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 The use of robust solar energy-driven photocatalysis materials to address the 
global energy and environmental crisis has gained significant attention in recent 
years. However, the wide band gaps in many robust semiconductor photocatalysts 
hinder their absorption of visible light from the solar spectrum. To address this 
issue, the modification of the large band gap semiconductor with the lower band 
gap material using the Successive Ionic Layers Adsorption and Reaction (SILAR) 
technique has emerged as an economical, accessible, and reproducible method for 
depositing nanoscale materials onto semiconductor substrates. This research 
aims to know how the concentration variation of cation and anion precursors in 
the SILAR technique affects the optical and photoelectrochemical properties of 
the resulting composite materials. Bi2S3 serves as a modifier for TiO2 nanotube 
arrays (NTAs). The result shows that the cation-anion concentration ratio of 1:1.5 
mM with five SILAR cycles gives the best photoelectrochemical performance, with 
a stable current density of 0.12 mA/cm2, compared to pristine TiO2 NTAs the 
current density of Bi2S3/TiO2 NTAs is 15-fold. In addition, at each variation, the 
concentration ratio of cation and anion precursors decreases bandgap energy 
with each increase in the SILAR cycle. 

 

1. Introduction 

The world is dealing with enormous challenges 
related to energy security and environmental 
sustainability [1]. The use of fossil fuels contributes to 
environmental pollution by releasing carbon dioxide into 
the atmosphere, and the continuing depletion of fossil 
fuels seriously threatens the global community [2]. In 
addition, the increasing amount of hazardous industrial 
waste being disposed of raises serious environmental 
concerns with industry advancement. As a result, efforts 
are being undertaken to investigate technology for 
enhanced ecological cleanup and renewable energy 
sources [3]. It requires material that supports the 
objectives of obtaining renewable energy sources and 
environmental restoration. 

Several semiconductor photocatalysts, such as WO3, 
TiO2, CdS, Bi3NbO7, ZnO, Cu2O, CdO, SnO2, Al2O3, SiO2, 
Fe2O3, have been used recently for various photocatalytic 

applications due to their potential chemical and physical 
properties, as well as their improved chemical stability 
and stable electronic structure. Among them, TiO2 is an 
intriguing material due to its distinct oxide 
characteristics [4, 5]. Three crystal forms of titanium (IV) 
dioxide exist, e.g., rutile, which is thermodynamically 
stable, anatase, and metastable brookite. In those forms, 
Ti4+ coordinates with six oxygen atoms (O2⁻) [6]. 

Notably, TiO2 in nanotube arrays (NTAs) especially 
attracts interest due to its porous, one-dimensional 
structure, offering a higher specific surface area and 
improved electron-hole transfer efficiency [7]. However, 
despite these advantages, pristine TiO2 NTAs exhibit 
limited photocatalytic activity outside the UV region due 
to their wide band gap (3.0–3.2 eV). To overcome this 
limitation, various modification strategies such as 
doping, dye sensitization, and junction formation with 
lower band gap materials are commonly employed. 
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Bi2S3 semiconductor is a significant semiconductor 
within the V-VI family of materials, drawing 
technological interest due to recent research 
advancements. It finds potential applications in various 
fields, such as supercapacitors, photocatalysis, and 
fluorescent markers [8]. As an orthorhombic n-type 
semiconductor with a band gap of ~1.7 eV, Bi2S3 efficiently 
absorbs visible light in the range of 400 to 900 nm [9]. 
Sensitizing TiO2 NTAs with Bi2S3 enhances the 
photocatalytic activity compared to their pristine 
counterparts due to the matched band potentials [10, 11]. 
Furthermore, the low cost, natural abundance, non-
toxicity, and environmental friendliness of Bi2S3 further 
enhance its applicability [12, 13]. 

