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Coal ash, also known as fly ash and bottom ash (FABA), is a byproduct of coal
combustion that can be utilized as an adsorbent for removing lead (Pb?*) ions
from wastewater. While previous studies have explored both unactivated and
activated forms of FABA, few have directly compared their adsorption
performance under identical operating conditions. This study investigates the
characteristics of FABA before and after activation and evaluates its effectiveness
in Pb* ion removal. Characterization was performed using X-ray fluorescence
(XRF) for chemical composition and Brunauer-Emmett-Teller (BET) analysis for
surface area and pore structure. XRF results showed that fly ash (FA) and bottom
ash (BA) are dominated by Fe,0;, SiO», and Al:0s;, which contribute to the
adsorption capacity. BET analysis revealed that FA has a higher specific surface
area (6.377 m?/g) compared to BA (0.848 m?/g), indicating greater potential for
adsorption. The adsorption performance was evaluated using Atomic Absorption
Spectroscopy (AAS) after 60 minutes of contact time at an initial Pb**
concentration of 100 ppm. Both FA and BA exhibited high Pb?* removal
efficiencies, reaching up to 100% under optimal conditions. Physical activation
and chemical activation using neutral (H.0O) and alkaline (NaOH and KOH) agents
enhanced adsorption efficiency (98-100%), whereas activation with acidic
agents (HCl and H,SO,) reduced it to 87—97%. These results demonstrate that
FABA, particularly FA, has strong potential as an efficient and environmentally
friendly adsorbent for heavy metal removal. The findings also suggest that water
activation offers a simple and sustainable approach for large-scale wastewater
treatment applications.

1. Introduction

Heavy metals persist in the environment and
bioaccumulate through water, air, and soil, eventually

The rapid growth of industrialization, agriculture,
and domestic sectors has significantly increased
wastewater generation and contributed to global
warming [1, 2]. Among the hazardous components in
wastewater, heavy metals such as lead (Pb), cadmium
(Cd), chromium (Cr), mercury (Hg), arsenic (As), and
copper (Cu) pose severe risks to human health and the
environment [3]. Unlike organic pollutants, heavy metals
are non-biodegradable and persist in the environment for
decades, originating from sources such as industry,
mining, and fossil fuel combustion [4].

entering the food chain [5]. Heavy metal contamination,
particularly lead (Pb?*) at high concentrations, can cause
damage to the central nervous system, impair kidney and
liver function, alter blood composition, and disrupt
energy production in the body. Research conducted by
Bakulski et al. [6] and Yang et al. [7] has shown that the
accumulation of heavy metals increases the risk of
various diseases, including cancer, chronic kidney
disease, neurological disorders, and especially
cardiovascular diseases.
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Various technologies have been developed to remove
heavy metals from wastewater, such as adsorption,
coagulation, gamma irradiation, sedimentation,
biological treatment, flocculation, and photocatalysis [1,
8]. While these methods can effectively reduce
contamination, some are costly and complex. Among
these techniques, adsorption is particularly attractive due
to its high efficiency, operational simplicity, and cost-
effectiveness [9,10]. Adsorption is a process in which ions
or molecules (adsorbates) from a liquid or gas adhere to
the surface of a solid material (adsorbent) through
physical or chemical interactions [11].

Coal ash (FABA), a solid byproduct of coal
combustion in power plants, is considered a potential
adsorbent for heavy metal removal [12]. FABA is generally
categorized into two types: fly ash (FA) and bottom ash
(BA) [13]. FA also exhibits a lower bulk density compared
to BA [14]. In contrast, BA has a coarse texture and larger
particle size, resembling sand, with a smaller surface area
[15].

Both FA and BA are primarily composed of silica
(Si0,) and alumina (Al,O3), which enable interaction with
heavy metal ions [16]. The adsorption capacity of FABA
depends on its surface properties and porosity, which can
be enhanced through activation. Physical activation
improves surface area and pore development, while
chemical activation introduces functional groups that
increase binding affinity for metal ions. Although several
studies have examined the use of FABA as an adsorbent
under both activated and unactivated conditions, few
have directly compared different activation methods
under identical experimental conditions [17, 18]. Such
comparisons are essential to identify the most effective
approach and support practical applications in
wastewater treatment.

