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 Melanin is a crucial amino acid in determining human skin and hair pigmentation. 
Excessive melanin production can lead to hyperpigmentation and darkening of 
the skin. This study aims to assess the capability of Adenostemma platyphyllum as 
a tyrosinase enzyme inhibitor. It predicts its anti-melanogenic activity through 
molecular docking with proteins involved in the melanogenesis process. The in-
vitro approach was conducted by determining the tyrosinase enzyme inhibition 
capacity, while the in-silico approach involved ligand binding to target proteins 
from melanogenesis pathways. The highest tyrosinase inhibition capacity was 
observed in the ethanol extract, with values of 9.74 Kojic Acid Equivalent (KAE)/g 
extract (L-tyrosine) and 17.91 (KAE)/g extract (L-DOPA). Molecular docking 
analysis showed that the binding of eriodictyol 7-O-sophoroside (ΔG = -9.7 
kcal/mol) has the best energy affinity for the PKC-β protein, genistein (ΔG = -7.5 
kcal/mol) for the tyrosinase-related protein-1 (TYRP1) protein, eriodictyol 7-O-
sophoroside (ΔG = -10.2 kcal/mol) for the cGMP protein, vincosamide (ΔG = -7.2 
kcal/mol) for the microphthalmia-associated transcription factor (MITF) 
protein, and dicaffeoylquinic acid (ΔG = -7.4 kcal/mol) for the β-catenin protein. 
Based on a comparison of in-vitro and in-silico studies, melanogenesis inhibition 
is more potent in the PKC-β and cGMP pathways than direct tyrosinase inhibition 
because they exhibit lower binding energy. 

 

1. Introduction 

Skin issues such as dark spots, excessive skin 
darkening, and hyperpigmentation commonly occur on 
the skin, specifically on the face. These problems include 
skin inflammation, excessive exposure to sunlight (UV), 
skin aging processes, use of certain medications, 
hemochromatosis, and overproduction of melanin. 
Melanin, a complex polymer produced from the amino 
acid tyrosine, plays a crucial role in determining the color 
of human skin and hair through a process known as 
melanogenesis. Skin-whitening agents with anti-
melanogenic properties or the ability to inhibit 
melanogenesis are products used to reduce melanin 
production in the skin, addressing hyperpigmentation 
issues and brightening skin tone. Commercially, 
commonly used compounds as skin-whitening agents 
include hydroquinone, kojic acid, arbutin, and ascorbic 

acid. Most of these compounds are synthetic, and 
prolonged excessive use can lead to side effects such as 
skin irritation, redness, burning sensation, and even skin 
cancer [1]. Therefore, there is a need for alternative 
compounds derived from plants to minimize these side 
effects. 

Plants of the Asteraceae family, genus Adenostemma, 
are known to contain various secondary metabolites such 
as flavonoids, alkaloids, and terpenoids. One species, 
Adenostemma lavenia, has been reported to exhibit potent 
antioxidant and antiglycation activities and anti-
melanogenic and anti-inflammatory activities [2, 3]. The 
leaf extract of A. lavenia contains kaurenoic acid (11αOH-
KA), responsible for 50% of its anti-melanogenic activity 
[4]. Another species within the same genus, Adenostemma 
platyphyllum, has been reported for its antitussive or 
cough medicine, analgesic, and traditional medicinal uses 
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such as acne treatment, snakebite, and scorpion sting 
remedy [5]. 

Additionally, Nurlela et al. [6] summarized the 
potential activities of A. platyphyllum from various 
sources, including antibacterial, anti-inflammatory, and 
antioxidant activities. This potential activity is attributed 
to the plant’s total phenolic compounds (TPC) and total 
flavonoid compounds (TFC) measured at 5.01 mg GAE/g 
DW and 3.48 QE/g DW. Phenolic compounds such as 
eriodictyol [7] and caffeoylquinic acid [8] and diterpene 
compounds such as hydroxykaurenoic acid [4] are known 
to possess antimelanogenic activity against B16F10 cells. 
These compounds are present in A. platyphyllum [9]. This 
presence indicates the potential of A. platyphyllum for 
antimelanogenic activity. 