Successive Ionic Layers Adsorption and Reaction 
(SILAR) is a method that can be employed to fabricate 
TiO2 NTAs sensitized with Bi2S3 material. SILAR is known 
for its straightforward process, cost-effectiveness, and 
shorter deposition time, making it advantageous for 
depositing thin films of binary semiconductors [12]. 
Using the SILAR approach, weakly bound species are 
eliminated by immersing the substrate separately in two 
precursor solutions and then washing it between them 
with the appropriate solvent, allowing the formation of 
the well-dispersed nanomaterials on the substrate [14]. 
Therefore, a SILAR cycle entails the following steps, i.e., 
adsorption of cation precursors, solvent flushing, 
adsorption of anion precursors, further reactions, and 
rinsing [15]. Concisely, the SILAR approach prevents 
homogenous precipitation in the solution by successive 
flushing with the appropriate solvent between each 
immersion and utilizing the precursor solution’s 
adsorption and ion reaction [16, 17]. 

The synthesis of Bi2S3/TiO2 NTAs material reported 
previously was mainly conducted at a fixed concentration 
[12, 14]. However, it is recognized that the concentration 
of precursors significantly influences the character of the 
resulting precipitate in the SILAR method [17]. Therefore, 
this study proposes a different set of cation and anion 
concentrations for the SILAR synthesis process. 
Specifically, we investigate how varying concentrations 
affect the optical and photoelectrochemical properties of 
Bi2S3/TiO2 NTAs. The concentration ratios used in this 
research were varied as follows: 1 mM: 1.5 mM, 2 mM: 
3 mM, and 10 mM: 30 mM. 

2. Experimental 

2.1. Materials 

The materials used in this research were titanium 
plate (99.6% purity), acetone (C3H6O), ethanol (C2H5OH), 
ammonium fluoride (NH4F), ethylene glycol (C2H6O2), 
bismuth nitrate pentahydrate (Bi(NO3)3.5H2O), sodium 
sulfide trihydrate (Na2S.3H2O), sodium sulfate (Na2SO4), 
mannitol (C6H14O6), deionized water was purchased 
commercially. All materials were obtained from Sigma-
Aldrich, except for the titanium plate obtained from Baoji 
Jinsheng Metal Material Co., Ltd. and deionized water 
from OneMed. 

 

Figure 1. Successive Ionic Layers Adsorption and 
Reaction (SILAR) illustration on the synthesis of Bi2S3 

deposited on the TiO2 nanotubes array 

2.2. Synthesis of TiO2 NTAs 

Titanium foil with a 0.2 mm thickness was cleaned by 
sonicating it at room temperature for 15 minutes in 
C2H5OH and C3H6O solutions, after which it was rinsed 
with distilled water and left to air dry. Every anodization 
experiment was conducted using a two-electrode 
electrochemical cell. Pt was utilized as the cathode, and 
the Ti plate (6 × 1.5 × 0.02 cm) was used as the anode. An 
electrolyte consisting of 2% H2O and 0.3% NH4F was a 
C2H6O2 solution. The two electrodes were spaced apart by 
about 1.5 centimeters. At a potential of 50 V, the 
anodization process was run for 60 minutes. Following 
the anodization procedure, the sample was immersed and 
dried, then calcined for 2 hours at a temperature of 450°C 
with a temperature rise rate of 5°C/min [18]. 

2.3. Synthesis of Bi2S3/TiO2 Nanotubes Arrays 
(Bi2S3/TiO2 NTAs) by SILAR Method 

Bi2S3 on the surface of TiO2 NTAs was synthesized 
using the SILAR method with variations of SILAR cycles 1, 
3, 5, and 7, as illustrated in Figure 1. In addition, this 
research was also compared to variations of 
concentrations for precursor cations and anions. The 
concentration variation (mM) used were 1: 1.5, 2: 3, and 
10: 30. The proposed reaction mechanism for the 
formation of Bi2S3 is shown in Equations (1 to 3) [19]. 

