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 This study aims to convert low-value plantation biomass waste into high-value 
materials. The process involves transforming coconut shell charcoal (CSC) into 
activated carbon and subsequently producing coconut shell graphitic-like 
activated carbon (CSGAC). Using a thermal graphitization method with a FeCl3 
catalyst at 900°C for 1 hour in a nitrogen atmosphere, graphite microstructures 
(CSGAC) were formed on the coconut shell activated carbon (CSAC) framework. 
XRD, FTIR, SEM, and BET analyses confirmed the successful formation of CSGAC. 
The electrical conductivity of CSGAC, measured at 148 µS, highlights its potential 
as a cost-effective, renewable, and environmentally friendly raw material for 
carbon-based electrodes. 

 

1. Introduction 

Biomass is a renewable resource widely regarded as a 
sustainable carbon precursor due to its abundance, low 
cost, and environmentally friendly nature. The diversity 
of biomass attracts considerable attention because it 
offers opportunities for utilization across various 
applications [1, 2]. Using renewable resources such as 
biomass is a promising solution, as it can replace carbon 
materials derived from fossil fuels, whose availability is 
limited, non-renewable, and unsustainable in the long 
term [3]. Biomass reduces dependence on fossil carbon 
sources and provides an effective solution for managing 
organic waste, such as agricultural or plantation by-
products. Organic waste sources include rice husks, coffee 
grounds [4], coconut shells [5, 6], sugarcane pulp, 
coconut leaves, and pine bark [7]. Studies have shown that 
activated carbon derived from coconut shell biomass 
outperforms other biomass types due to its macroporous 
structure, which enhances its effectiveness in carbon 
purification. Consequently, this study selected coconut 
shells as the carbon source [8]. 

Activated carbon is recognized as a porous material 
with a sufficiently large surface area, providing efficient 
adsorption capabilities and dispersive interactions [6, 9, 

10]. It has become a critical component in various 
applications, including wastewater treatment [9], 
adsorption of slaughterhouse wastewater [10], methylene 
blue dye adsorption [11], sensors [12], removal of organic 
dye pollutants [13], CO2 capture [14], lithium battery 
anodes [6], capacitive deionization electrodes [5], 
cathodes in bioelectrosynthesis cells [15], 
supercapacitors [8, 16], and gas storage [17]. 

The versatility of carbon, with its diverse geometric 
structures, unique properties, electroactivity, stability, 
excellent electrical conductivity, and high mass density, 
makes it an ideal candidate for efficient and sustainable 
electrode materials [3]. In recent decades, significant 
efforts have been directed toward developing biomass-
derived carbon, which offers highly efficient applications 
in electrochemical storage. Its excellent porosity and 
surface area enable it to store more electrostatic 
counterions, thereby enhancing the capacitance (electric 
double layer) of carbon electrodes [18]. 

Fossil-based raw materials and metal-containing 
electrodes face significant limitations, including complex 
processing and high costs. Additionally, metal-based 
electrodes are prone to issues such as corrosion and metal 
ion contamination, further increasing long-term 
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operational costs and challenges. In contrast, carbon-
based electrodes derived from renewable biomass offer 
more affordable processing and operational benefits [19]. 
Utilizing carbon from biomass, such as coconut shells, 
reduces dependence on inorganic electrode materials that 
contain rare, non-renewable metals. This approach also 
supports the recycling of biomass waste into high-value 
products, making it a more cost-effective and 
environmentally friendly solution [20]. 

There are significant challenges in using biomass-
derived carbon, particularly in controlling the pore 
structure and optimizing the graphite content—both of 
which are crucial for enhancing material performance, 
especially in electrochemical applications [2]. Previous 
studies have shown that the amorphous structure of 
activated carbon limits its applications by restricting 
molecular diffusion, resulting in poor electrochemical 
properties, such as low conductivity, stability, and 
irregular pore structures [16, 21]. 

Therefore, one of the main approaches in this 
research is to prepare functional electrodes from coconut 
shell biomass by converting and exploring the structure 
of coconut shell-activated carbon through 
graphitization, a method that has not been extensively 
investigated. The graphitization process aims to produce 
carbon materials with a high degree of graphitization, 
crystallinity, and fast diffusion kinetics, ultimately 
enhancing the performance of the raw electrode 
materials [18, 22]. 