This study investigates the effect of physical and
chemical activation on the properties and adsorption
performance of coal ash for Pb** ions removal. Therefore,
this study investigates the effect of physical and chemical
activation on the properties and adsorption performance
of coal ash for Pb?* ions removal. Characterization was
conducted using Brunauer-Emmett-Teller (BET) for
surface area and porosity analysis, X-ray fluorescence
(XRF) for elemental composition, and atomic absorption

fefiey

spectrophotometry (AAS) for Pb?* ion concentration
measurements. The findings are expected to contribute to
the development of low-cost, efficient, and sustainable
adsorbent materials for mitigating heavy metal
contamination in water.

2. Experimental

2.1. Materials

The materials used in this study were FABA obtained
from a coal-fired power plant (PLTU X) in Indonesia,
lead(1I) nitrate (Pb(NO;).) (Merck, Germany), potassium
hydroxide (KOH) (Merck, Germany), sodium hydroxide
(NaOH) (Merck, Germany), hydrochloric acid (HCI)
(Merck, Germany), sulfuric acid (H.SO,) (Merck,
Germany), and distilled water.

2.2. Preparation of FABA adsorbent

Coal ash (FABA) was initially washed three times
with distilled water to remove impurities and then oven-
dried at 105°C for 6 hours to reduce moisture content. The
dried sample was ground and sieved using a 100-mesh
sieve to obtain a uniform particle size. After preparation,
the samples were characterized using X-ray fluorescence
(XRF; PANalytical Epsilon 4) for chemical composition
and Brunauer—Emmett—Teller (BET; Quantachrome
Nova 2200e) for surface area and pore analysis. The
prepared samples were divided into three categories:
Unactivated, physically activated, and chemically
activated, as illustrated in Figure 1.

2.2.1. Physical Activation

Physical activation was performed by heating the
samples in a furnace (Vulcan D550) at 100, 200, 300, 400,
and 500°C for 3 hours. This treatment aimed to enhance
the surface area and pore structure of the adsorbent,
thereby improving its adsorption performance [19].

2.2.2. Chemical Activation

For chemical activation, the samples were soaked in
different activating solutions: 3 M NaOH, 3 M KOH, 3 M
HCI, 3 M H,SO,, and distilled water for 24 hours. After
soaking, the samples were thoroughly rinsed with
distilled water (six times) to remove residual chemicals,
then filtered and oven-dried at 105°C for 6 hours.

-
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Figure 1. Scheme of the preparation and activation process of FABA adsorbent
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2.2.3. Without Activation

Unactivated FABA was used as a control after
grinding and sieving. This approach leveraged FABA’s
inherent surface properties that naturally facilitate
adsorption. Based on the preparation stages that have
been carried out, the variations in this study for FA and
BA-based adsorbents include several special treatments
aimed at enhancing the effectiveness of the adsorption
process. These treatments are designed to optimize the
physical and chemical characteristics of the adsorbent,
thereby enhancing its capacity to absorb heavy metal ions
more efficiently. The variations of the treatments used
are presented in Table 1.

2.3. Preparation of Lead (Pb?*) Metal Solution

A synthetic Pb®* ion solution (100 mg/L) was
prepared by dissolving 0.16 g of Pb(NOs). in distilled water
and diluting to 1 L in a volumetric flask. The actual
concentration was verified using an atomic absorption
spectrophotometer (AAS; Shimadzu AA-7000).

2.4. Adsorption Process

Batch adsorption was conducted by mixing 10 g of
adsorbent with 200 mL of Pb?* ions solution (100 mg/L) in
a 250 mL beaker. The mixture was stirred at 500 rpm for 1
hour at room temperature (30°C) using a magnetic stirrer.
After the contact time, the solution was filtered, and the
residual Pb** concentration was measured using AAS. The
experimental setup is shown in Figure 2.