 2Bi3+ + 2C8H8(OH)6 → Bi2(C6H8O6) + C6H8(OH2)6
6+ (1) 

 Bi2(C6H8O6) +3S2- → Bi2S3 + C6H8O6
6- (2) 

 C6H8(OH2)6
6+ + C6H8O6

6- → 2C8H8(OH)6 (3) 

2.4. Characterization of Materials 

TiO2 NTAs and Bi2S3/TiO2 NTAs were characterized 
using FTIR (SHIMADZU IR Prestige-21), UV-Vis diffuse 
reflectance spectroscopy (UV-Vis DRS) (Shimadzu UV-
2450), and Potentiostat. Meanwhile, the band gap energy 
value was determined using the UV-Vis DRS employing 
the Kubelka-Munk and Tauc plot method, according to 
Equation (4) [20]. 

 (αhv)
1

𝑛 =  𝐴 (ℎ𝑣 −  𝐸𝑔) (4) 

 F(R) =  
(1−R)2

2𝑅
 (5) 

where R is the diffuse reflectance value, h is Plank’s 
constant, n is the frequency of vibration, α is the 
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absorption coefficient, Eg is the band gap, A is the 
proportional constant, and n depends on the band 
structure of the sample is 2 for indirect allowed transition 
(n = 2), due to TiO2 in amorphous and anatase phase 
exhibiting indirect electron transfer [21]. 

 (F(R)hv)1/2 = 𝐴 (ℎ𝑣 −  𝐸𝑔) (6) 

The F(R) values were plotted versus energy photon 
values according to the Tauc plot, where the Eg was 
determined at the F(R) value equal to zero. 

In this research report, the morphology of the 
resulting material is not presented. However, based on 
the anodization and SILAR techniques employed, 
previous studies have confirmed that TiO2 NTAs possess a 
diameter of 67.91 nm and a height of 4.4 µm [16]. 

2.5. Measurement of Photoelectrochemical 
Performance (PEC) 

The preparation of photoelectrochemical cells was 
carried out using a potentiostats 3-electrode system. 
Working electrodes were TiO2 NTAs and Bi2S3/TiO2 NTAs. 
Meanwhile, the counter electrode was Pt, and the 
reference electrode was Ag/AgCl. A 40-watt Philips 
tungsten lamp was used as a visible light source. TiO2 
NTAs and Bi2S3/TiO2 NTAs were tested utilizing 0.1 M 
Na2SO4 electrolyte. The test was carried out using the 
Multi Pulse Amperometry (MPA) in dark and light 
conditions for 10 seconds each other, and the applied 
potential was set at 0 V. 

3. Results and Discussion 

3.1. UV-Vis DRS Characterization of TiO2 Nanotube 
Arrays 

The anodization of titanium metal plate in C2H6O2 
containing water and fluoride ions produces an 
immobilized thick film of a highly ordered titanium oxide 
(TiO2 NTAs). The results of UV-Vis DRS characterizations 
are presented in Figure 2a and Figure 2b. The TiO2 NTAs 
show a typical reflectance spectrum in the 200-800 nm 
wavelength range [22]. The step decrease in %R occurs at 
wavelengths under 400 nm, which indicates that the 
absorption area of TiO2 NTAs is in the UV region. It is 
important to note that the low %R values observed at 
wavelengths between 500 and 800 nm are attributed to 
refractive phenomena rather than absorption, as 
previously reported [23]. Based on this spectrum, the 
Kubelka-Munk and Tauc equations were used to create 
the Tauc plot, and the band gap was determined to be 
3.2 eV. 