This work reports the fabrication of graphite-like 
microstructures from the activated carbon framework of 
coconut shells for use as carbon electrode materials. The 
fabricated materials were characterized and analyzed 
using several techniques: X-ray diffraction (XRD) to 
assess the material’s crystallinity, Fourier-transform 
infrared spectroscopy (FTIR) to identify functional 
groups formed during fabrication, scanning electron 
microscopy (SEM) to examine surface morphology, 
Brunauer-Emmett-Teller (BET) nitrogen adsorption to 
evaluate surface area and pore volume, and conductivity 
testing to determine the material’s potential for electrical 
conductivity as an electrode. 

2. Experimental 

2.1. Materials 

Coconut shell charcoal (local commercial, 
Indonesia), sodium hydroxide (NaOH) (Merck, 
Germany), hydrochloric acid (HCl) (Merck, Germany), 
distilled water, nitrogen gas (N2) (99.98%, Samator, 
Indonesia), iron (III) chloride hexahydrate (FeCl3.6H2O) 
(Merck, Germany), and hydrochloric acid (HCl) (Merck, 
Germany). 

2.2. Tools 

Commonly available laboratory glassware, such as 
beakers and volumetric flasks (Pyrex), hot plate stirrer 
(IKA, Malaysia), electric oven (Memmert, Germany), ball 
milling machine (Recht PM 200, China), tubular furnace 
(Carbolite Gero, Germany), X-ray diffraction (XRD) 
(SHIMADZU XRD-7000 with Cu Kα radiation, λ = 1.54178 

Å, Japan), Fourier-transform infrared spectroscopy 
(FTIR) (Perkin-Elmer, USA), ultraviolet-visible 
spectrophotometer (UV-Vis) (GENESYS 10S, Japan), 
scanning electron microscope (SEM) (JEOL JSM-6510LA, 
Japan), Brunauer-Emmett-Teller (BET) nitrogen gas 
analyzer (Quantachrome NOVA Win, Japan), and digital 
electrical conductivity meter (senZ trans, 0-1,999 µS, 
Singapore). 

2.3. Coconut Shell Activated Carbon (CSAC) Fabrication 

The fabrication of coconut shell activated carbon 
(CSAC) was based on previous research, with 
modifications made as necessary [23, 24]. First, 100 
grams of coconut shell charcoal (CSC) were crushed using 
a blender, followed by ball milling, and then sieved 
through a 100-mesh sieve to obtain fine coconut shell 
powder. Next, 50 grams of this fine powder were added to 
250 mL of 0.5 M NaOH solution, stirred with a magnetic 
stirrer on a hotplate at 80°C for 2 hours, and left at room 
temperature for 24 hours. The mixture was then dried in 
an oven at 110°C for 12 hours. The following day, the 
carbon was thermally activated in a tubular furnace at 
900°C under a nitrogen atmosphere for 1 hour. After the 
activation process, the carbon was left to cool overnight 
in the furnace under a continuous nitrogen gas flow. The 
following day, the carbon was washed with distilled water 
until it reached a neutral pH and dried again in the electric 
oven at 110°C for 12 hours, yielding CSAC as the final 
product. 

2.4. Coconut Shell Graphitic-Like Activated Carbon 
(CSGAC) Fabrication 

The fabrication of coconut shell graphite-like 
activated carbon (CSGAC) involved several steps, as 
outlined in references [13, 14, 25]. First, 8 grams of fine 
CSAC powder were added to 50 mL of 3 M FeCl3 solution 
and stirred slowly using a magnetic stirrer on a hotplate 
at 80°C for 2 hours. The carbon and FeCl3 mixture were 
then dried in an oven at 110°C for 24 hours. The following 
day, the graphitization process was performed by placing 
the carbon mixture in a tubular furnace at 900°C under a 
nitrogen atmosphere with a pressure of 45 kgf/cm2, 
maintained for 1 hour. 

