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 CuO/Zn2SnO4 nanocomposites were successfully synthesized via a hydrothermal 
method at 180°C for 5 hours. The CuO/Zn2SnO4 nanocomposites were developed 
to evaluate their potential as photocatalysts for the degradation of ciprofloxacin, 
a pharmaceutical pollutant commonly found in water sources. The materials were 
characterized using XRD, SEM, TEM, and UV-Vis DRS analyses. XRD results 
confirmed that the CuO/Zn2SnO4 nanocomposites, prepared with various CuO 
concentrations (20, 40, 60, and 80% w/w), exhibited good crystallinity and high 
purity. SEM analysis revealed that the morphology of the composites consisted of 
square-shaped nanosheets resembling CuO and irregular, round particles with 
non-uniform sizes resembling Zn2SnO4. TEM analysis further confirmed that the 
CuO/Zn2SnO4 nanocomposite with 40% CuO exhibited irregular square and round 
nanosheets with an average size of 69.53 nm. UV-Vis DRS analysis showed that 
the band gap of pure Zn2SnO4 (3.22 eV) decreased after the incorporation of CuO, 
with values of 1.67 eV (20%), 1.46 eV (40%), 1.50 eV (60%), and 1.50 eV (80%). 
The photocatalytic activity of the nanocomposites was evaluated based on the 
degradation of ciprofloxacin under sunlight irradiation. The degradation 
percentages of pure Zn2SnO4, pure CuO, and CuO/Zn2SnO4 with 20% CuO were 
78.3%, 8.9%, and 47.1%, respectively. This study demonstrates that the 
CuO/Zn2SnO4 nanocomposite has fewer active surface sites than pure Zn2SnO4, 
which significantly influences its photocatalytic performance. 

 

1. Introduction 

Along with technological advancements and 
increasing energy demands, environmental pollution has 
become a global and pressing issue that continues to 
attract the attention of researchers seeking effective 
solutions. One of the industries contributing significantly 
to environmental pollution is the pharmaceutical 
industry, which generates toxic and hazardous waste 
both during production and post-consumption, including 
antibiotic waste [1]. In recent years, numerous studies 
have reported a substantial increase in antibiotic 
concentrations in rivers, lakes, groundwater, and even 
drinking water [2]. In addition to deteriorating water 
quality, the presence of these antibiotics promotes the 

emergence of drug-resistant bacteria, thereby reducing 
the effectiveness of antibiotics and posing long-term 
risks to human health [3]. 

Among the various treatment methods developed, 
the photocatalytic method using semiconductor 
materials has been recognized as one of the most effective 
approaches for degrading ciprofloxacin waste [4]. 
Ternary metal oxides have emerged as promising 
semiconductor alternatives to binary oxides, offering 
several advantages, such as higher corrosion resistance, 
greater structural stability, tunable physicochemical 
properties, and a wider selection of material 
compositions [5, 6]. Examples of ternary metal oxides 
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include ZnBi2O4 [7], ZnFe2O4 [8], CuAl2O4 [9], and CuFe2O4 
[10]. 

One of the ternary metal oxides that have attracted 
significant attention from researchers is zinc stannate 
(Zn2SnO4), owing to its excellent semiconductor 
properties. These include stability under extreme 
conditions, low cost, non-toxicity, a wide band gap 
energy (3.6 eV), high electron mobility (112 cm2·V-1·s-1), 
and high electrical conductivity (104 S·cm-1) [5, 11, 12, 13, 
14]. Currently, Zn2SnO4 has been widely applied in various 
fields, such as photocatalysis, solar cells, and sensors [15, 
16, 17, 18]. However, its wide band gap limits its 
applicability to UV irradiation, thereby restricting its 
practical use. Additionally, the large band gap can lead to 
rapid recombination of electron (e-) and hole (h+) pairs, 
which reduces its quantum efficiency and photocatalytic 
performance [19]. 