 

Figure 2. (a) UV-Vis DRS spectra of TiO2 NTAs, (b) The 
absorption spectra of the corresponding sample by 

plotting (F(R)hv)2 vs. E 

 

Figure 3. FTIR spectra of heterostructure Bi2S3/TiO2 NTAs 
with variation concentration precursor cation and anion 
comparing with TiO2 NTAs (a) 1-cycle SILAR, (b) 3-cycle 

SILAR, (c) 5-cycle SILAR, (d) 7-cycle SILAR 

3.2. Synthesis of Bi2S3/TiO2 NTAs 

The synthesized Bi2S3/TiO2 NTAs by the SILAR 
approach were used to deposit Bi2S3 nanoparticles onto 
the surface of TiO2 NTAs (Figure 1). The following 
protocols were put into place, i.e., separately dissolves of 
Bi(NO3)3 in 50 milliliters 0.1 M mannitol solution 
(solution A) and Na2S.3H2O in 50 milliliters of deionized 
water (solution B). Firstly, TiO2 NTAs were soaked in 
solution A for three minutes, rinsed with deionized water, 
and then dipped in solution B for three minutes before 
being rinsed with deionized water. For the first cycle, it 
was sufficient to precipitate Bi2S3 particles on TiO2 NTAs. 
The process was repeated several times to increase the 
loading of Bi2S3. The samples were labeled 1, 3, 5, and 7 
cycles to distinguish them from one another. The thin 
films produced were dried at 60°C for an hour [24]. 

3.3. FTIR Characterization of Bi2S3/TiO2 NTAs 

The FTIR spectra in Figure 3 confirmed the presence 
of the conventional Bi-S-Bi vibration at wavenumber 
~1100-1200 cm-1 and SH group stretching, which is visible 
at wavenumber 1344 cm-1, indicating the successful of 
Bi2S3 deposition onto TiO2 NTAs [16]. In addition, the 
absorption of functional groups by OH bending and OH 
stretching are also observed at wavenumbers 1540 cm-1 
and 3247 cm-1 [19]. It also observed that the absorption of 
Bi-S at ~1130 cm-1 increases with the number of cycles and 
the concentration ratio, while shifting to a larger 
wavenumber. This indicates that the deposition of Bi2S3 
onto TiO2 NTAs was successful. 

3.4. Optical Band Gap of Bi2S3/TiO2 NTAs 

Figure 4 (a, b, and c) displays the Tauc Plot of TiO2 
NTAs and Bi2S3/TiO2 NTAs of each concentration 
variation, while the band gap calculation summary of 
every sample is presented in Figure 4d. The results 
confirm that the addition of Bi2S3 at varying 
concentrations reduces the band gap of TiO2 NTAs. An 
increase in SILAR cycles further decreases the band gap 
values, indicating that more Bi2S3 is deposited with 
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additional cycles. As the concentration of precursors 
increases, the band gap reduction in each cycle becomes 
more pronounced, signifying higher Bi2S3 deposition in 
more concentrated precursors. This is characterized by 
the absorption shift to the visible region and the 
corresponding decrease in energy, resulting in a reduced 
band gap. 

3.5. Photoelectrochemical Performance Using Multi 
Pulse Amperometry (MPA) Method Under Visible 
Light Irradiation 

The performance of the prepared photoanode 
(Bi2S3/TiO2 NTAs) in generating the electron-hole pair 
under a visible light source was evaluated by the MPA 
techniques. It can be observed that the photocurrent 
density remains a constant high value when the light is 
turned on and then quickly decreases to zero mA/cm2 as 
long as the light is turned off, indicating that the 
photocurrent is generated due to the photoelectric 
conversion of the Bi2S3/TiO2 NTAs photoelectrode, and the 
electron transport rate is very fast. In addition, spikes in 
all Bi2S3/TiO2 NTAs photoelectrodes can be observed when 
the light is intermittent, which is attributed to the 
accumulation of charge carriers. 

Figure 5 shows a considerable photocurrent density 
that evolved when the visible light was switched ON. The 
results of this measurement showed the maximum 
electrochemical performance for each change in 
concentration and the cycles that vary with variation. The 
optimum electrochemical performance arises at 5 SILAR 
cycles (0.12 mA/cm2) for concentration variation of 1 mM: 
1.5 mM (Figure 5a), the optimum electrochemical 
performance occurs at 3 SILAR cycles (0.05 mA/cm2 and 
stable) for concentration ratio of 2 mM: 3 mM (Figure 5b), 
and the optimum electrochemical performance occurs at 
1 SILAR cycle (0.14 Ma/cm2 and unstable) for 
concentration ratio of 10 mM: 30 mM (Figure 5c). 