After the graphitization, the carbon was left to cool 
overnight in the furnace while nitrogen gas continued to 
flow. The next day, the graphitized carbon was rinsed 
with 2 M HCl solution, followed by distilled water until the 
pH reached 7. The final product was dried in an electric 
oven at 80°C for 12 hours, resulting in CSGAC. The overall 
process for fabricating carbon electrode materials from 
coconut shells is summarized in Figure 1. 

 

Figure 1. (a) Coconut shell, (b) Coconut shell 
charcoal/CSC, and (c) CSC, CSAC, CSGAC powder 
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Figure 2. XRD diffractogram of (a)(i) CSC, (ii) CSAC, (iii) CSGAC), (b) CGSAC spectra analyzed by Match software, (c) (ii) 
XRD diffractogram of CSGAC paired with (i) commercial graphite, and (d) schematic illustration of the carbon 

framework structure of graphite according to its XRD and FTIR spectra 

2.5. Analysis and Characterization 

The CSAC and CSC samples were characterized using 
various analytical techniques to assess crystallinity, 
functional groups, surface morphology, and porosity. 
XRD analysis was conducted within the range of 5° ≤ 2θ ≤ 
90°, using Cu Kα radiation (λ = 1.5418 Å). This technique 
provided insights into the crystal phase, crystal structure, 
lattice parameters, and crystallite size. Diffractogram 
patterns were analyzed using Match software version 4.0. 
FTIR analysis was employed to identify functional groups 
present in the samples, with spectra collected in 
transmission mode over the range of 400 to 4000 cm-1 
from KBr pressed pellets. SEM analysis was used to 
observe the surface morphology of the samples, and 
particle size distribution was analyzed using ImageJ 
software. Specific surface area, pore volume, and pore 
size of the carbon samples were determined through BET 
analysis, which involved nitrogen adsorption at 77 K 
under a gas pressure of 757.906 mmHg. 

3. Results and Discussion 

3.1. X-ray Diffraction (XRD) Analysis 

The first characterization performed was 
determining the crystal structure of the fabricated CSC, 
CSAC, and CSGAC. XRD testing was conducted, and the 
results are presented in Figure 2. Figure 2(a) presents the 
diffractogram patterns of CSC (i) and CSAC (ii), which are 
very similar, displaying scattering angles (2θ) of 
approximately 22-24° and 42-45°. These peaks indicate 
the characteristic amorphous carbon structure [26]. In 
contrast, the CSGAC diffractogram (iii) exhibits a 
distinctly different pattern from that of CSC and CSAC. As 
shown in Figure 2(a)(iii), the CSAC material features 
sharp peaks of low intensity, with the most notable peaks 
occurring in the range of 2θ = 22–28°. 

An in-depth analysis of the diffractogram was 
conducted using Match 4.0 software, as illustrated in 
Figure 2(b). In addition to the peaks corresponding to 
graphite domains, diffraction peaks indicative of 
hematite compounds (Fe2O3) were also detected. The 
formation of hematite likely occurs during the catalytic 
graphitization process involving the FeCl3 precursor, 
which reacts with hydrated H2O during heating. Fe2O3 acts 
as a catalyst for carbon formation, allowing the carbon 
precursor to diffuse to the catalyst surface. High 
temperatures cause the carbon adsorbed on Fe2O3 to 
transform into more organized carbon structures 
through the formation of Fe3C carbide. 

The Fe3C compound is metastable and tends to 
decompose at elevated temperatures (>600°C), becoming 
unstable and decomposing into iron (Fe) and carbon (C), 
which leads to the formation of graphite layers. In many 
cases, metal catalysts or metal oxide residues remain 
trapped between the graphite layers [17, 27]. This is 
consistent with the XRD analysis, which shows that the 
formed CSGAC produces Fe2O3 in situ, observable at peaks 
of 2θ = 24.12°, 33.15°, 35.64°, 40.89°, 49.43°, 54.06°, 
57.59°, and 62.49°. The formation of carbon, indicated by 
two sharp peaks of low intensity in Figure 2(a)(iii), was 
further analyzed by comparing it with a commercial 
graphite diffractogram, as shown in Figure 2(c)(i). The 
results revealed peaks corresponding to CSGAC (Figure 
2(c)(ii)) precisely at 2θ = 26.54° and 54.48°, confirming 
the presence of a graphite microstructure in the CSGAC 
material. 