This study aims to investigate the inhibition of the 
tyrosinase enzyme through in-vitro testing using two 
substrates, L-DOPA and L-Tyrosine. In-silico studies are 
conducted to complement in-vitro investigations as a 
comparative analysis of melanogenesis pathway 
inhibition. Three main pathways produce and regulate 
the melanin production process or melanogenesis: the 
cAMP pathway, PKC-β pathway, and NO pathway 
(Figure 1). Each path involves specific proteins, namely 
microphthalmia-associated transcription factor (MITF) 
and tyrosinase-related protein 1 in the cAMP pathway, 
protein kinase C-β in the PKC-β pathway, and cyclic GMP 
in the NO pathway. 

Additionally, there is another alternative pathway 
through the wingless-related integration site (WNT) 
signaling with the β-catenin protein. The melanogenesis 
pathway will be inhibited through molecular docking with 
MITF protein (PDB ID 7EOD), tyrosinase-related protein 
1 (PDB ID 5M8R), protein kinase C β (PDB ID 2I0E), cyclic 
GMP (PDB ID 6LRC), and β-catenin (PDB ID 7UWI). 
According to existing literature, there is no reported 
evidence of the potential of A. platyphyllum as an anti-
melanogenic agent through in-vitro and in-silico 
methods. Therefore, the objective of this article is to 
assess the capability of A. platyphyllum as a tyrosinase 
enzyme inhibitor and predict its anti-melanogenic 
activity through molecular docking with proteins 
involved in the melanogenesis process. 

2. Experimental 

2.1. Plant Materials and Extraction Methods 

A. platyphyllum leaves were collected from the 
Biopharmaca Conservation and Cultivation Station, 
Tropical Biopharmaca Research Center, IPB University, 
located at 6°32’25.47” N and 106°42’53.22” E, at 142.60 
m altitude. The sample was dried and sifted to leaf 
powder. About 600 g of leaf powder was extracted by 
increasing the polarity of solvents (600 mL). First, 
n- hexane was used as a solvent. Extraction was 
continued to the residue using ethyl acetate and ethanol. 
With different A. platyphyllum leaf, powder was extracted 
in hot water (55°C). The yield of all extracts was 
determined after the extract was dried. 

2.2. Phytochemicals Test 

2.2.1. Alkaloid 

Referring to Pant et al. [10], the diluted extract was 
placed in a suitable solvent and added to a reaction tube. 
The reaction tube, filled with the filtrate, was mixed with 
1 mL of 2 M H2SO4 until two separate layers formed. The 
two layers were then separated. Meyer, Wagner, and 
Dragendorff reagents were added drop by drop to the 
acidic layer. 

2.2.2. Triterpenoid and Steroid 

A 0.05 g of the extract was diluted with 5 mL of hot 
ethanol and filtered into a reaction tube. The filtrate was 
evaporated to dryness, and 1 mL of diethyl ether was 
added before transferring it to an evaporation dish. 
Concentrated H2SO4 and one drop of anhydrous CH3COOH 
were added to the solution. 

2.2.3. Flavonoid 

A 0.05 g of the extract was diluted with 5 mL of 
distilled water and boiled for 5 minutes before filtering. 
The resulting filtrate was added to magnesium powder, 
1 mL of HCl, 1 mL of ethanol, and 1 mL of amyl alcohol. The 
mixture was then vigorously shaken for several minutes. 

2.2.4. Saponin 

A 0.05 g of the extract was diluted with 5 mL of 
distilled water and boiled for 5 minutes before filtering. 
The resulting filtrate was vigorously shaken until foam 
formed. 

2.2.5. Tannin 

A 0.05 g of the extract was diluted with 5 mL of 
distilled water and boiled for 5 minutes before filtering. 
Several drops of 10% FeCl3 were added to the filtrate. In 
phytochemical tests, a positive control was used as a 
reference to compare the intensity of the tested extract 
with the control. The plant used as the control had been 
reported to contain the tested compounds positively. 

2.3. Tyrosinase Inhibition Assay 

Tyrosinase inhibition assay followed the methods of 
Batubara et al. [11] and Budiarti et al. [12]. An initial 
solution was prepared at a concentration of 10,000 
mg mL-1, and subsequent dilutions were made with 
50 mM phosphate buffer (pH 6.5). A 70 μL of the extract 
was added to each well in a microplate, followed by the 
addition of 30 μL of tyrosinase enzyme (Carbosynth, 
333 Units mL-1 in phosphate buffer). The microplate was 
then incubated at 37°C for 5 minutes. Subsequently, the 
substrate (2 μM L-tyrosine or 2 μM L-DOPA) was added 
to each well, and the plate was further incubated for 
30 minutes. Absorbance values were determined using a 
multi-well reader at a wavelength of 492 nm. Kojic acid 
was used as a standard with concentrations of 1–62.5 
μg.mL-1 for L-DOPA substrate and 1–31.25 μg.mL-1 for 
L- tyrosine substrate. The tyrosinase enzyme inhibition 
capacity was reported in kojic acid equivalents (KAE)/g of 
extract. 
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Figure 1. Melanogenesis pathways 