Therefore, it is necessary to modify Zn2SnO4 to 
reduce its band gap and inhibit the rapid recombination 
of charge carriers. One strategy that has been developed is 
coupling Zn2SnO4 with other semiconductors that possess 
narrower band gaps, thereby extending its light 
absorption into the visible region [20]. Several studies 
have reported the successful coupling of Zn2SnO4 with 
other semiconductors to reduce its band gap, including 
Zn2SnO4/V2O5 [21], BiVO4/Zn2SnO4 [22], and 
BiOBr/Zn2SnO4 [20]. 

In this study, Zn2SnO4 was modified by compositing 
it with CuO at various concentrations through a 
hydrothermal process. CuO is a p-type semiconductor 
with a narrow band gap energy (1.4–1.75 eV), is non-
toxic, abundantly available, has a high penetration 
coefficient, and exhibits good photocatalytic activity [17, 
23, 24]. The phase structure, morphology, and band gap 
values of the resulting CuO/Zn2SnO4 nanocomposites 
were characterized using X-ray diffraction (XRD), 
scanning electron microscopy (SEM), transmission 
electron microscopy (TEM), and ultraviolet-visible 
diffuse reflectance spectroscopy (UV-Vis DRS). 

The photocatalytic performance of the 
nanocomposites in degrading the antibiotic ciprofloxacin 
was evaluated under direct sunlight irradiation, with the 
reduction in ciprofloxacin absorbance measured using a 
UV-Vis spectrophotometer. The synthesized 
CuO/Zn2SnO4 nanocomposites exhibited good 
crystallinity and high purity, with irregular square and 
round nanosheets measuring approximately 69.53 nm. 

In addition, the nanocomposites demonstrated 
enhanced light absorption in the visible region, as 
indicated by a reduction in band gap values from 3.22 eV 
(pure Zn2SnO4) to 1.46, 1.50, and 1.67 eV. This study shows 
that the presence of CuO in Zn2SnO4 reduces the surface 
area and pore volume while increasing the pore size of the 
CuO/Zn2SnO4 nanocomposites, which are the dominant 
factors affecting the photocatalytic performance of the 
resulting composites. 

2. Experimental 

2.1. Materials and Tools 

The materials used in this study included zinc acetate 
dihydrate (Zn(CH3COO)2.2H2O, Merck, ≥99.5% purity), 
tin(IV) chloride (SnCl4, Sigma-Aldrich, 98% purity), 
copper(II) nitrate trihydrate (Cu(NO3)2.3H2O, Merck, 
99.98% purity), sodium hydroxide (NaOH, Merck, pro 
analysis grade), demineralized water (Brataco), Hyundai 
filter paper No. 53, universal pH paper, and ciprofloxacin 
HCl 500 mg (Hexpharm Jaya). 

The instruments used in this study included an XRD 
(PANalytical Philips), SEM (FEI Inspect-S50), TEM (JEM-
1400), UV-Vis DRS (Shimadzu UV-2401-PC), UV-Vis 
spectrophotometer (Analytik Jena Specord 210), N2 
adsorption-desorption analyzer (Micromeritics TriStar II 
3020), oven (Philip Harris Ltd.), analytical balance 
(Sartorius), and a hydrothermal reactor. 

2.2. Synthesis of Zn2SnO4 Using Hydrothermal Method 

The synthesis of Zn2SnO4 via the hydrothermal 
method was carried out following previously reported 
procedures [15, 18]. A 0.1 M SnCl4 solution (10 mL) and a 
0.2 M Zn(CH3COO)2.2H2O solution (10 mL) were mixed and 
stirred using a magnetic stirrer at 700 rpm for 10 minutes 
at room temperature. Subsequently, 20 mL of 0.4 M NaOH 
solution was added to the mixture and stirred for an 
additional 30 minutes. The resulting mixture was then 
transferred into a hydrothermal reactor and heated at 
185°C for 17 hours in an oven. After completion of the 
reaction, the reactor was allowed to cool to room 
temperature. The mixture was then filtered using 
Hyundai No. 53 filter paper and washed with 
demineralized water until a neutral pH was achieved. The 
resulting precipitate was dried at 85°C for 15 hours. The 
obtained powder samples were then characterized using 
XRD, SEM, TEM, and UV-Vis DRS. 

