizes of 26, 24, and 28 (x, y, 
z) and grid spacing of 0.453. The energy of both wild-type 
and mutant receptors was minimized by YASARA [24], 
finding the lowest energy conformation of a molecule. 

The docking results were compared to the binding 
site of IPBCC.08.610 GOD (Figure 4) and ICF3 as Binding 
Similarity Site (%BSS) from Meyer’s research [45] (Table 
2). The analysis results showed that the wild-type 
receptor had ten identical residues to the eleven residues 
of the enzyme’s active site, resulting in a %BSS value of 
90.91%. The H559D and D578P mutations had the same 
%BSS value of 81.82%, which indicated that 9 out of 11 
residues match the template, while the double mutant 
T554M/D578P produced the smallest %BSS value of 
18.20%, with 2 of 11 residues matching. 

The comparison results also showed that His 516 
residues were present in all receptors (wild-type, 
comparison, and mutant). All receptors except those with 
double mutant T554M/D578P had His 559 residues; 
however, the Glu 421 residues in wild-type, the 1CF3, and 
the mutant receptor were undiscovered. The absence of 
these residues can be caused because Glu 412 does not 
bind or directly interact with the ligand, but hydrogen 
bonds with His 559 [19]. Another reason is that some 
Glu 412 residues are buried within the enzyme, in contrast 
to His 516 residues which are more flexible, solvent-
exposed, and visible from the surface [48]. The difference 
in %BSS values indicates that the mutated residue affects 
the binding site. 
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Figure 4. 2D visualization of the active site of glucose oxidase binding with β-D-glucose as a ligand (a) 1CF3 (b) wild-
type (c) T554M (d) H559D (e) D578P (f) T554M/D578P 

In addition to %BSS, the entire docked receptor was 
also analyzed for its hydrophobicity index or scale with 
the Discovery Studio Visualizer 3.5 Client at the binding 
site. This hydrophobicity scale is based on the Kyte-
Doolittle Scale, widely used to detect hydrophobic regions 
in proteins. Hydrophobicity is a physical property of 
molecules that repels water. The hydrophobicity index is 
described on a scale of +3.00 (brown) to –3.00 (blue)—the 
more positive the value, the more hydrophobic the 

molecule [49]. According to the visualization data, the 
ICF3, wild-type, and all mutant receptors showed low 
hydrophobicity or were even likely to be negative, except 
for the receptor with the double mutant T554M/D578P, 
indicated in blue at the binding site. In contrast, the 
double mutant T554M/D578P receptor exhibited a 
neutral hydrophobicity index (0.0) marked in white at the 
binding site (Figure 5). 



 Jurnal Kimia Sains dan Aplikasi 25 (5) (2022): 169–178 174 

Table 2. Comparison of docked receptor interactions 
with 1CF3 

Receptors 
Amino acid residue 

BSS (%) 
Hydrogen bond Hydrophobic bond 

1CF3 
(Meyer et al. 

[45]) 

Tyr 68, Thr 110, Glu 412, 
Phe 414, Arg 512, Asn 514, 

His 516, His 559 

Asp 424, Tyr 515, 
Trp 426 

100.00% 

1CF3 

Tyr 68, Gly 108, Gly 109, 
Thr 110, Asp 328, Asp 424, 
Arg 512, Asn 514, His 516, 

His 559 

Asn 107, Phe 414, 
Trp 426, Tyr 515 

90.91% 

Wild-type 

Tyr 68, Asn 107, Thr 110, 
Asp 328, Asp 424, Arg 512, 
Pro 513, Asn 514, His 516, 

His 559 

Gly 108, Phe 414, 
Trp 426, Tyr 515 

90.91% 

T554M 
Tyr 68, Thr 110, Asp 328, 
Asp 424, Arg 512, Pro 513, 
Asn 514, His 516, His 559 

Asn 107, Gly 108, 
Phe 414, Trp 426, 

Tyr 515 
90.91% 

H559D 
Tyr 68, Thr 110, Asp 328, 

Asp 424, Arg 512, Asn 514, 
His 516, Asp 559 

Phe 414, Trp 426 81.82% 

D578P 

Tyr 68, Asn 107, Gly 108, 
Gly 109, Thr 110, Asp 328, 
Arg 512, Pro 513, Asn 514, 

His 516, His 559 

Phe 414, Trp 426, 
Tyr 515 

81.82% 

T554M/D578P 
Arg 95, Ser 96, Ser 103, Ser 
291, Ser 292, Tyr 450, Tyr 

515, Gly 517 

Tyr 80, Ile 94, Ala 
289, Gly 290, His 
516, Val 518, Gly 

549, Val 560  

18.20% 

Note: The writing in bold is the same residue between the docked receptors 
and the receptors from previous studies 