2.4. Molecular Docking 

Protein structures were sourced from the RCSB 
Protein Data Bank (https://www.rcsb.org/). The chosen 
protein structures included MITF (PDB ID 7EOD), TYRP1 
(PDB ID 5M8R), PKCβ (PDB ID 2I0E), cyclic GAMP (PDB ID 
6LRC), and β-catenin (PDB ID 7UWI) represent each 
melanogenesis pathway (as depicted in Figure 1). The 
proteins were selected based on specific criteria: 
resolution 1.8–2.6 Å, origin from Homo sapiens 
organisms, and acquisition through X-ray diffraction 
data. Undesirable components such as protein chains, 
water molecules, metal atoms, and co-crystallized 
ligands were removed using PyMOL [13]. PyMOL, 
Available at: http://www.pymol.org/pymol). Missing 
residues were fixed using the SWISS-MODEL site 
(https://swissmodel.expasy.org) [14]. Polar hydrogen 
atoms were added, and a grid box was established with 
AutoDockTools [15] to position the ligand-binding site 
based on the lowest energy found during scanning. 

The resulting configurations were saved in PDBQT 
format. The 3D structures of ligands from 25 compounds 
of A. platyphyllum [9] were retrieved from PubChem 
(https://pubchem.ncbi.nlm.nih.gov/) [16]. Ligand 
structures were converted to PDB format using 
OpenBabel [17], optimized with AutoDockTools, and 
saved in PDBQT format. AutoDock Vina [18, 19] was used 
for molecular docking. It was validated by redocking co-
crystallized ligands removed from their respective 

proteins and blind docking with control ligand 
coordinates. Docked molecules binding energy values 
(ΔG, kcal/mol) constituted the data and LigPlot+ [20] 
analyzed ligand-protein binding features for ligands with 
the lowest energy in each protein. 

2.5. Pharmacokinetics, Toxicity, and Bioactivity 

The structure of the selected test ligands was 
converted to *.SMILES format using the OpenBabel 
program. This conversion was carried out because the 
pharmacokinetic analysis prediction page only accepts 
line notation for encoding a molecular structure. After 
conversion, the test ligand was critically evaluated for its 
adherence to Lipinski’s rules, a crucial step in drug 
development. It was then predicted based on absorption, 
distribution, metabolism, excretion, and toxicity 
(ADMET) parameters (on the page 
https://biosig.lab.uq.edu.au/pkcsm/prediction) as well as 
PASS prediction or bioactivity ligands on the page 
https://www.way2drug.com/passonline/. 

 

Figure 2. Yield of A. platyphyllum extract in various 
solvents. Different letters indicate significantly different 

values at the 95% confidence interval 

Table 1. Phytochemicals of A. platyphyllum extract in various solvents 

Solvent n-hexane Ethyl acetate Ethanol Hot water Positive control Reference of 
positive control 

Alkaloid - - - - ++++ 
(Madagascar periwinkle flower) [21] 

Flavonoid ++ ++ + - ++++ 
(Piper ornatum leaf) [22] 

Saponin - - - +++ ++++ 
(Sapindus rarak fruit) [23] 

Tanin - - - + ++++ 
(Camellia sinensis powder) [24] 

Steroid + +++ +++ - ++++ 
(Ocimum leaf ethanol extract) [25] 

Triterpenoid - - - - ++++ 
(Ocimum leaf) [26] 

Note: The positive parameters relative to the positive control. (++++) highly positive, (+++) positive, (++) moderately positive, (+) 
mildly positive, (-) none 

  

https://www.rcsb.org/
http://www.pymol.org/pymol
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Table 2. Tyrosinase inhibition capacity 

Extract 
Capacity (mg KAE/g extract) 

L-tyrosine L-DOPA 

n-hexane - 8.50±0.58d 

Ethyl acetate - 13.62±0.67b 

Ethanol 9.74±0.04c 17.91±0.08a 

Hot water 4.28±0.03e 17.83±0.29a 

Note: Different letters indicate significantly different values at the 95% confidence interval; (-): not detected 