Quantitative confirmation of the carbon plane 
analysis was conducted using Bragg’s Law, expressed as 
nλ = 2dhkl sin θ, where n is the diffraction order, λ is the 
wavelength of the X-rays, dhkl is the distance between the 
planes, and θ is the angle between the incoming X-rays 
and their reflections, as detailed in Table 1. 
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Figure 3. Surface morphologies of (a) CSC, (b) CSAC, and (c) CSGAC 

Table 1. Representative distances between planes (dhkl) 
for each 2θ value of CSC, CSAC, and CSGAC 

Sample hkl 
2θ 
(°) 

Distance between planes 
(Å) 

CSC 
(002) 23.29 3.81 

(100) 43.4 2.09 

CSAC 
(002) 24.2 3.67 

(100) 43.4 2.08 

CSGAC 
(002) 26.54 3.35 

(100) 54.06 1.69 

The decrease in the interplane distance (dhkl) of 
carbon (002) from 3.81 Å in CSC to 3.35 Å in CSGAC 
indicates an enhancement in structural order, resulting in 
a denser atomic arrangement. This reduction in 
interplane distance can be attributed to the intercalation 
process, which modifies the carbon framework and leads 
to new properties, such as an increased surface area 
compared to CSC and CSAC [28]. The measured distance 
of 3.35 Å in CSGAC confirms the presence of a graphite 
microstructure, aligning with the dhkl values typically 
found in commercial graphite, as noted by Vlahov [29]. 

Furthermore, the presence of Fe2O3 molecules within 
the CSGAC carbon framework enhances material 
properties and electrical conductivity. This process 
facilitates a more orderly arrangement of the carbon 
surface, thereby increasing the volume fraction of 
crystals within the carbon framework, which 
significantly enhances conductivity [30]. Consequently, 
the CSGAC material demonstrates strong potential for 
good conductivity and can be utilized as a raw material for 
electrodes. 

3.2. Morphological Analysis 

The surface morphology of CSC, CSAC, and CSGAC 
was characterized using an SEM at a magnification of 
1000×. The SEM images in Figure 3 illustrate the detailed 
morphology of each sample. The morphologies of CSC, 
CSAC, and CSGAC exhibit consistent irregular shapes 
characteristic of amorphous carbon surfaces. Image J 
software was utilized to analyze particle size, focusing on 
one particle from each sample with identical dimensions, 
resulting in a particle size range of approximately 50 ± 6 
µm. The CSC material shown in Figure 3(a) displays a 
significantly heterogeneous surface morphology, with its 
irregular features indicating the retention of many 
natural characteristics of coconut shells. 

Table 2. BET analysis results for CSC, CSAC, and CSGAC 

Sample 
Surface area 

(m2/g) 

Total pore 
volume 
(cm3/g) 

Pore size 
(nm) 

CSC 20.628 0.034 3.342 

CSAC 57.924 0.070 2.429 

CSGAC 329.603 0.275 3.334 

In contrast, the morphology of the CSAC material 
(Figure 3(b)), which has undergone chemical and physical 
activation processes, presents a smoother surface. This 
change may be attributed to the decomposition of volatile 
organic compounds during carbon purification, resulting 
in a reduction in small particle sizes and a more uniform 
distribution of medium to large particles. The next-
generation fabrication, CSGAC, shown in Figure 3(c), also 
exhibits a consistent irregular shape; however, its surface 
appears smoother than that of CSC and CSAC. This smooth 
yet dense surface suggests a transition toward a graphitic 
structure [31]. The differences in structural morphology 
among CSC, CSAC, and CSGAC are further highlighted by 
measuring the specific surface area using BET analysis, as 
presented in Table 2. 

