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Lithium-ion batteries using zinc oxide (ZnO) as anode material had a high 
theoretical capacity of about 987 mAh/g. Unfortunately, ZnO capacity can drop 
below 200 mAh/g after only a few cycles. For that reason, graphite was added in 
this study due to its stable theoretical capacity of around 348-374 mAh/g to 
maintain the stability of lithium-ion battery capacity. Zinc oxide/graphite 
(ZnO/Graphite) was prepared using a solid-state method, in which ZnO and 
graphite were mortared until homogeneous with the mass ratio of (2:1), (1:1), and 
(1:2). The SEM images of all samples showed the agglomerate morphology 
between ZnO and graphite which affect the results of the battery performance 
test. The final result of the ZnO/Graphite anode can be considered a continuous 
anode material due to the stable cycle performance obtained in the range of 
219.72–371.27 mAh/g with a decreased value of 40% after 55 cycles. 

 

1. Introduction 

Lithium-ion batteries are energy storage in great 
demand nowadays because of their outstanding 
performance, high power density, high energy, and long 
cycle life. Therefore, this is the key to the rapid 
development and improvement of portable electronic 
devices and their applications on a large scale [1]. The 
performance of lithium-ion batteries is highly dependent 
on the active materials used in the anode and cathode of 
lithium-ion batteries. Since the anode determines the 
lithium-ion battery’s output voltage range [2], it is 
essential to research and modify the active materials used 
in anodes for lithium-ion batteries as they will eventually 
be employed in high-power applications such as electric 
vehicles. 

The active materials that are in great demand for use 
as anodes in lithium-ion batteries are metal oxides. This 
is because the metal oxide employed will experience a 
redox reaction during the charge-discharge process [3]. 
In addition, metal oxides have prominent advantages 
compared to conventional carbon materials, such as high 
theoretical capacity, good safety performance, and wide 

availability [4]. Metal oxides that have been studied in 
previous studies were Fe2O3 [5, 6, 7] and CuO [8, 9, 10, 11]. 

The metal oxide that will be used is ZnO with a 
graphite composite since it has various advantages such 
as easy preparation, strong chemical stability, and 
inexpensive cost [12]. In addition, ZnO itself has a high 
theoretical capacity of 987 mAh/g [13, 14, 15, 16]. 
However, the zinc oxide capacity can only drop below 200 
mAh/g after a few cycles [17]. For this reason, graphite 
composites are used because it has a stable theoretical 
capacity in the range of 348–374 mAh/g [18, 19]. This is 
expected to maintain the stability of cycle performance of 
ZnO for lithium-ion batteries. 

The sample in this study was prepared using ZnO and 
graphite commercial, in which the mixing was conducted 
using a simple solid-state method. The solid-state 
method is one of the most commonly used for lithium-
ion batteries because of its cost-effectiveness and ease of 
synthesis [20]. Therefore, this present study aimed to 
synthesize ZnO/Graphite as the anode for lithium-ion 
batteries using the solid-state method. 
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2. Methodology 

2.1. Materials 

The active ingredients used as anodes for lithium-
ion batteries were zinc oxide (ZnO) (Loba Chemie, 99%) 
and graphite (Graphite, 99%) without further 
purification. The active ingredient used as the cathode for 
the lithium-ion battery was technical NMC-811 (Nickel 
Manganese Cobalt-811), produced by the Centre of 
Excellence for Electrical Energy Storage Technology, 
Sebelas Maret University. 

2.2. Sample Preparation of Zinc Oxide/Graphite 
(ZnO/Graphite) 

This research consisted of three main stages of work 
procedures: material synthesis, battery assembly, and 
battery performance test, as shown in the flow chart in 
Figure 1. The material synthesis stage involved making 
ZnO/Graphite composites as the battery anode using the 
solid-state method. In the battery assembly stage, 
ZnO/Graphite that had passed sample characterization 
were assembled to become lithium-ion batteries. The 
battery performance test was the stage to determine the 
performance of the lithium-ion batteries that have been 
made. 