2.3. Synthesis of CuO/Zn2SnO4 Composite Using 
Hydrothermal Method 

The synthesis of CuO/Zn2SnO4 composites was 
carried out by modifying the procedure reported in 
previous studies using the hydrothermal method [25, 26, 
27]. First, 40 mL of 0.0225 M Cu(NO3)2.3H2O solution was 
stirred at 700 rpm for 10 minutes. Then, 20 mL of 0.2 M 
NaOH solution was slowly added over 10 minutes while 
stirring. Subsequently, an appropriate amount of Zn2SnO4 
was added, corresponding to the desired CuO 
concentration (0, 20, 40, 60, and 80% w/w), and the 
mixture was stirred for an additional 10 minutes. The 
resulting solution was transferred to a hydrothermal 
reactor and heated at 180°C for 5 hours. After the reaction 
was complete, the reactor was allowed to cool to room 
temperature (20-25°C). The mixture was filtered, washed 
with demineralized water until reaching a neutral pH, and 
dried at 100°C for 6 hours. The synthesized composites 
were subsequently characterized using XRD, SEM, TEM, 
and UV-Vis DRS. 
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2.4. Characterization 

2.4.1. Characterization Using XRD 

XRD is a technique that utilizes the interaction 
between X-rays and atoms arranged in a crystal lattice. 
XRD analysis provides information regarding the crystal 
structure and crystalline phases present in a material 
[28]. The resulting diffractogram from the XRD analysis 
is compared with data from the Inorganic Crystal 
Structure Database (ICSD) and presented in graphical 
form using Origin software. The full width at half 
maximum (FWHM) value of the diffraction peaks is used 
to calculate the crystallite size using the Debye–Scherrer 
equation (1). 

 𝐷 =
𝐾 𝜆

𝛽 cos 𝜃
 (1) 

Where, D is the crystallite size (nm), K is the constant 
(0.9), 𝜆  is the wavelength of the X-rays used, 𝛽  is the 
FWHM of the diffraction peak, 𝜃 is the Bragg diffraction 
angle. 

2.4.2. Characterization Using UV-Vis DRS 

UV-Vis DRS is an analytical technique for examining 
powders and solid surfaces [29]. The absorbance data 
obtained from UV-Vis DRS analysis is used to determine 
the band gap energy of the material by applying the 
Kubelka-Munk function. The band gap value is calculated 
using the Kubelka-Munk equation (2). 

 [𝐹(𝑅)ℎ𝑣]𝑛 = 𝐴(ℎ𝑣 − 𝐸𝑔) (2) 

Where, F(R) is the Kubelka-Munk function, h is 
Planck’s constant, v is photon frequency, hv is photon 
energy, A is a constant, Eg is the optical band gap, and n is 
an exponent that depends on the type of electronic 
transition. The value of n is typically set to 1/2 for direct 
allowed transitions and 2 for indirect allowed transitions. 

2.4.3. Characterization Using SEM and TEM 

SEM and TEM were conducted to determine the 
morphology of Zn2SnO4, CuO, and CuO/Zn2SnO4 
composite samples. SEM typically produces images of the 
sample surface and elemental mapping images to show 
the sample’s composition. The images obtained from 
SEM are black and white, as the probe electrons used are 
outside the visible light spectrum [30]. SEM 
characterization of Zn2SnO4 samples was performed at 
magnifications of 100,000× and 150,000×. Meanwhile, 
TEM uses electrons as the light source, which have much 
shorter wavelengths, allowing for a resolution up to 1,000 
times greater than a conventional light microscope. 