2.5. Adsorption and Isotherm Study

The removal efficiency (%RE) of Pb ion was
determined after the adsorption process using an AAS.
The calculation of %RE was based on Equation (1).

%RE = (C"C—‘O“ x 100 (1)

Where, Co and C. are the initial and equilibrium
concentrations of Pb ion (mg/L), respectively.
Equilibrium adsorption studies were conducted by mixing
200 mL of Pb ion solution at various initial concentrations
with 10 g of FA or BA. The mixture was stirred for 60
minutes, which was sufficient to reach equilibrium
conditions. The resulting data were then analyzed using
the Freundlich and Langmuir isotherm models to
describe the adsorption mechanism and evaluate the
maximum adsorption capacity of the coal ash.

2.5.1. Freundlich Isotherm

The Freundlich model was developed as an empirical
approach to represent the adsorption process that occurs
on heterogeneous adsorbent surfaces [20]. In this study,
the Freundlich model was used to explain the interaction
between Pb ions and FA or BA, which is expressed by
Equation (2).

Ing, = %ln Co+Inkg (2)

Where, g (mg/g) is the amount of Pb adsorbed at
equilibrium, Ce (mg/L) is the equilibrium concentration,
ke is the adsorption capacity constant, and 1/n indicates
adsorption intensity. The values of kr and n were obtained
from the slope and intercept of the linear plot of In ge
versus In Ce. A value of n > indicates favorable adsorption.

2.5.2. Langmuir Isotherm

The Langmuir isotherm assumes monolayer
adsorption on a homogeneous surface without
interactions between adsorbed molecules [21]. Its linear
form is given in Equation (3).

et 3)

de Kide  am

Where, Ce (mg/L) is the equilibrium concentration of
Pb ions in the solution, qe (mg/g) is the amount of Pb ions
adsorbed at equilibrium, gm (mg/g) is the maximum
adsorption capacity, and k. (L/mg) is the Langmuir
constant related to adsorption energy. The parameters gm
and k. are obtained from the slope and intercept of the
linear plot of Ce/qe versus Ce.
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Figure 2. Experimental apparatus for batch adsorption

Table 1. Variation of FA and BA adsorbents

Physical activation (°C)

Chemical activation

Without activation
500 400 300 200 100 NaOH KOH HCl H.SO, H.O
FA
FAo FF, FF, FF; FF, FF; FK. FK, FK; FK, FKs
BA
BA, BF, BF, BF; BF, BF;s BK, BK: BK; BK, BK;
Legend:

FA,: Fly ash without activation

FF,—FF;: Fly ash physically activated at 100-500°C

FK,—FKs: Fly ash chemically activated with H,0, NaOH, KOH, HCl, and H,SO,
BF,—BFs: Bottom ash physically activated at 100-500°C

FK,—FK;: Bottom ash chemically activated with H,O, NaOH, KOH, HCl, and H.SO,
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3. Results and Discussion

3.1. Chemical Composition of FA and BA

XRF analysis was employed to identify the elemental
composition of the FA and BA materials used as
adsorbents. This chemical composition information was
essential to understand the adsorption potential and
surface interactions of FA and BA with Pb2* ions [22]. The
XRF analysis results of FA and BA before activation are
presented in Table 2. The analysis results indicated that
both FA and BA mainly consisted of metal oxides such as
Fe,0;, SiO2, Ca0, and Al,O;, which played a crucial role in
the adsorption process of Pb2* ions. The Fe,0; content in
FA was 34.8%), which was higher than that in BA (32%).
This finding was consistent with the results reported by
Ulewicz and Jura [23], who observed that the Fe,O;
composition in BA was generally lower than in FA. The
presence of Fe,0; contributed to the magnetic properties,
high surface area, and positive surface charge of the
material, thereby enhancing its interaction with
pollutants. In addition, Fe,O; improved the thermal
stability of the adsorbent, making both FA and BA more
effective as base materials for adsorption processes [24].