 

Figure 1. Research Flow of ZnO/Graphite anode 

ZnO/Graphite was prepared using the simple solid-
state method by varying the graphite and ZnO mass ratio. 
This process was started by mixing ZnO powder and 
graphite powder with different mass ratios, as shown in 
Table 1. The sample was ground using a mortar for ± 1 
hour to obtain a homogeneous sample. The resulting 
ZnO/Graphite were then characterized. Samples that pass 
the characterization stage will be used to prepare battery 
anodes. 

 

 

Table 1. The mass ratio of ZnO and graphite for the 
preparation of ZnO/Graphite 

Sample 
Mass (g) 

ZnO powder Graphite powder 

ZnO-C0.5 9 4.5 

ZnO-C1 9 9 

ZnO-C2 4.5 9 

Graphite 0 9 

2.3. Characterization 

XRD (X-Ray Diffraction) data were collected from a 
diffraction angle (2θ) ranging from 17° to 70° at a rate of 
0.05 s–1. The crystal structure and size of the sample were 
determined using XRD data. Furthermore, surface 
morphology was analyzed using SEM (Scanning Electron 
Microscopy) (SEM, JEOL JSM-6510LA, Japan) with 2500× 
magnification, and the chemical components present in 
the sample were identified using SEM-EDX (Scanning 
Electron Microscopy-Energy Dispersive X-Ray) (SEM 
EDX, JEOL JSM-6510LA, Japan). 

2.4. Battery Performance Test 

Battery assembly testing must be done before 
performing a battery performance test. At the battery 
assembly stage, it started by dissolving ZnO/Graphite: AB 
(Acetylene Black): SBR (Styrene Butadiene Rubber): CMC 
(Carboxymethyl Cellulose) material in a ratio of 80:10:7:3 
with distilled water. The ingredients were mixed using a 
stirrer to form a paste. The resulting paste was coated 
with a thin layer on top of Cu foil with a width of ± 5.5 cm 
and a thickness of ± 0.2 cm for each layer, with the final 
mass of the anode layer was around 4 g. The formed thin 
layer was then put in the oven until it dried. 

The resulting thin anode layer was used to coat the 
battery components with a separator-anode-separator-
cathode arrangement in the battery winding process 
(Figure 2). Furthermore, the batteries were arranged in a 
glovebox with an electrolyte solution. The type of 
electrolyte used was LiPF6. Electrolytes containing LiPF6 
usually show good conductivity and electrochemical 
stability and do not promote aluminum corrosion, a 
material commonly used as a positive electrode current 
collector [21]. 

 

Figure 2. Lithium-ion configuration 

In testing battery performance, the test equipment 
used was an eight-channel battery analyzer (BTS-5V6A, 
China), which obtained the results of the battery charge-
discharge capacity. The performance test is the formation 
test by running the charge-discharge performance at 
C/20 and then continuing with the C-rates to see the 
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capacity’s performance when discharge values were set at 
different stages. C-rate testing was carried out with 
charge set at 0.5C and discharge rate at 0.1C, 0.2C, 1C, and 
2C. The settings 0.1C and 0.2C aimed to determine the 
slow charge-discharge capacity, 1C for the standard of 
charge-discharge, and 2C for the fast charge-discharge. 

The EIS (Electrochemical Impedance Spectroscopy) 
(EZstat Pro Nuvant) test analyzed the electrochemical 
properties of lithium-ion batteries with the frequency 
range of 0.01 Hz to 10 kHz and the amplitude of 5 mV. The 
impedance data obtained would be plotted into Nyquist 
plot using software Origin 2018 version and fit in data 
using software ZsimDemo 3.2 to acquire the resistance 
value. 