2.4.4. Photodegradation of Ciprofloxacin HCl 

A total of 25 mL of 20 ppm ciprofloxacin solution was 
mixed with 0.01 g of the CuO/Zn2SnO4 composite. The 
mixture was stirred for 30 minutes using a magnetic 
stirrer in a dark room to achieve adsorption-desorption 
equilibrium. Afterward, the absorbance of the solution 
was measured and recorded as the initial concentration of 
ciprofloxacin. The mixture was then exposed to direct 
sunlight. The degradation process was monitored every 
30 minutes between 11:00 and 14:00 WIB by taking 5 mL 

aliquots of the mixture, centrifuging them, and 
measuring the absorbance in the wavelength range of 
200-800 nm. 

Subsequently, the percentage of degradation and the 
degradation rate of the CuO/Zn2SnO4 composite in 
degrading ciprofloxacin HCl were calculated. For 
comparison, the same procedure was also applied under 
several conditions, namely without using the 
CuO/Zn2SnO4 composite but exposed to sunlight, using 
the CuO/Zn2SnO4 composite without irradiation (in a dark 
room), using Zn2SnO4 exposed to sunlight, and using 
Zn2SnO4 without irradiation (in a dark room). The data 
obtained from the UV-Vis spectrophotometer showed 
changes in the absorbance values of ciprofloxacin before 
and after the degradation process, and the concentrations 
were calculated using a standard curve. The degradation 
efficiency of the sample was determined by calculating 
the percentage of degradation using Equation (3). 

 %𝑃 =  
𝐶0−𝐶𝑡

𝐶0
× 100% (3) 

Where, P is the percentage of ciprofloxacin 
degradation, C0 is the initial concentration of the solution 
(ppm), and Ct is the concentration of the solution at time 
t. 

3. Results and Discussion 

3.1. XRD Analysis 

The phase and structure of the synthesized products 
were analyzed using XRD, as presented in Figure 1. The 
XRD pattern shown in Figure 1a reveals sharp diffraction 
peaks at 2θ angles of 17.92°, 29.31°, 34.50°, 36.09°, 41.88°, 
45.93°, 51.90°, 55.29°, 60.62°, 63.78°, 68.64°, 71.63°, 
72.59°, 76.42°, 83.79°, and 86.47°. These peaks 
correspond to cubic Zn2SnO4 with plane indices of (111), 
(220), (311), (222), (400), (331), (422), (511), (440), (531), 
(620), (533), (622), (444), (642), and (731), according to 
ICSD No. 024234. In addition, sharp peaks were observed 
at 2θ angles of 32.61°, 35.64°, 38.85°, 46.39°, 48.75°, 
53.66°, 58.44°, 61.58°, 66.32°, 68.17°, 72.54°, 75.30°, 
80.28°, 82.61°, 83.47°, 86.74°, and 89.95°, which are 
identified as monoclinic CuO with plane indices of (110), 
(002), (111), (−112), (−202), (020), (202), (−113), (022), 
(220), (311), (004), (−204), (−313), and (222), in 
accordance with ICSD No. 069094. These results confirm 
the successful synthesis of the CuO/Zn2SnO4 composite. 

The sharp and intense peaks observed for all 
composite samples indicate high crystallinity. A high 
degree of crystallinity is beneficial for photocatalysts, as 
it reduces the recombination rate of electron-hole pairs 
and provides a larger surface area for substrate 
adsorption, both of which significantly enhance the 
photocatalytic performance of the composite [31, 32]. 
Furthermore, the absence of additional peaks in the 
diffractogram suggests that the synthesized composites 
exhibit high purity. As shown in Figure 1b, the intensity of 
the CuO peaks gradually increases with the addition of 
higher CuO concentrations, further confirming the 
successful formation of CuO/Zn2SnO4 composites with 
varying CuO contents. 
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Figure 1. XRD diffraction patterns of the synthesized samples: (a) Zn2SnO4, CuO, and CuO/Zn2SnO4 composites; 
(b) CuO/Zn2SnO4 composites with varying CuO concentrations of 20, 40, 60, and 80% (w/w) 

Table 1. Average crystallite size of Zn2SnO4, CuO, and 
CuO/Zn2SnO4 composite materials 

Product Average crystal size 
(D) (nm) 