In the context of Pb2* ion adsorption, the presence of
Fe,0; played an important role. Iron oxides could interact
with Pb?* ions through several mechanisms, including ion
exchange, surface complexation, and co-precipitation
[25]. The hydroxyl groups (-OH) on the Fe,O; surface
acted as active sites capable of binding Pb** ions to form
Fe—O-Pb surface complexes, thereby enhancing the
adsorption capacity. Moreover, under certain pH
conditions, Fe,O; could undergo protonation or
deprotonation, influencing the surface charge and
strengthening the electrostatic attraction between the
adsorbent surface and Pb?** ions [26]. Therefore, the
higher Fe,O; content in FA compared to BA was
considered one of the main factors contributing to its
superior Pb2* ions adsorption capability.

The XRF analysis also revealed that the SiO. content
in BA (33.20%) was higher than in FA (29.6%). This result
was consistent with the findings of Menéndez et al. [27],
who reported that BA typically contained higher SiO.
levels than FA. The presence of SiO, was important in
forming a porous structure and a large surface area, both
of which enhanced the adsorption capacity and efficiency
[28]. Thus, both FA and BA exhibited strong potential as
adsorbent materials for heavy metal removal, particularly
Pb?* ions [29].

In the adsorption process, SiO. interacted with Pb**
ions mainly through physical adsorption involving
surface complex formation and ion exchange [30]. The
hydroxyl groups (—Si—OH) on the SiO. surface could
undergo deprotonation under certain pH conditions,
generating negatively charged sites (—Si—07) that
electrostatically attracted and bound Pb** ions [31].
Furthermore, chemical interactions between silanol
groups and metal ions could result in the formation of
strong and stable Si—O-Pb coordination bonds [32].
These mechanisms enabled Pb** ions to be bound to the
SiO. surface both physically and chemically.

Table 2. XRF analysis results of FA and BA

% Chemical composition

Compound

FA BA
Fe,0; 34.8 32
Si0. 29.6 33.2
Ca0 23 24.6
AlO; 9.7 7.7
TiO- 1.4 1.3
K>0 1.2 0.9
MnO 0.3 0.3

The XRF results also showed that CaO contents in
both ashes were relatively similar, although slightly
higher in BA (24.6%) than in FA (23%). This finding
aligned with Bertolini et al. [33], who noted that BA
generally contained higher CaO levels than FA. The
presence of CaO played an essential role in imparting
alkalinity to the adsorbent material, which supported the
coagulation and precipitation of Pb?** ions during
adsorption [34].

During the Pb?* ion adsorption process, CaO
contributed to improving adsorption efficiency. Upon
contact with water, CaO was hydrated to form Ca(OH)-,
which increased the solution’s pH and created an alkaline
environment [35]. Such conditions facilitated the
formation of Pb(OH). or PbCO; precipitates on the
adsorbent surface, effectively reducing the concentration
of dissolved Pb?** ions [36]. Additionally, Ca** ions
released from CaO could compete with Pb2* for active sites
on the adsorbent surface, but under certain conditions,
they could also promote surface complex formation via
ion exchange mechanisms [37].

Another major component identified by XRF was
Al,05, which was found in higher concentrations in FA
(9.39%) than in BA (7.42%). This observation was
consistent with [27] Menéndez et al. [27] who reported
that FA typically contained more Al,O; than BA. The
presence of Al,O; contributed to increasing surface area,
thermal stability, and adsorption capacity toward
pollutants [38].

Furthermore, Al,O; in both FA and BA enabled
interactions with Pb?* ions through electrostatic forces
and surface complexation (Al-O—Pb), thereby enhancing
the overall adsorption capacity [39]. The relatively high
Al,O; content also improved the chemical durability and
stability of the adsorbent, making it more robust and
suitable for reuse after regeneration [38].