 

Figure 3. Docking results of one of the (A) protein 
structures (2I0E) and (B) comparison of cocrystal 

ligands before and after redocking 

3. Results and Discussion 

3.1. Yield and Moisture Content of Adenostemma 
platyphyllum 

The extraction of A. platyphyllum yielded results, as 
shown in Figure 2. In the A. platyphyllum plant, the highest 
to lowest yields were obtained in the following order: hot 
water extract, ethanol, ethyl acetate, and n-hexane 
(17.12±0.26%, 8.16±0.13%, 4.19±0.08%, and 3.21±0.04%). 
It can be speculated that polar and semi-polar 
compounds are more abundant in A. platyphyllum than 
nonpolar compounds. This is supported by the studies of 
Fauzan et al. [27] and Nurlela et al. [9], which reported 
that the main compounds in A. platyphyllum extract are 
aromatic compounds (phenolics), with phenolic 
compounds predominantly being polar and semi-polar. 

The moisture content of A. platyphyllum was analyzed 
according to the standard method recommended by the 
Association of Official Analytical Chemists (AOAC) [28]. 
The moisture content of A. platyphyllum obtained was 
11.45%. This result is higher than the findings of previous 
studies, such as Ananda [29], which received a yield of 
8– 9%, and Fauzan et al. [27] with a yield of 7%. Several 
factors may contribute to this difference, including air 
humidity, mineral supply, biotic effects, and salinity [30]. 

3.2. Phytochemicals Screening of A. platyphyllum 

Qualitative phytochemical analysis is an initial 
screening tool to determine the presence of specific 
phytochemicals in plant samples. The results of the 
phytochemical screening of A. platyphyllum are presented 
in Table 1. The qualitative phytochemical screening of 
A. platyphyllum revealed that flavonoids, saponin, tannin, 
and steroids were present in the selected solvent; 
meanwhile, alkaloids and triterpenoids were not present 
in A. platyphyllum. Ethanol, n-hexane, and ethyl acetate 
exhibited flavonoids and steroids, while saponin and 
tannin only showed positive results in hot water extract. 

 

Figure 4. Interaction of tyrosinase 1 protein with 
(A) MMS and (B) genistein 

Regarding yield data, hot water extract has the 
highest yield, but only saponins and tannins were 
detected in phytochemical screening. Consequently, the 
undetected compound groups in the hot water extract 
may likely consist of sugars and peptides. Nurlela et al. [9] 
reported that methanol extract from A. platyphyllum has 
several classes of major compounds, such as phenolic 
(phenolic acids, flavonols, flavones, isoflavones), 
alkaloids, diterpenes, and fatty acids. Differences in the 
polarity of the solvent can cause the differences in these 
compounds. 

3.3. Tyrosinase Inhibition 

The tyrosinase inhibition capacities of the four 
extracts can be seen in Table 2. The determination of 
tyrosinase inhibition capacity was calculated using the 
standard curve of kojic acid, with the results expressed in 
mg of kojic acid equivalents per gram of extract. The 
ethanol extract exhibited the highest inhibition capacity 
on the L-tyrosine substrate compared to the other three 
extracts. The n-hexane and ethyl acetate extracts on the 
L-tyrosine substrate showed no inhibition. The ethanol 
extract also demonstrated a higher capacity on the 
L- DOPA substrate than the other three extracts. 

The tyrosinase inhibition capacity of the ethanol 
extract showed the highest results on both substrates, 
likely due to the presence of numerous semi-polar 
compounds in ethanol that actively act as tyrosinase 
inhibitors. Based on the review by Zolghadri et al. [31], 
active semi-polar compounds inhibiting tyrosinase 
include chalcones, flavonols, isoflavones, and carvacrol. 
Factors influencing this enzymatic reaction include 
substrate concentration, enzyme concentration, 
temperature, pH, the presence of cofactors/coenzymes, 
and inhibitors. These factors interact and can have 
complex effects on enzymatic reactions. Optimizing these 
factors is crucial to obtaining maximum results. 
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Table 3. Binding energy and RMSD values from redocking and blind docking of cocrystal and control ligands 

Complex protein-ligand Binding energy (kcal/mol) RMSD (Å) 