Zn2SnO4 28.54 

CuO 25.99 

CuO/Zn2SnO4 (CuO 20%) 29.48 

CuO/Zn2SnO4 (CuO 40%) 20.23 

CuO/Zn2SnO4 (CuO 60%) 31.99 

CuO/Zn2SnO4 (CuO 80%) 34.82 

The average crystallite size of the synthesized 
products was calculated using the Debye-Scherrer 
equation based on the three most intense peaks for each 
sample. For Zn2SnO4, calculations were performed at the 
diffraction peaks corresponding to 2θ values of 34.50°, 
51.90°, and 60.62°. For CuO, the peaks at 2θ values of 
35.64°, 38.85°, and 48.75° were used. Meanwhile, for the 
CuO/Zn2SnO4 composites, the peaks used were at 2θ 
values of 34.48°, 36.06°, and 38.85° for 20% CuO; 34.51°, 
35.59°, and 38.93° for 40% CuO; 34.49°, 35.68°, and 
38.90° for 60% CuO; and 34.45°, 35.67°, and 38.92° for 
80% CuO. The calculated crystallite sizes are presented in 
Table 1. 

From Table 1, it can be observed that the crystallite 
size of the composites is generally larger than that of pure 
Zn2SnO4 and CuO, with a tendency to increase as the CuO 
content in the composite increases. This indicates that 
the addition of CuO influences the crystal formation of the 
CuO/Zn2SnO4 composites. Although the differences in 
crystallite size among the six samples are not highly 
significant, crystallite size remains an important factor 
influencing the photocatalytic performance of the 
resulting composite [33]. Larger crystallite sizes can 
enhance the amount of absorbed energy, reduce the 
recombination rate of electron (e-) and hole (h+) pairs, 
and facilitate charge transfer to the surface of the 
composite. These factors collectively enhance the redox 
reactions occurring on the catalyst surface, promoting 
the conversion of H2O, OH-, and O2 into free radicals, 
which are essential for the degradation of ciprofloxacin 
antibiotics and other organic pollutants [34]. 

3.2. SEM and TEM Analysis 

The shape and morphology of the synthesized 
materials were analyzed using SEM and TEM, as 
presented in Figure 2. Based on the SEM analysis shown 
in Figure 2a, the morphology of Zn2SnO4 is predominantly 
characterized by irregularly spherical particles, with a 
small portion exhibiting an octahedral shape. This 
observation was further confirmed by TEM analysis, 
which showed a particle size of approximately 68.33 nm, 
as illustrated in Figure 2b. In comparison, the 
morphology of the synthesized CuO nanoparticles 
observed through SEM (Figure 2c) revealed that the CuO 
nanoparticles possess a square sheet-like structure with 
an average size of 116.94 nm. This morphological feature 
was also supported by TEM analysis (Figure 2d), which 
confirmed the presence of well-defined sheet-like 
structures. 

Further, SEM characterization was carried out on 
CuO/Zn2SnO4 composites with varying CuO 
concentrations, as shown in Figure 3. In Figure 3a, for the 
composite containing 20% CuO, the morphology shows a 
combination of square sheets corresponding to CuO and 
spherical or round sheets corresponding to Zn2SnO4 
particles. As the concentration of CuO increases (Figures 
3b-d), there is a significant increase in the number of 
sheet-like CuO particles, indicating good dispersion and 
successful integration of CuO into the composite 
structure. This trend is also consistent with the increasing 
diffraction intensity of CuO peaks observed in the XRD 
pattern (Figure 1b). 