Differences in the chemical composition of
adsorbent materials could influence their surface
physical characteristics, such as specific surface area,
average pore size, and total pore volume [40]. To evaluate
how these compositional differences affected porosity
and surface area, BET analysis was conducted, and the
results are presented in Table 3.
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Table 3. BET of FA and BA analysis results

Adsorbent
Result
FA BA
Specific surface area (m?/g) 6.377 0.848
Total pore volume (cm3/g) 13.1x103 3.7x1073
Average pore diameter (nm) 8.2104 17.6296

The BET analysis results revealed a significant
difference between the adsorbent characteristics of FA
and BA. FA exhibited a specific surface area of 6.377 m?/g
and a total pore volume of 13.1 x 1073 cm3/g, both of which
were substantially higher than those of BA (0.848 m?/g
and 3.7 x 1073 cm3/g, respectively). These values indicated
that FA possessed a more porous structure with a greater
number of active sites, suggesting a higher adsorption
efficiency for pollutants [41, 42]. Meanwhile, BA showed
a larger average pore diameter than FA, indicating a
mesoporous-to-macroporous structure, whereas FA was
predominantly mesoporous [43]. The mesoporous
structure of FA was considered more effective for Pb?*
ions adsorption, as it enhanced contact between the
adsorbent surface and the pollutant [44].

Based on the XRF and BET analyses, the adsorption
of Pb?* ions by FA and BA was likely governed by ion-
exchange mechanisms supported by the presence of
metal oxides such as Fe,0;, Al,03, SiO., and CaO [45]. Pb?*
ions in the solution interacted with negatively charged
active surface groups (-0~ and —OH) by replacing other
metal ions such as Ca?*, Na*, or K* [46]. Additionally, the
presence of basic CaO increased the solution pH and
promoted Pb(OH). precipitation, which further enhanced
Pb>* ions removal efficiency [37]. Therefore, the
adsorption mechanism of Pb?* ions onto FA and BA could
be described as a combination of ion exchange and surface
complexation processes, both contributing to the high
efficiency of Pb?* ions removal.

3.2. Adsorption of Pb?* Ions by FA and BA Adsorbents

The removal of heavy metal ions was carried out
under identical operating conditions for each sample. The
adsorption process was conducted for 60 minutes with an
initial Pb?* ion concentration of 100 ppm and a stirring
speed of 500 rpm. After adsorption, the solution was
filtered, and the filtrate was analyzed using AAS to
determine the final concentration of Pb?* ions. This value
was then used to calculate the adsorption efficiency and
evaluate the performance of the adsorbents in removing
heavy metals. The analysis aimed to compare the
performance of FA and BA adsorbents that underwent
physical or chemical activation with those that remained
unactivated.

3.2.1. FA-based Adsorbent

The calculated percentage removal of Pb?* ions using
FA-based adsorbents is presented in Figure 3. The
calculations were performed after the adsorption process
to evaluate the effectiveness of each adsorbent in
removing Pb** ions from the synthetic solution.

B Without Activation
24 Physical Activation
Chemical Activation

100 - v 7]

80

60

Removal (%)

40 1

20

0~ T T T T T
FA-0 FF1 FF2 FF3 FF4 FF5 FKI FK2 FK3 FK4 FK5

Figure 3. Percentage removal of Pb?* ions using FA-
based adsorbents under various physical and chemical
activation conditions

Based on Figure 3, the effectiveness of Pb*" ion
removal by FA-based adsorbents was notably high,
ranging from 93.85% to 100%. For samples subjected to
physical activation via stepwise heating at 100-500°C,
the removal efficiency increased significantly at 100°C
(FFs) and 200°C (FF,), with respective values of 99.83%
and 99.73%. However, at higher activation temperatures
of 300°C (FF3), 400°C (FF,), and 500°C (FF.), the
efficiency decreased slightly to 99.51%, 99.36%, and
98.04%, respectively. This decline was attributed to pore
structure alterations caused by excessive heating over
prolonged periods, leading to pore shrinkage or collapse
and a reduction in the active surface area of the adsorbent
[47]. These findings were consistent with the results
reported by Mondal et al. [48], who observed that
excessive activation temperatures could reduce adsorbent
performance due to the loss of active sites, thereby
lowering its adsorption capacity.