2I0E - PDS -12.4 0.418 

5M8R - MMS -5.8 0.705 

6LRC - KHM -9.7 0.307 

7EOD – CH5552074 -6.4 
N/A 

7UWI - Curcumin -7.4 

Note: N/A: (not available) 

Fundamentally, tyrosinase inhibition refers to the 
process of blocking or suppressing the activity of the 
enzyme tyrosinase. Tyrosinase is a key enzyme involved 
in the biosynthesis of melanin, catalyzing the ortho-
hydroxylation of tyrosine into 3,4-
dihydroxyphenylalanine or DOPA (monophenolase) and 
the oxidation of DOPA into dopaquinone (diphenolase) 
[2]. The reaction process that occurs with the tyrosinase 
enzyme using L-tyrosine and L-DOPA as substrates can 
be observed by a change in color to dark brown, indicating 
the formation of a dopachrome [32]. 

3.4. Validation Molecular Docking 

Molecular docking validation must be performed to 
compare and analyze differences in ligand locations 
before and after docking. The validation method is carried 
out in two ways: redocking (redocking of the cocrystal 
ligand) and blind docking (docking of the control ligand 
in the entire protein structure). The proteins validated by 
redocking were proteins 2I0E, 5M8R, and 6LRC, while 
proteins 7EOD and 7UWI were by blind docking. 

The ligand is placed back into the protein’s active site 
when redocking is performed. Ligand poses before and 
after docking are compared to understand the molecular 
interactions involved and evaluate the agreement 
between the two using RMSD values. The redocking 
method is valid if the RMSD value is ≤ 2.0 Å. Meanwhile, 
the blind docking method involves a control ligand 
looking for possible protein active sites, which are 
evaluated by the binding energy value of the control 
ligand. Three previously separated cocrystal ligands from 
the protein are tethered back to the original protein. 

Figure 3 shows the redocking results of the 2I0E 
protein structure (colored red) with its cocrystal ligand, 
PDS (colored blue). After the redocking process, the 
cocrystal ligand poses before (colored green) and after 
redocking (colored light blue) were compared, and the 
RMSD values were obtained. In addition, protein-ligand 
binding energy data in kcal/mol were also obtained, 
which is recorded in Table 3. Two control ligands have 
been shown to inhibit target proteins, namely CH5552074 
as an MITF inhibitor [33] and curcumin as a β-catenin 
inhibitor [34]. The ligand is tethered to the target protein, 
and the ligand with the highest binding energy is assumed 

to be the protein’s active site. Protein-ligand binding 
energy data in kcal/mol are recorded in Table 3. 

3.5. Molecular Docking Analysis 

The outcomes of molecular docking are presented as 
binding energies or docking scores (kcal/mol), where 
lower (more negative) values indicate a stronger binding 
affinity between the compound and the target protein. 
Table 4 lists the top three ligands with the highest binding 
affinities for each receptor protein. Subsequently, the 
ligands that exhibited the lowest energy for each protein 
were scrutinized for their protein-ligand interactions. 

Table 4 also shows the amino acid residue interacting 
with the protein. If the test ligand has amino acid 
similarities with the cocrystal or control ligand of up to 
50%, then the amino acids residue is amino acids, which 
plays a role in the protein’s active site. These five proteins 
and their test ligands have >50% amino acid residue 
similarity. One example of visualization of protein-ligand 
interactions is shown in Figure 4. Arwansyah et al. [35] 
said that the potential for a test compound to inhibit the 
activity of a disease-causing target protein could be 
inferred from the resemblance of its amino acid residues 
and binding characteristics. When the amino acid 
residues closely resemble those of native ligands, it 
suggests that the ligands could effectively inhibit the 
target protein’s activity. 

One example of ligand interaction visualization can 
be seen in Figure 4. The Protein Kinase C-β (PDB ID 2I0E), 
eriodictyol 7-O-sophoroside exhibits the highest binding 
energy among other ligands. This ligand also binds to the 
identical amino acid residues as the co-crystallized ligand 
(Bisindolylmaleimide/PDS). Additionally, Grodsky et al. 
[36] showed that Asp470, Glu421, and Val423 are the 
residues in the active site of PKC-β. In the case of the 
TYRP1 protein (PDB ID 5M8R), genistein shows more 
interaction similarity with its co-crystallized ligand 
(Mimosine/MMS) compared to 2 ligands with the same 
binding energy. Moreover, genistein also binds to the 
active site of TYRP1 where, according to Lai et al. [37] 
His377, His381, His192, and Thr391 are the residues in the 
active site of TYRP1. 
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Table 4. The binding energy and molecular interactions of the top three identified compounds with receptor proteins 