Furthermore, the morphology of the CuO/Zn2SnO4 
composite was confirmed by TEM analysis, as shown in 
Figure 3e. TEM results reveal that the nanoparticles of the 
CuO/Zn2SnO4 composite are irregularly shaped square 
and round sheets with an average particle size of 69.53 
nm at a CuO concentration of 40% w/w. Variations in 
morphology and particle size are key factors that 
influence the photocatalytic performance of the 
composite. Both factors are closely related to the increase 
in the active surface area, improved surface interactions 
with target molecules, and enhanced sensitivity of the 
resulting composite [31, 35]. 
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Figure 2. SEM images of (a) Zn2SnO4 and (c) CuO; TEM 
images of (b) Zn2SnO4 and (d) CuO 

 

Figure 3. SEM micrographs of CuO/Zn2SnO4 composites 
with varying CuO concentrations: (a) 20%, (b) 40%, 

(c) 60%, and (d) 80%, and (e) TEM micrograph of the 
composite with 40% CuO concentration 

3.3. UV-Vis DRS Analysis 

The optical properties of the synthesized materials 
were characterized using a UV-Vis DRS 
spectrophotometer. The band gap energy of each sample 
was determined by applying the Kubelka–Munk function. 
The reflectance analysis results obtained from the UV-Vis 
DRS measurements, along with the corresponding plots 
of (F(R)hv)2 versus photon energy (eV), are presented in 
Figure 4. 

 

Figure 4. UV-Vis DRS spectra of the samples: 
(a) reflectance of Zn2SnO4, (b) (F(R)hv)2 vs. energy plot 

of Zn2SnO4, (c) reflectance of CuO, (d) (F(R)hv)2 vs. 
energy plot of CuO, (e) reflectance of CuO/Zn2SnO4 
composites with varying CuO concentrations, and 

(f) (F(R)hv)2 vs. energy plot of CuO/Zn2SnO4 composites 
with varying CuO concentrations 

The band gap values of Zn2SnO4 and CuO before 
compositing were determined to be 3.22 eV and 1.46 eV, 
respectively, as shown in Figures 4a-d. After compositing 
with 20% CuO, the band gap of Zn2SnO4 decreased to 1.67 
eV. Increasing the CuO concentration to 40% reduced the 
band gap to 1.46 eV. At higher CuO concentrations of 60% 
and 80%, the band gap values remained relatively stable 
at around 1.50 eV (Figures 4e and 4f). This decrease in 
band gap is closely related to the higher CuO content [26, 
36]. The reduction occurs due to enhanced charge transfer 
from the valence band to the conduction band of CuO, 
associated with the d–d transitions of Cu2+ ions. As a 
result, the material’s ability to absorb visible light 
improves, facilitating the formation of electron-hole 
pairs and enhancing the photocatalytic performance of 
the synthesized composites [27, 37, 38]. 

3.4. Photodegradation of the Antibiotic Ciprofloxacin 

The photocatalytic performance of the synthesized 
materials was evaluated by testing their ability to degrade 
ciprofloxacin antibiotic solution under direct sunlight 
irradiation. The degradation process was monitored 
using a UV-Vis spectrophotometer, and the resulting 
spectra for the ciprofloxacin solution degraded by 
Zn2SnO4, CuO, and the CuO/Zn2SnO4 nanocomposite with 
20% CuO at various irradiation times are presented in 
Figure 5. 
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Table 2. Surface area, porosity characteristics, and photodegradation efficiency of ciprofloxacin using various catalysts 

Catalyst 
Light intensity 

(watts/m2) 
Surface area 

(m2/g) 
Pore volume 

(cm3/g) 
Pore size 

(Å) 

Percentage of 
degradation 

(%) 

Zn2SnO4 635.713 79.279 0.237 111.359 78.30 

CuO 635.713 15.708 0.042 116.046 -8.87 

CuO/Zn2SnO4 
nanocomposite (CuO 20%) 635.713 37.133 0.161 169.355 47.07 

 

Figure 5. UV-Vis spectrophotometer spectra of 
ciprofloxacin solution after 120 minutes of irradiation 

with catalyst treatment: (a) Zn2SnO4, (b) CuO, 
(c) CuO/Zn2SnO4 nanocomposite (CuO 20%), and 

(d) photodegradation rate of ciprofloxacin as a function 
of irradiation time for each catalyst treatment 

From Figure 5, it can be observed that the 
ciprofloxacin absorbance peak decreases significantly 
when using Zn2SnO4 (Figure 5a) and the CuO/Zn2SnO4 
nanocomposite (Figure 5c) with increasing irradiation 
time. This decrease in absorbance indicates the 
progressive degradation of the ciprofloxacin antibiotic by 
both catalysts, with degradation percentages of 78% and 
47%, respectively, after 120 minutes of irradiation. In 
contrast, using CuO alone does not show a significant 
reduction in the ciprofloxacin absorption peak, 
confirming that CuO is ineffective as a standalone 
photocatalyst for ciprofloxacin degradation (Figure 5b). 