Chemical activation treatments of FA-based
adsorbents showed that Pb?* removal efficiency varied
depending on the activating agent used. Activation with
strong bases such as KOH (FK:) and NaOH (FK:), with pH
values > 10, resulted in very high adsorption efficiencies
of 99.86% and 99.80%, respectively. Alkaline treatments
were found to enrich the surface with negatively charged
functional groups, particularly —OH and Si—OH groups
generated from aluminosilicate depolymerization,
thereby enhancing electrostatic interactions with
positively charged Pb?>* ions in accordance with
Coulomb’s law [49, 50, 51]. This mechanism not only
increased the number of active surface sites but also
improved chemical affinity toward Pb?* ions [52]. In
contrast, activation with strong acids such as HCI (FK3)
and H.SO, (FK,), with pH values < 3, decreased adsorption
efficiency to 97.60% and 93.85%, respectively. This
reduction was due to the dissolution of active oxide
phases such as Si0O., Fe;0;, and Al:0;, along with
micropore degradation, which collectively reduced
surface area and the number of adsorptive sites [53].
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Figure 4. Isotherm curves for the adsorption of Pb?* ions on FA-based adsorbents using the Langmuir and the
Freundlich models
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Figure 5. Percentage removal of Pb?* ions using BA-
based adsorbents under various physical and chemical
activation conditions

Activation using a neutral chemical agent, distilled
water (FKs), achieved the highest Pb** ion removal
efficiency of 100%, surpassing both basic and acidic
activations. This result indicated that water, as a simple
activation agent, could preserve and even optimize the
natural pore structure and surface area of FA without
inducing degradation commonly caused by harsh
chemical treatments [54]. A similar phenomenon was
observed in the unactivated FA sample (FA,), which also
exhibited 100% efficiency, suggesting that natural FA
already possessed favorable adsorptive characteristics
such as well-developed porosity, adequate surface area,
and active functional groups. These results were
consistent with the findings of Chowdhury et al. [55], who
reported that FA with high silica and alumina contents
could remove heavy metal ions by more than 95% even
without additional treatments.

Based on Figure 3, the samples with the highest Pb>*
ion removal efficiencies were FA,, FFs, and FKs. These
three samples were further analyzed using adsorption

isotherm models to understand the interaction
mechanism between Pb2* ions and the FA-based
adsorbent surface. The applied isotherm models included
the Langmuir and the Freundlich models, as shown in
Figure 4.

According to Figure 4, the determination coefficients
(R?) for the Langmuir model ranged from 0.70 to 0.73,
while the Freundlich model consistently showed R =1 for
all samples. This difference indicated that the Freundlich
model better represented the adsorption mechanism of
Pb>* ions on FA-based adsorbents. These findings agreed
with those of Hussain et al. [56], who reported that FA-
based adsorbents typically followed the Freundlich
model. The suitability of this model suggested that the
adsorbent surface was heterogeneous, with non-uniform
energy distribution, allowing multilayer adsorption to
occur [57].

3.2.2. BA-based Adsorbent

The Pb*>* ion removal efficiency of BA-based
adsorbents, as presented in Figure 5, ranged from 87.85%
to 99.94%, indicating a high overall performance,
although slightly lower than that of FA-based adsorbents.
Physical activation of BA-based adsorbents produced
results similar to those of FA. Low-temperature
activation at 100°C (BFs) and 200°C (BF,) yielded the
highest Pb>* ion removal efficiencies of 99.83% and
99.82%, respectively. However, at higher activation
temperatures of 300°C (BF;), 400°C (BF.), and 500°C
(BF1), the adsorption efficiency slightly decreased to
99.69%, 99.68%, and 99.64%, respectively. This
reduction was attributed to the occurrence of sintering a
partial fusion of particles caused by excessive heating that
reduced surface area and damaged micropores [58]. This
phenomenon was consistent with the observations of
Aziz et al. [59], who reported that excessive physical
activation temperatures could permanently alter pore
structures, thereby reducing the number of active sites
and overall adsorption capacity.
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Figure 6. Isotherm curves for the adsorption of Pb?* ions on BA-based adsorbents using the Langmuir and the
Freundlich models