Receptor/Protein Ligand (PubChem ID) 
Binding 

free energy 
(kcal/mol) 

Interacting residue 

Hydrogen bond Hydrophobic interactions 

PKC-β (PDB ID 
2I0E) 

Eriodictyol 7-O-
sophoroside (11541786) -9.7 

Asp470, Asp484, 
Glu421, Thr404, 
Tyr422, Val423 

Ala369, Ala483, Leu348, Lys371, 
Met420, Met473, Phe353 

Cafestol (108052) -9.3 N/A 
Ala369, Ala483, Asp484, 
Leu348, Met420, Phe353, 

Val356 

N-methyldioncophylline A 
(14844756) -9.2 N/A 

Ala483, Leu348, Met420, 
Met473, Phe353, Thr404, 

Val356, Val423 

Vincosamide (10163855) -9.2 N/A 
Ala369, Ala483, Asp484, 
Glu421, Leu348, Met420, 

Met473,Phe353, Tyr422, Val423 

Hydroxykaurenoic acid -9.2 N/A 
Ala369, Ala483, Asp470, 

Asp484, Leu348, Met420, 
Phe353, Thr404, Val356 

 PDS(1) -9.2 Val423 

Ala369, Ala483, Asn471, 
Asp470, Asp484, Gly349, 
Leu348, Met420, Met473, 

Phe353, Tyr422, Val356 

TYRP1 (PDB ID 
5M8R) 

Genistein (5280961) -7.5 
His381, His404, His377, 

Ser394, His215 Gly389, Leu382, Asn378, Val391 

Hydroxy kaurenoic acid -7.5 Asn378 
Leu382, Gly389, His381, Val391, 

His215, His377 

Cafestol (108052) -7.5 Asn378 
Leu382, Gly389, His381, Val391, 

His377 

 MMS(1) -5.8 His381, His404, His377 
Leu382, Gln390, Ser394, 
Leu382, Val391, Gly389, 

Asn378, His215 

cGMP (PDB ID 
6LRC) 

Eriodictyol 7-O-
sophoroside (11541786) -10.2 His281, Leu334, Lys206 

Arg220, Asn326, Phe332, 
Tyr280 

Vincosamide (10163855) -9.7 N/A 
Arg220, Leu221, Leu334, 

Lys206, Ser222, Ser278, Tyr280 

Kaempferol-3-O-
galactoside (5282149) -9.6 N/A 

Arg220, Asn326, Ile329, Leu221, 
Lys206, Ser222, Ser278, Tyr280 

 KHM(1) -9.7 Arg220 
Ala91, Asn326, Leu221, Leu334, 

Lys206, Phe332, Ser278, Tyr280 

MITF (PDB ID 
7EOD) 

Vincosamide (10163855) -7.2 Gly228, Trp241 Asn235, Asp236, Ile231, Lys233, 
Pro232, Pro237, Ser234 

Dihydroxykaurenoic acid -7.0 N/A Gly228, Ile231, Lys233, Pro232, 
Ser234, Trp241 

Grandiflorenic acid 
(161387) -6.9 N/A 

Gly228, Ile231, Lys233, Pro232, 
Ser234, Trp241 

 CH5552074(2) -6.4 Ser234 
Asn235, Asp236, Gly228, Ile231, 

Lys233, Met239, Pro232, 
Pro237, Trp241 

β-katenin (PDB ID 
7UWI) 

Dicaffeoylquinic acid 
(13604687) -7.4 

Thr339, Asp299, 
Asn290, Asn261 Ile296, His223, His260 

Vincosamide (10163855) -7.1 Ala295, Thr399 
Ile296, His260, Trp338, 

Asp299, Lys335 

Eriodictyol 7-O-
sophoroside (11541786) -7.1 Asp299, His223, Asn261 Lys335, Ile296, Trp338 

Curcumin(2) -7.4 Thr339, Ala295, Asn261 
Asp299, Trp338, His223,Ile296, 

His260, Lys335 

Note: (1)co-crystallize ligand; (2)controlled ligand; (N/A): not available 
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Table 5. ADMET, Lipinski’s rule, and bioactivity of chosen ligand 