Furthermore, Figure 5d illustrates the change in 
ciprofloxacin concentration over the irradiation time, 
where C0 represents the initial concentration before 
irradiation, and C is the concentration at each time 
interval. It is evident from Figure 5d that the highest rate 
of ciprofloxacin degradation occurs with Zn2SnO4 and the 
CuO/Zn2SnO4 nanocomposite. Additionally, the low 
degradation rates observed in control sample 1 (catalyst 
without irradiation) and control sample 2 (irradiation 
without catalyst) confirm that the reduction in 
ciprofloxacin concentration is primarily due to the 
photocatalytic activity of Zn2SnO4 and the CuO/Zn2SnO4 
nanocomposite. 

Although CuO is known to be an effective co-catalyst 
[39], possessing a large penetration coefficient [23, 24], 
and capable of reducing the band gap of Zn2SnO4 from 3.22 
eV to 1.46 eV—thereby enhancing the light response in 
the visible region—the CuO/Zn2SnO4 nanocomposite does 
not exhibit better photocatalytic performance compared 

to pure Zn2SnO4. This phenomenon is believed to be 
closely related to the surface characteristics of the 
composite, specifically a reduction in surface area and 
pore volume, along with an increase in pore size with the 
addition of CuO, as measured using the Brunauer–
Emmett–Teller (BET) method, as presented in Table 2. 
From Table 2, it can be observed that Zn2SnO4 has a larger 
surface area and pore volume compared to both CuO and 
the CuO/Zn2SnO4 nanocomposites. Consequently, the 
larger surface area of Zn2SnO4 facilitates more effective 
adsorption of ciprofloxacin, H2O2, OH-, and O2, all of 
which are key factors in generating free radicals, thereby 
enhancing the photocatalytic performance of the catalyst 
[15, 40]. 

4. Conclusion 

Based on the results of this study, CuO/Zn2SnO4 
nanocomposites were successfully synthesized with 
varying CuO concentrations of 20%, 40%, 60%, and 80% 
(w/w). The morphology analysis showed that the 
CuO/Zn2SnO4 nanocomposites exhibited square-sheet 
structures corresponding to CuO and irregular spherical 
shapes corresponding to Zn2SnO4, with an average 
particle size of 69.53 nm. The band gap values of the 
synthesized composites decreased from 3.22 eV for pure 
Zn2SnO4 to 1.67 eV (20% CuO), 1.46 eV (40% CuO), and 
stabilized around 1.50 eV for higher CuO concentrations 
(60% and 80%). This indicates improved light absorption 
in the visible region. The photocatalytic performance test 
for ciprofloxacin degradation revealed degradation 
efficiencies of 78.30% for pure Zn2SnO4, –8.87% for pure 
CuO, and 47.07% for the CuO/Zn2SnO4 nanocomposite 
with 20% CuO after 120 minutes of sunlight irradiation. 
Furthermore, the presence of CuO in the composite 
resulted in a reduction of surface area from 79.279 m2/g 
(Zn2SnO4) to 37.133 m2/g, a decrease in pore volume from 
0.237 cm3/g to 0.161 cm3/g, and an increase in pore size 
from 111.359 Å to 169.355 Å. These changes contributed to 
a decline in photocatalytic performance. Overall, this 
study confirms that surface area is a critical factor 
influencing the photocatalytic efficiency of CuO/Zn2SnO4 
nanocomposites in degrading ciprofloxacin antibiotics. 
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