  
Figure 4. The results of characterization using UV-DRS 
for TiO2 NTAs and Bi2S3/TiO2 NTAs prepared by SILAR at 
different precursor concentrations and different cycles 

(a) Tauc plot for 1 mM of cationic and 1.5 mM of anionic, 
(b) Tauc plot for 2 mM of cationic and 3 mM of anionic, 

(c) Tauc plot for 10 mM of cationic and 30 mM of anionic, 
(d) diagram for summary band gap energy of Bi2S3/TiO2 

NTAs for different precursor concentrations and 
different cycles 

 

Figure 5. Photoelectrochemical performance of TiO2 
NTAs and Bi2S3/TiO2 NTAs prepared by SILAR for 

different precursor concentrations and different cycles 
illuminated with visible light with (a) 1 mM of cationic 
and 1.5 mM of anionic, (b) 2 mM of cationic: 3 mM of 

anionic, (c) 10 mM of cationic: 30 mM of anionic, 
(d) summary of photoelectrochemical performance of 

Bi2S3/TiO2 NTAs 

Compared with the report conducted by Wang et al. 
[10], the best current density in 5 SILAR cycles with a ratio 
of cation and anion concentrations of 0.01 M: 0.01M using 
distilled water as a solvent. In addition, when compared 
to other research reports, maximum current density was 
obtained at 3 SILAR cycles with a ratio cation and anion 
concentrations of 0.01 M: 0.01 M. In that research report, 
the current density in 3 SILAR cycles is the maximum 
compared to other cycles; when compared to pure TiO2 
NTAs, the increase is fourfold [16]. In this research, the 
maximum current density is in 5 SILAR cycles for a ratio 
of 1 mM: 1.5 mM; when compared to pure TiO2 NTAs, the 
increase is fifteenfold. 

This is a consequence of the amount of Bi2S3 being 
deposited, which will also affect the material’s surface. 
The photocurrent evolved due to the ability of Bi2S3 to 
absorb visible light to create exited and free electrons, 
which were subsequently injected into the TiO2 NTAs 
conduction band and then produced photocurrent, which 
induced photocatalytic activity [25]. Based on PEC 
performance (MPA method), material TiO2 NTAs before 
being deposited with Bi2S3 have a bad response to visible 
light compared with TiO2 NTAs after being deposited with 
Bi2S3. It also confirmed the UV-DRS data of TiO2 NTAs; the 
more bandgap energy of the TiO2 shifts towards visible 
light, the more the current density increases. However, 
the resulting current density is also not maximized when 
it shifts to the visible area in optical properties. 

4. Conclusion 

This research applied the SILAR method to deposit 
Bi2S3 nanoparticles on TiO2 NTAs as a photosensitizer as 
part of its evaluation. The results indicate that increasing 
the precursor concentration leads to greater deposition of 
Bi2S3, evidenced by a reduction in the band gap value. 
However, the over-deposited Bi2S3 impedes electron-
hole mobility within the photoanode, consequently 
lowering the photocurrent performance. The best 
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photoelectrochemical performance was shown by the 
Bi2S3/TiO2 NTAs photoanode synthesized at a cation-
anion ratio of 1 mM: 1.5 mM at 5 SILAR cycles with an 
energy band gap of 1.71 eV when compared to pristine TiO2 
has a fifteenfold increase in current density. For other 
ratios, the current density for a cation-to-anion 
concentration ratio of 2 mM: 3 mM at 3 SILAR cycles 
yields a steady-state photocurrent of ~0.01 mA cm-2. 
Similarly, a concentration ratio of 10 mM: 30 mM at 1 
SILAR cycle. 
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