The BET analysis of CSC, CSAC, and CSGAC provides 
quantitative data on the surface characteristics of the 
materials, complementing the observations from the 
SEM morphology. As shown in Table 2, the 
transformation of CSAC) into CSGAC resulted in a 
significant increase in surface area and pore volume while 
the pore size decreased. According to Gai et al. [2], the 
specific surface area directly influences particle size; 
however, particle size does not solely represent surface 
properties. This phenomenon can be attributed to the 
destruction of biomass by the iron catalyst, which 
generates defects in the carbon surface pores. 

Research by Dubey et al. [3] showed that increased 
surface area and pore volume in carbon-based materials 
enhance their potential for energy storage, such as 
electrodes. CSGAC, as shown in Table 2, has a pore volume 
of 0.275 cm3/g and a pore size of 3.334 nm, indicating 
mesoporous material formation. Similarly, Szczęśniak et 
al. [32] reported analogous results, where the successful 
formation of mesoporous carbon was linked to an 
increase in mesopore volume (with pore sizes ranging 
from 2 to 50 nm) during catalytic graphitization using 
FeCl3 at 900°C, resulting in a surface area of 347 m2/g and 
a pore volume of 0.29 cm3/g. 
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Figure 4. FTIR spectra of (a) CSC, (b) CSAC, and (c) 
CSGAC 

Additionally, Ntakirutimana et al. [33] highlighted 
that activated carbon-based materials with mesoporous 
surfaces promote enhanced interconnection structures 
within the electrode matrix. This configuration 
contributes to increased ionic conductivity by providing 
efficient pathways for rapid ion transport within the 
matrix. Therefore, developing carbon-based electrodes 
with precisely controlled amounts of mesopores and 
micropores represents a vital strategy for optimizing 
electrode materials [33]. Given this context, the CSGAC 
material, with its graphite microstructure framework 
similar to activated carbon, demonstrates promising 
conductivity values, positioning it as a suitable candidate 
for electrode raw materials. 

3.3. Fourier Transform Infrared Analysis (FTIR) 

The FTIR spectra of CSC, CSAC, and CSGAC provide 
important information regarding the functional groups 
present on the carbon surface, as illustrated in Figure 4. 
Based on the FTIR spectra presented in Figure 4, several 
peaks are observed at specific wave numbers: 3300 cm-1, 
2662 cm-1, 2324-2100 cm-1, 1500 cm-1, 1100 cm-1, 872-
690 cm-1, 628 cm-1, and 512 cm-1. This spectrum indicates 
that the microstructure of coconut shell-activated 
carbon, which resembles graphite, contains various 
functional groups. Notably, a narrow peak around 3318 
cm-1 shows the stretching vibration of unbound OH [34]. 
Other groups include aliphatic chains (CH), alkenyl C≡C, 
C=C, CO, CH out of the plane, and stretching vibrations of 
FeO. A complete summary of the FTIR spectrum peaks is 
shown in Figure 4, summarized in Table 3. 

Based on the identified functional groups on the 
surface of the synthesized carbon, the CSGAC, which 
serves as the target material, exhibits a carbon framework 
comprising sp3 (saturated carbon atoms), sp2 (non-
aromatic unsaturated carbon atoms), and sp (unsaturated 
carbon atoms) hybridization of the carbon atom orbitals. 
This information is crucial for evaluating the 
electrochemical properties of the material, particularly in 
terms of its conductivity as a potential electrode 
preparation material. 

Table 3. Summarized functional group representation of 
CSC, CSAC, and CSGAC 

No. 
Wavenumber 

(cm-1) 
Functional group 

analysis References 

1 3318 v(OH) bond [34] 

2 2662 Saturated, v(CH) [35] 

3 2326-2102 
Unsaturated, 

v(C≡C) [36, 37] 

4 1569-1552 
Unsaturated 

hexagonal ring, 
v(C=C) 

[38] 

5 1154-1075 Alcohol v(C–O) [23, 24] 

6 827-748 
Out of plane, 

v(CH) [39] 

7 625 Saturated, v(CC) [40] 

8 512 α-Fe2O3, v(Fe-O) [41] 

3.4. Conductivity Analysis 

Conductivity testing was conducted on CSC, CSAC, 
and CSGAC samples to assess their electrical conductivity, 
which is a critical property for their application as 
electrode materials. The conductivity of the carbon 
material electrodes, as shown in Table 4, indicates a 
progression from CSC to a graphite microstructure 
(CSGAC) in the order of CSC < CSAC < CSGAC. This trend 
highlights the transformation of the amorphous 
structure of coconut shell charcoal into a more organized 
graphite microstructure, which significantly enhances 
conductivity. The improvement in conductivity can be 
attributed to the more regular carbon framework 
structure of CSGAC, resulting in a 97.33% increase in 
conductivity compared to CSC. 