Parameter 

Ligand 

Dicaffeoylquinic acid 
Eriodictyol 7-O-

sophoroside Vincosamide Genistein 

ADMET 

Absorption     

Human intestinal 
absorption (%) 29.2 7.895 62.89 93.894 

Skin permeability 
(log Kp) -2.735 -2.735 -2.738 -2.735 

Distribution     

BBB Permeability 
(log BB) 

-2.001 -1.819 -1.267 -0.835 

Metabolism     

CYP2C9 inhibitor No No No Yes 

CYP2C19 inhibitor No No No Yes 

CYP2D6 inhibitor No No No No 

Excretion     

Total clearence -0.068 0.168 0.414 0.232 

Toxicity     

Acute Oral Toxicity III IV III II 

Skin Sensitisation No No No No 

Lipinski’s Rule 

LogP -0.35 -3.97 -0.43 2.58 

Molecular Weight 516.45 612.53 498.53 270.24 

Acceptor H 12 16 5 3 

Donor H 7 10 5 1 

Drug likeness No No Yes Yes 

Bioactivity (Melanin Inhibitor) 

Pa 0.427 0.731 
N/A 

0.421 

Pi 0.004 0.001 0.004 

Note: (N/A): not available 

The protein cyclic guanosine monophosphate 
(cGMP) (PDB ID: 6LRC) demonstrated a favorable binding 
affinity with eriodictyol 7-O-sophoroside (ΔG = -10.2 
kcal/mol), where this ligand exhibits a binding pattern 
similar to its co-crystallized ligand (PF-06928215/KHM) 
as well as Arg220, Phe332, Tyr280, and Lys206. The 
CH5552074 compound serves as a control ligand for the 
MITF protein (PDB ID 7EOD) due to its ability to decrease 
MITF production in melanoma cells [33]. The compound 
undergoes blind docking to generate coordinates with the 
lowest energy, which are then used as coordinates for the 
test ligand. MITF protein showed a favorable binding 
affinity with vincosamide with a binding score of 
- 7.2 kcal/mol. The residues in the binding site were in 
accordance with those of the controlled ligand 
(CH5552074) to 7EOD, including Ser234, Asn235, Asp236, 
Gly228, Ile231, Lys233, Pro232, Pro237, and Trp241. 

Employing the same method as for the MITF protein, 
the β-catenin protein (PDB ID 7UWI) utilizes the control 
ligand curcumin to determine docking coordinates. 
Curcumin is selected as the control ligand due to its ability 

to inhibit cancer cell growth [34]. The β-catenin protein 
displayed a favorable binding affinity with 
N- methyldioncophylline A (ΔG = -7.4 kcal/mol). This 
compound exhibited a strong binding affinity to 7UWI 
through hydrophobic interactions with Thr339, Asp299, 
Asn261, Ile296, His233, and His260. 

In addition to binding energy, molecular docking 
also provides information about the residue interactions 
that occur. Two residue interactions exist in the protein-
ligand complex, namely hydrogen bonds and 
hydrophobic interactions. Hydrogen bonds are crucial in 
determining the structure of proteins and how molecules 
interact at a molecular level. They provide stability to the 
protein’s shape, preserving its intended form, while also 
adding precision to its interactions with other molecules 
[38]. Hydrophobic interactions are well known to be 
important in providing thermodynamic stability in the 
folded and unfolded states. Hydrophobic interactions are 
essential because proteins can biologically shrink their 
surface area and reduce unwanted interactions with water 
[39]. 
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Figure 5. The potential anti-melanogenic mechanism for 
the active compound based on in-silico studies 

3.6. Analysis of Pharmacokinetics, Toxicity, and 
Bioactivity of Chosen Ligand 

Pharmacokinetics encompasses the investigation of 
the body’s interactions with administered substances 
over the entire exposure period. Typically, this discipline 
focuses on four key aspects: absorption, distribution, 
metabolism, and excretion (ADME) [40]. Selected ligands 
from the five proteins, namely dicaffeoylquinic acid, 
eriodictyol 7-O-sophoroside, vincosamide, and 
genistein, were each tested for their conformity with 
Lipinski’s rules and predicted ADMET and bioactivity as 
shown in Table 5. 