3. Results and Discussion 

3.1. Crystal Structure and Morphological Analysis 

Figure 3 shows the XRD results of ZnO/Graphite 
composites. XRD results from samples that had been 
stacked were compared with XRD ZnO pure (commercial) 
and graphite (commercial) results to obtain a data match. 
Based on the XRD results, the ZnO-C0.5 revealed the two 
highest peaks at 2 = 26.8° and 36.59° with a crystal size 
of 18.27 nm. Then, the ZnO-C1 obtained the two highest 
peaks at 2 = 26.71° and 36.49° with a crystal size of 17.31 
nm. The ZnO-C2 produced the two highest peaks at 2 = 
26.68° and 36.47° with a crystal size of 14.75 nm. 

 

Figure 3. XRD Result 

XRD results of ZnO/Graphite composites were 
compared with JCPDS (Joint Committee on Powder 
Diffraction Standards) data. In the analysis of the 
diffraction peaks, all samples of ZnO/Graphite had 
similar data with JCPDS No. 36-1451, which showed that 

ZnO crystals had the first three highest peaks, indicating 
the diffraction planes of (100), (002), and (101). This peak 
pattern suggested that the observed ZnO phase had 
hexagonal Wurtzite [22]. Meanwhile, the results of the 
graphite analysis had the same data as JCPDS data No. 00-
012-0212, which showed that the crystal system was also 
hexagonal. Furthermore, sample characterization was 
conducted using SEM to determine the surface 
morphology of ZnO/Graphite, and the results are shown 
in Figure 4. 

Figure 4 shows the SEM images of ZnO/Graphite and 
pure graphite. Graphite morphology is in the form of 
coarse grains with an average diameter of 35.38 µm 
(Figure 4(a)). The ZnO morphology in Figure 4(b) has a 
fine structure, even though mainly ZnO is reported to 
have a spherical and less homogeneous morphology. 
Figure 4(c-d) shows the morphology of the ZnO/Graphite 
composite that has been grounded with a mortar for an 
hour. It is evident that the ZnO particles adhered to the 
graphite surface and that the produced particles tended to 
agglomerate into one more significant piece. Based on 
Figure 4(b–d), it can be said that the mortar process for 
ZnO and Graphite samples with their mass ratio (Table 1) 
still requires a longer time, causing uneven 
agglomeration and less homogeneous morphology. The 
more homogeneous the ZnO/Graphite composites, the 
more ZnO crystal growth can be increased, which is 
helpful for the charge-discharge process. 

Table 2. SEM-EDX result of ZnO/Graphite composites 

Element 
Percentage (%) 

Mass Atom 

C 77.23±0.56 90.73±0.66 

O 7.18±0.45 6.33±0.40 

Na 0.72±0.11 0.44±0.07 

Zn 9.92±0.46 2.14±0.10 

Au 4.95±0.43 0.35±0.03 

Total 100.00 100.00 

The size of ZnO nanoparticles also has a different 
effect because the smaller particle size will also cause an 
increase in surface area, which is directly proportional to 
the number of reactions that occur so that the reaction 
results will be better [23]. Incorporating ZnO particles 
serves as a conductive band and network to allow ZnO 
particles to combine, significantly reducing the transfer 
resistance between these particles [24]. This highly 
affects the intercalation of Li+ ions so that it can facilitate 
the transfer between Li+ ions during the battery charge-
discharge process. 

The elemental composition of the samples was 
characterized by SEM-EDX, as shown in Table 2. Table 2 
demonstrated the presence of C, Zn, and O on the surface 
of ZnO/Graphite nanoparticles with a ratio of 1:1, along 
with Au impurities obtained from the samples during 
SEM preparation. 
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Figure 4. SEM images of (a) graphite, (b) ZnO, (c) ZnO-C0.5, (d) ZnO-C1, (e) ZnO-C2 

3.2. Impedance Test Results and Charge-Discharge 
Battery 

Figure 5 shows the results of the Nyquist plot data 
tested by Electrochemical Impedance Spectroscopy (EIS). 
EIS analysis was performed to investigate the electrodes’ 
charge transfer resistance and ion diffusion performance 
[25]. The data obtained from the EIS test were in the form 
of Nyquist plots and linear plots of 4 variations of anode 
samples. Wang et al. [26] said that the Nyquist plot is 
associated with the charge transfer impedance of the 
electrode, and the linear plot is associated with the 
Warburg impedance reflecting the diffusion of solid-state 
Li+ to most of the active materials of the materials used. 
The Nyquist plot or semi-circle radius directly 
demonstrates the magnitude of the charge transfer 
resistance [27]. 