 

Figure 5. Hydrophobicity of IPBCC.08610 GOD receptors 
(a) 1CF3 (b) wild-type (c) T554M (d) H559D (e) D578P (f) 

T554M/D578P 

 

Figure 6. Visualization of the binding pocket resulting 
from the binding of the IPBCC.08.610 GOD receptor with 
the β-D-glucose ligand. The blue color shows the active 

site of the receptors (a) 1CF3 (b) wild-type (c) T554M (d) 
H559D (e) D578P (f) T554M/D578P 

The mutation also causes differences in the binding 
pocket, which may be visualized using PyMOL. The blue 
color indicates the receptor’s active site, while the 
molecule in the stick-shaped pocket is an β-D-glucose 
ligand (Figure 6). According to the visualization results, 

the binding pocket on the receptor differs, especially at 
the location of the binding ligand (Figure 6). Ligands for 
both the wild-type and mutant receptors are seen on the 
surface of the binding pocket; except for the double 
mutant T554M/D578P, the ligand is invisible on the 
surface. In addition to differences in ligand location, 
mutations also influence the entire -OH conformation of 
the β-D-glucose ligand at all receptors (Figure 7). 

 

Figure 7. Visualization of β-D-glucose ligand molecule 
binding to IPBCC.08.610 GOD receptors (a) 1CF3 (b) wild-

type (c) T554M (d) H559D (e) D578P (f) T554M/D578P 

Aside from hydrophobicity, binding site, and binding 
pocket, the mutated residues in mutant receptors were 
analyzed and visualized. The T554M receptor mutated 
from the Thr 554 (T554) residue to Met 554 (M554). This 
causes the hydrogen bond between the Trp 122 and Thr 
554 residues to break, forming a new interaction between 
the Met 554 residue and the Phe 126 ring center (Figure 
8). The interaction created between the M554 mutant and 
F126 is a pi-sulfur bond, which involves the interaction of 
the sulfur atom of the methionine residue with the 
aromatic group of the phenylalanine residue [50]. The 
interaction of sulfur with the aromatic ring formed an 
intermolecular distance of 4.8 with a 40.5° angle between 
the sulfur atom and normal vector to the plane defined by 
the aromatic ring at its center. 

 

Figure 8. 3D visualization of IPBCC.08.610 receptor 
mutation from wild-type T554 residues (left) to M554 

mutant (right) 

Meanwhile, according to Marín-Navarro et al. [16], 
who mutated the similar T554M residue of glucose 
oxidase 1CF3, the intermolecular distance between the 
sulfur and the center of the aromatic ring was 5.5, with 
angel ranging from 30 to 60° between the sulfur atom and 
the normal vector to the plane defined by the aromatic 
ring at the center of the ring (Figure 9). The difference 
between the results and the literature is due to the 
different conformations of the mutated sulfur atom 
compared to the sulfur atom of methionine residue in the 
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literature. However, the angle formed at the T554M 
mutant of IPBCC.08.610 GOD receptor follows the 
literature. 

The hydrogen bond breaking and the formation of 
sulfur-pi interactions can improve the stability of the 
enzyme. This is because the sulfur-pi interaction 
produces energy of 4.2–12.6 kJ/mol, comparable to the 
stabilization produced by the salt bridge (4.2–13.4 
kJ/mol) and higher than hydrogen bonding (1.3–6.3 
kJ/mol) [50]. However, there was no difference in the 
value of ΔG and Km compared to the wild-type. 

 

Figure 9. Visualization of residue T554M of ICF3 mutant 
receptor structure [16] 

The H559D mutant receptor mutated from His 559 
(H559) residue to Asp 559 (D559) residue, which caused 
the addition of hydrogen bonds at D559 and H516 
residues. The interaction between H559 residue of the 
wild type and ligand formed two hydrogen bonds with 
distances of 3.07 Å and 3.64 Å. The D559 mutant formed 
three hydrogen bonds, two of which bind to a ligand at 
distances of 2.92 Å and 3.02 Å, one to a H516 residue at a 
distance of 4.70 Å (Figure 10). 