For BA-based adsorbents subjected to chemical
activation, the Pb** removal efficiencies varied
significantly depending on the activating agent.
Activation with distilled water (BKs) produced the highest
efficiency (99.94%), followed by activation with KOH
(BK») and NaOH (BK:), which achieved 99.83% and
99.16%, respectively. Strong base activation enhanced
adsorbent performance by dissolving inorganic
impurities and opening surface pores, leading to
increased specific surface area and a greater number of
active sites [60, 61]. In addition, alkaline treatments
reduced the crystallinity of silica (Si0.) into a more
reactive amorphous phase, thereby improving adsorption
capacity [62].

Conversely, activation with strong acids such as HCl
(BKs5) and H.SO, (BK;) reduced adsorption efficiency to
87.85% and 95.75%, respectively, due to the dissolution
of active components such as silica and alumina, which
damaged pore structures and decreased the number of
adsorptive sites [63]. This dissolution effect was more
pronounced in BA because of its larger pore diameter
(17.63 nm) compared to FA (8.21 nm), allowing acid
diffusion into the internal structure more readily [6 4, 65].
Meanwhile, the unactivated sample (BAo) still exhibited a
high efficiency of 99.93%, indicating that natural BA
already possessed suitable pore characteristics and
functional groups that facilitated effective adsorption.

Based on Figure 5, the samples BAo, BFs, and BKs
showed the highest Pb** ion removal efficiencies. These
samples were further analyzed using Langmuir and the
Freundlich isotherm models to evaluate the adsorption
characteristics and mechanisms of Pb?* ions on BA-based
adsorbent surfaces, as illustrated in Figure 6.

According to Figure 6, the R* values for the Langmuir
model ranged between 0.73 and 0.86, whereas the
Freundlich model consistently exhibited R*> = 1 for all

samples. Comparatively, the Langmuir R? values for BA
were higher than those for FA, indicating a more uniform
adsorption interaction. However, overall, the Freundlich
model still provided a better fit for both types of
adsorbents. These findings were consistent with those of
Huda et al. [66], who reported that BA-based adsorbents
followed the Freundlich model. This conformity
suggested that the adsorbent surface was heterogeneous,
with a non-uniform distribution of adsorption energies,
thereby allowing multilayer adsorption to occur [67].

4. Conclusion

This study successfully evaluated and compared
various activation methods applied to coal ash, including
fly ash (FA) and bottom ash (BA), for the removal of Pb?*
ions from aqueous solutions. The results showed that FA
exhibited superior physicochemical properties compared
to BA, characterized by a higher specific surface area and
amesoporous structure that supported higher adsorption
capacity. Under optimal conditions (Pb?* concentration of
100 ppm and 60 minutes of contact time), both FA and BA
achieved removal efficiencies of up to 100%, with water-
activated and unactivated FA showing the best
performance. Physical and alkaline chemical activations
(NaOH and KOH) also improved adsorption efficiency,
while acidic activations (HCl and H.SO,) and high-
temperature treatments above 300°C tended to reduce
performance due to pore structure degradation. The
adsorption behavior of both adsorbents followed the
Freundlich isotherm model, indicating a heterogeneous
surface and multilayer adsorption mechanism. Future
work should include detailed isotherm parameter
evaluation, pH influence analysis, and replicate
experiments to confirm statistical reliability. Overall, the
findings highlight the strong potential of coal ash,
particularly FA, as a low-cost, efficient, and
environmentally friendly adsorbent for wastewater
treatment applications.
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