 

 

Table 3. Resistance Value 

Sample R1(Ohm) R2(Ohm) Equivalent Circuit 

Graphite 27.66 58.32 

 

ZnO 4.02 5.19 

ZnO-C0.5 0.01 0.36 

ZnO-C1 6.98 57.35 

ZnO-C2 0.21 0.64 

Based on the EIS results (Figure 5 and Table 3), the 
graphite plot in Figure 5(a) had the most significant 
resistance, whereas the ZnO-C0.5 plot in Figure 5(c) had 
the least resistance. This can be seen from the semi-circle 
that intersects the x-axis. Therefore, the smaller the 
semicircular plot, the smaller the resistance and the 
better or greater the conductivity of the battery because 
the conductivity value is inversely proportional to the 
resistance value and confirmed by the resistance value 
obtained from fitting the data through the equivalent 
circuit using a Nyquist plot (Table 3). 

 

Figure 5. Nyquist plot of (a) Graphite, (b) ZnO, (c) ZnO-C0.5, ZnO-C1, and ZnO-C2 
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Figure 6. First three charge-discharge of ZnO/Graphite’s lithium-ion batteries (a) ZnO-C0.5, (b) ZnO-C1, (c) ZnO-C2, 

(d) Graphite 

Regarding the results of the morphological analysis 
of the four anode samples, all zinc oxide graphite 
composites had a large surface area due to the 
homogeneity of the mortared ZnO/Graphite. The specific 
structure of the large ZnO particles can increase the active 
ingredient’s electrochemical reaction area and reduce the 
zinc electrode’s resistance and polarization [27]. Zhang et 
al. [28] reported that the priority in determining the 
performance of battery cells also lies in the surface 
chemistry aspect, which produces good surface contact to 
ensure the intercalation and deintercalation processes 
run well during the battery charge-discharge process. 

Figure 6 displays graphs of the charge and discharge 
process for the four anode modifications performed with 
the first three cycles, which constitute the formation 
phase, to determine the precise lithium-ion battery 
capacity. This is attributed to the fact that the battery 
capacity depends on the active material type and the 
electrochemical reaction rate during charging and 
discharging. The broader surface contact between the 
active materials will also increase the battery capacity. 
The amount of lithium-ions that may be transported to 
the anode increases with the electric current generated 
during discharging [29]. 

Table 4. Coulombic efficiency at the first three cycles 

Cycle Number Graphite ZnO-C0.5 ZnO-C1 ZnO-C2 

Cycle 1 76% 23% 79% 33% 

Cycle 2 95% 73% 96% 81% 

Cycle 3 95% 81% 97% 89% 

As seen from all variations of the battery anode 
samples, the four variations have specific capacity values 
in the range of 150–350 mAh/g. Yang et al. [24] added that 

a full battery of ZnO/Graphite shows a capacity of around 
280–400 mAh/g. and is a superior speed capability. In 
Figure 6, all ZnO/Graphite batteries have a specific 
discharge capacity stabilizing in the second cycle. This is 
because, during the first charge-discharge process, the 
lithium-ion battery undergoes surface electrochemical 
interphase (SEI), which is electrolyte decomposition that 
produces a high irreversible capacity during the first 
discharge process and starts to stabilize in the second and 
subsequent cycles. The active material of SEI is derived 
from the positive electrode material and is responsible for 
the irreversible capacity, which suffers significant losses 
in the first cycle of most Li-ion batteries [30]. 

This has been demonstrated by the calculated 
Columbia efficiency (CE) values in Table 4. CE is the ratio 
of discharge capacity value divided by the charge capacity 
value [31]. This suggests that ZnO can be considered a 
material that can improve the charge transfer efficiency 
and electron transfer rate of the electrodes, which will 
help enhance stability and good capacity during battery 
discharge. 