A ligand with less than 30% absorption in human 
intestinal absorption parameters indicates that the 
molecule is weakly absorbed [41]. Genistein has the 
highest percentage compared to the other third ligands; 
this can result in a lighter molecular weight than the other 
third ligands, so this ligand is absorbed more quickly into 
the body. Skin permeability, or drug delivery through the 
skin, can be said to have low permeability if it has a log Kp 
value > -2.5 [41]; the four ligands have values that are 
close to each other, which indicates that the four ligands 
are not suitable if the drug is applied intravenously 
topical. BBB (Blood-Brain Barrier) is a parameter of 
a drug’s ability to cross the brain. If the logBB value is 
> 0.3, it can be stated that the ligand quickly passes 
through the blood-brain barrier, but if it is < -1, then the 
ligand is not well distributed to the brain [41]. 

Among the four ligands, only genistein has a value 
exceeding -1, indicating its relatively good distribution in 
the brain. According to Dwininda et al. [42], three 
substrates—CYP2C29, CYP2C19, and CYP2D6—play 
crucial roles in drug metabolism within the body. Notably, 
only genistein is capable of inhibiting the CYP2C29 and 
CYP2C19 substrates. 

Total clearance refers to the amalgamation of hepatic 
clearance (metabolism in the liver and biliary clearance) 
and renal clearance (excretion via the kidneys), which is 
relevant to a drug’s bioavailability and aids in 
determining the dosage required to attain steady-state 
concentrations [41]. A higher total clearance indicates 
easier excretion of the compound. Only dicaffeoylquinic 
acid has a value of <0, while the other three ligands have 
a value of >0, and the vicosamide ligand is the ligand that 
has the highest excretion value. The LD50 toxicity 
parameter is classified according to the Globally 

Harmonized System (GHS) and is divided into toxicity 
classes I to VI, with lower classes indicating higher 
toxicity. Only eriodictyol 7-O-sophoroside falls into class 
IV, within which the ligand exhibits cytotoxic activity 
[43]. Regarding skin sensitization parameters, none of 
the four ligands show sensitivity to the skin, making 
topical application of the drug safe. 

Lipinski’s The Rule of Five aims to determine 
whether drug candidate compounds can penetrate 
biological membranes and have good permeability. 
Among the four ligands, only vincosamide and genistein 
comply with Lipinski’s Rule of Five. However, Lipinski’s 
rule is merely an initial screening tool designed to identify 
compounds with potential for good oral permeability and 
bioavailability. It is noteworthy that several compounds, 
including some antibiotics, antifungals, and vitamins, do 
not adhere to Lipinski’s rule [44]. 

PASS prediction, also known as Prediction of Activity 
Spectra for Substances, is used to identify novel targets or 
mechanisms for specific ligands, and vice versa, to 
uncover new ligands for specific biological targets [45]. 
A compound’s bioactivity is assessed by evaluating its 
probability of being active (Pa). This probability estimate 
indicates the likelihood that the compound belongs to a 
subgroup of active compounds based on molecular 
structural similarity, commonly found in the “active” 
subset within the PASS training dataset. The results of the 
bioactivity prediction show that the four compounds, 
except vincosamide, have bioactivity as melanin 
inhibitors with the highest value of 0.731 by eriodictyol 7-
O-sophoroside. 

Phenolics, alkaloids, and flavonoids—specifically 
dicaffeoylquinic acid, vincosamide, genistein, and 
eriodictyol 7-O-sophoroside—demonstrated a strong 
affinity for the receptor protein. This supports the 
historical use of compounds from these chemical classes 
as active ingredients in drugs and cosmetics for centuries, 
particularly as antimelanogenic agents like whitening 
agents. The results of in-silico studies suggest that the 
potential of A. platyphyllum as an antimelanogenic agent 
is not limited to direct tyrosinase inhibition. Instead, 
melanogenesis inhibition can occur through more potent 
pathways, such as the cGMP and PKC-β pathways, as 
evidenced by the lower binding energy on these proteins 
compared to tyrosinase. 

4. Conclusion 

Extracts of A. platyphyllum from various solvents 
have proven to have the potential as antimelanogenic 
agents through the inhibition of tyrosinase enzyme. 
Among the three extraction solvents, ethanol extract 
exhibited the highest tyrosinase inhibition capacity. 
These studies indicate that the potential of A. platyphyllum 
as an antimelanogenic is not limited to direct tyrosinase 
inhibition. Melanogenesis inhibition can occur through 
more potent pathways, such as the cGMP and PKC-β 
pathways, as evidenced by lower binding energy on these 
proteins than tyrosinase. 
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