 

Figure 10. 3D visualization of the IPBCC.08.610 receptor 
mutation from a wild-type H559 residue (left) to a D559 

mutant (right) 

The ΔG will become increasingly negative as the 
number of hydrogen bonds increases [51]. In addition, the 
hydrogen bond distance formed after the mutation is 
shorter than the wild-type. After mutations, the addition 
and shortening of hydrogen bonds strengthen ligand-
receptor interactions and enhance enzyme stability. 
According to Kumar et al. [52], the amount of hydrogen 
bonds is one factor that can influence the enzyme’s 
stability. 

Another mutant receptor, D578P, which mutated 
from Asp 578 (D578) to Pro 578 (P578) residues, caused 
the cleavage of the salt bridge between Asp 578 (D578) 
and Arg 545 (R545) residues on wild-type (Figure 11). 
According to Maulana [18], due to molecular dynamics, 
the D578 residue on the wild-type receptor has a salt 
bridge with R545 and R537 residues. However, based on 

the results of docking and visualization, the salt bridge 
was only formed at the R545 residue on the wild-type 
receptor. In contrast, no salt bridge was detected in both 
residues in the mutant. 

The difference in wild-type results between 
molecular dynamics and docking is related to a 
methodological difference. Molecular docking is rigid, 
while molecular dynamics allow molecules to move 
around and develop new interactions. In addition, the 
values of ΔG and Km decreased in mutants compared to 
the wild-type. This agrees with Mhaindarkar et al. [53], 
who observed that breaking the salt bridge decreases the 
value of Km and the enzyme stability. Meanwhile, the 
mutant receptor with double mutant T554M/D578P 
underwent the same events as the T554M mutant 
receptor and the D578P mutant receptor. 

 

Figure 11. 3D visualization of the IPBCC.08.610 receptor 
mutation from a wild-type D578 residue (left) to a 

mutant P578 mutant (right) 

3.2.2. Energy Affinity and Michaelis-Menten Constant 

As a result of molecular docking, a “log” file 
including the affinity energy and RMSD was produced. 
Affinity Energy is defined as the amount of energy 
required by the ligand to bind to the receptor. The energy 
affinity (ΔG) can also be utilized to analyze the ligand-
receptor interaction’s stability [47]. The lowest ΔG with 
an RSMD value of 0.000 resulting from molecular docking 
can be applied to calculate the Michaelis-Menten 
constant (Km). The constant is defined as substrate 
concentration that causes the reaction rate to be half of its 
maximum rate (Vmax) [54]. 

The ΔG and Km values of the ICF3, wild-type, and the 
T554M mutant receptor were −5.7 kcal/mol and 66.353 M, 
respectively. The ΔG and Km values of the H559D mutant 
receptor and the T554M/D578P mutant were −5.9 
kcal/mol and 47.344 M, respectively. Meanwhile, the 
D578P mutant receptor produces ΔG of −5.8 kcal/mol and 
a Km value of 56.048 M (Table 3). The results showed that 
the H559D, D578P, and T554M/D578P mutants had 
changes in ΔG values accompanied by a decrease in Km 
values. According to Bassingthwaighte and Chinn [54], 
the ΔG value is proportional to the Km value. The more 
negative the ΔG, the smaller the value of Km. A more 
negative ΔG indicates a higher ligand affinity for the 
receptor’s active site [47], has a spontaneous and stable 
interaction, and stronger ligand-receptor binding [29, 
55]. 
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Table 3. Molecular docking interactions 

Ligand Receptor 
Energy affinity 

(ΔG) (kcal/mol) 
Michaelis Constant- 
Menten (Km) (µM) 

 1CF3 −5.7 66.353 

β-D-
glucose 

Wild-type −5.7 66.353 

T554M −5.7 66.353 

H559D −5.9 47.344 

D578P −5.8 56.048 

T554M/D578P −5.9 47.344 

These results indicate that the mutation did not 
significantly differ in the glucose binding reaction with 
the T554M mutant receptor because the resulting Km 
value was the same as that of the wild-type receptor of the 
IPBCC.08.610 GOD enzyme and 1CF3. In contrast, the 
other three mutant receptors (H559D, D578P, and 
T554M/D578P) exhibited lower Km values than the wild-
type. This indicates that the mutation affects glucose 
binding to the receptor, and the three mutants can 
enhance gluconic acid production. 

4. Conclusion 

The ΔG and Km values of the T554M mutant were 
unaffected by mutation, whereas both values were 
reduced in the H559D, D578P, and T554M/D578P 
mutants. Reduced ΔG and Km values of the three mutants 
can strengthen the binding of glucose as a ligand with the 
receptor, enhancing gluconic acid production. The H559D 
mutant was the best mutant for increasing the production 
based on the ΔG, Km value, and high stability due to the 
addition of hydrogen bonds. 
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