The conductivity analysis of the CSGAC material, 
alongside XRD, SEM, BET, and FTIR characterizations, 
reveals a stronger correlation with the enhanced 
conductivity when compared to CSC and CSAC. The carbon 
structure of CSGAC consists of a mixture of sp3 and sp2 
hybridization bonds, which is crucial for its conductivity 
properties. In the graphite structure, each carbon atom 
possesses four valence electrons: three participate in 
forming sp2 hybridization with sigma (σ) covalent bonds, 
while the fourth engages in pi (π) covalent bonding. 
These π electrons create a conjugated system that can 
move freely across the graphite-like microstructure, 
enabling CSGAC to generate an electric current when 
exposed to electrical energy [8, 42]. 

Furthermore, the analysis of carbon surface 
morphology (Section 3.2) indicates that the mesoporous 
nature of CSGAC facilitates the transport of molecules and 
ions, thereby enhancing conductivity. The mobility of π 
electrons allows for free movement throughout the 
CSGAC surface, including through the Fe2O3 trapped 
within it. Although Fe2O3 has low conductivity (10-10 S/cm) 
[30], its presence in Fe2O3/carbon composites has been 
shown to enhance electrochemical properties and 
improve conductivity compared to the individual 
materials [43]. 
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Table 4. Conductivity of CSC and CSAC materials 

Sample 
Conductivity 

(µS) 

CSC 75 

CSAC 95 

CSGAC 148 

For instance, Irdhawati et al. [44] reported the use of 
Fe2O3 as an alloy material in carbon paste electrodes for 
dopamine measurement. The inclusion of Fe2O3 
accelerates electron transfer rates and creates gaps 
between graphite layers on the electrode surface, 
positively impacting the electrocatalytic efficiency of the 
electrode. Thus, CSGAC material, with its combination of 
graphite and Fe2O3 microstructures, emerges as a 
promising candidate for better electrode material 
preparation compared to CSC and CSAC. 

According to Zhang et al. [45], the conductivity of 
natural graphite varies with impurity levels and exhibits 
anisotropic properties. For pure graphite sheets, the 
through-plane conductivity ranges from 3 S/cm to 25 
S/cm, while the in-plane conductivity varies 
significantly, ranging from 500 S/cm to 1700 S/cm. 
Frattini et al. [46] reported the use of 4.5 µm graphite to 
prepare a conductive material with a conductivity of 2 
S/m. By varying the mass fraction of graphite, the 
conductivity of the mixture increased from 10-5 S/m to 1 
S/m. In contrast, commercial graphitic carbon reported 
by Vilar et al. [47] has a conductivity value of 110 µS. 

In this study, the synthesized graphite material 
(CSGAC) obtained from biomass carbon demonstrated a 
conductivity of 148 µS, highlighting its advantages over 
existing materials. Based on the findings from several 
studies, the CSGAC material shows potential as an 
alternative electrode material that is cost-effective, 
easily accessible, renewable, and environmentally 
friendly. 

4. Conclusion 

The production of coconut shell-activated carbon 
graphite was successfully achieved using the thermal 
graphitization catalyst method. This process utilizes 
thermal energy to transform a portion of the carbon 
molecular framework from an irregular arrangement to a 
more organized structure, resulting in a graphite-like 
microstructure. This structure contains Fe2O3, which is 
produced in situ from the FeCl3 catalyst precursor during 
the heating process. Coconut shell graphitic-like 
activated carbon (CSGAC) has shown potential as a cost-
effective and renewable carbon-based electrode material, 
exhibiting a conductivity of 148 µS. 
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