Figure 7 shows the performance value of the specific 
discharge capacity rate of the battery (the C-rate). The C-
rate testing was carried out under three charge-discharge 
cycles, with charge setting at 0.5C and discharge rate at 
0.1, 0.2, 1, and 2C. ZnO-C1 anode and graphite have the 
most stable specific discharge capacity. As can be 
observed, the particular capacity value did not 
significantly decrease even when it was configured with 
different C-rates. Figure 7 shows that the higher the C-
rate, the smaller the specific capacity for discharging the 
battery. 
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Figure 7. Rate ability of ZnO/Graphite’s lithium-ion 
battery 

The specific discharge capacity decreases towards 
the next cycle, and the capacity decrease during the 
discharging and charging processes due to the volume 
expansion of the ZnO particles. The results showed that 
morphological control could overcome problems using 
ZnO material as an anode of lithium-ion batteries, such 
as volume expansion and battery shutdown in just a few 
cycles [22]. This phenomenon can also be attributed to the 
enlarged interplanar distance and reduced activation 
barrier for using Li+ with the active materials [32]. Zhang 
et al. [28] also added that the charge-discharge capacity 
for the second cycle, both ZnO and graphene, showed 
good electrode stability and consistent cycle 
performance. 

 

Figure 8. Cycle performance of ZnO/Graphite’s lithium-
ion battery 

Figure 8 shows ZnO/Graphite stability after charge-
discharge with several cycles. It can be seen that the 
ZnO/Graphite anode displayed a better cycle 
performance, which resulted in a constant significant 
capacity decrease from the initial cycle to cycle 55th with a 
specific capacity discharge range of 219.72–371.27 mAh/g 
and decreased value of 40%. Compared to the graphite 
sample, the specific capacity discharge ranged from 72.62 
to 416.9 mAh/g, with a decrease value of more than 80%. 
This result is in line with the research conducted by Wang 

et al. [33], which reported that a stable cycle was achieved 
after several cycles. According to the EIS results, the 
ZnO/Graphite anode also showed a lower charge transfer 
resistance than the commercial graphite electrode, 
meaning that the ZnO/Graphite anode can produce better 
electrode reaction kinetic characteristics (charge transfer 
and polarization). It also could be ascribed to better 
electron availability and possibly Li+. A better type of 
crystal is also a fast pathway for mass transport and 
electron transfer, increasing Li’s storage capacity [34]. 

All variations of ZnO/Graphite anodes had sufficient 
specific capacity rate stability, which can be concluded 
that ZnO/Graphite may be considered a continuous anode 
material for lithium-ion batteries. Apart from the high 
specific capacity and stability of ZnO, the active material 
ZnO contained in the anode can also act as a continuous 
anode material because it has a stable structure [29]. 
However, some considerations are still required in 
producing anode material from ZnO/Graphite, such as the 
homogeneity of the sample. The homogeneity of the 
samples must be taken into account since the shape of the 
sample has a significant influence on its chemical 
properties for the cycle performance of the charge-
discharge process for lithium-ion batteries. 

4. Conclusion 

ZnO/Graphite composites were prepared using a 
solid-state method with different ratio mass of graphite 
and ZnO. XRD results showed the ZnO/Graphite 
composites had crystal peaks that matched the JCPDS 
database with an agglomerate morphology where the ZnO 
adhered to the graphite according to the SEM images. The 
characterization led to the results of the battery 
performance testing data. As a result, the ZnO-C1 for the 
lithium-ion battery was fabricated and had a specific 
value of stable capacity at 219.72–371.27 mAh/g with a 
decreased value of 40%. This result showed that the ZnO-
C1 had better stability than pure graphite. The EIS 
impedance graph confirmed that the ZnO-C1 had a lower 
resistance value than graphite, allowing it to store more 
electrons. Therefore, the ZnO-C1 can be a candidate for 
active material additives at the lithium-ion battery 
anode. 
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