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Cancer arises from the uncontrolled proliferation of cells. Lung cancer stands as 
one example among the diverse array of cancer types. The main cause of the 
development of lung cancer is the activation of epidermal growth factor receptor 
(EGFR)-tyrosine kinases (TK). O-methyl quercetin analogs, as one of the 
quercetin derivatives, can be potential drug candidates for treating lung cancer. 
In this study, we disclose our findings that O-methyl quercetin analogs and their 
modified forms, O-methylamino analogs, predicted EGFR-TK inhibitors as lung 
anticancer. The O-methylated quercetin analogs can be predicted using a 
Quantitative Structure-Activity Relationship (QSAR) model. The structures were 
optimized using the parameterized method 3 (PM3) and analyzed through 
multiple linear regression (MLR). Lower PRESS QSAR values are used for 
structural modification of O-methylamino as new compounds. Structures of O-
methyl quercetin and O-methylamino analogs were docked to the EGFR-TK 
receptor using molecular docking. The best QSAR model of IC₅₀ predicted result is 
expressed as log IC50 = 23.059 + (7.397 × log P) + (0.273 × dipole moment) – (0.005 
× heat of formation) – (0.733 × ELUMO) – (0.501 × EHOMO) with statistical 
parameters: R = 0.966; R2 = 0.933; Fcount/Ftable = 3.829853; and Q2 = 0.752226. The 
O-methyl quercetin analog QC14 (quercetin 5,3’,4’-trimethyl ether) and the 
modified derivative QC6_8 (3,5-dihydroxy-2-(3-hydroxy-4-
((methylamino)methoxy)phenyl)-7-methoxy-4H-chromen-4-one) exhibited 
the lowest docking scores. Both compounds interact with the key residue Met769 
of the EGFR-TK receptor, suggesting their potential as drugs for lung cancer. 

 

1. Introduction 

Cancer encompasses a collection of illnesses marked 
by abnormal cell proliferation and the dissemination of 
cells from their site to other areas of the body [1]. In 2020, 
around 2.2 million new cases and 1.8 million confirmed 
cancers as the leading cause of mortality associated with 
the illness [2]. Non-small cell lung cancer (NSCLC) 
accounts for approximately 80-85% of all lung cancer 
cases [3]. The epidermal growth factor receptor (EGFR), a 
tyrosine kinase receptor, plays a crucial role by activating 
signaling cascades, including PI3K/Akt and MAPK, 
implicated in the pathogenesis of carcinomas [4]. This 
signaling can trigger cell proliferation. Pharmacophores 
of quercetin, one of the flavonoid family, possess wide 

biological activity, such as anticancer. Quercetin has been 
found to suppress the expression of EGFR/Akt/β-catenin 
signaling molecules in the A549 lung cancer cell line [5]. 

EGFR is commonly overexpressed in various types of 
cancer, including NSCLC. Structurally, EGFR is a 
transmembrane protein with distinct domains: the 
N- terminal extracellular ligand-binding domain, the 
transmembrane lipophilic domain, and the C-terminal 
intracellular tyrosine kinase domain [6]. In lung cancer, 
the primary external signal molecules are those that 
attach to the EGF ligand. The section of EGFR that spans 
the cell membrane links the part that binds to the ligand 
with the inner tyrosine kinase portion. When the ligand 
binds, EGFR forms pairs either with itself or with other 
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HER/ErbB tyrosine kinase families, a crucial step for 
initiating EGFR signaling and its targeted function [7]. 

In asymmetric dimers, the C-lobe kinase domain (of 
activator kinase) supports the N-lobe kinase domain (of 
receiver kinase), leading to catalytic activation and 
phosphorylation of intracellular tyrosine residues in the 
activator kinase. This phosphorylation process results in 
accelerated cell proliferation and migration, enhanced 
cell survival (avoiding apoptosis), and the promotion of 
angiogenesis [8]. There are two classes of EGFR inhibitors 
used clinically for NSCLC: monoclonal antibodies (e.g., 
Cetuximab) and tyrosine kinase inhibitors (e.g., Erlotinib 
and Gefitinib). Monoclonal antibodies target EGFR by 
binding to its extracellular domain and inhibiting 
receptor activation, while EGFR-TKIs reversibly compete 
with adenosine triphosphate to bind to the catalytic 
domain of the intracellular kinase domain to inhibit cell 
growth signals [9]. EGFR-TKIs such as erlotinib, 
gefitinib, and afatinib have proven their efficacy in the 
treatment of patients with advanced-stage NSCLC with 
tumors harboring the EGFR sensitizing mutations (such 
as exon 19 deletion and the L858R point mutation in exon 
21) [10]. 

Quercetin (3,3’,4’,5,7-pentahydroxyflavone) is a 
flavonoid compound in the flavonols group, found in 
apples, red grapes, onions, raspberries, and green leafy 
vegetables. It exhibits various biological effects, 
including antioxidant, anticancer, cell cycle modulator, 
and inhibition of angiogenesis [11]. The anticancer 
effectiveness of methylated metabolites from quercetin is 
notably more potent than that of quercetin alone, 
regardless of whether the methyl group is positioned at 
the quercetin B-ring. The addition of a methyl group at 
the 3’- or 4’-position notably enhances the anticancer 
activity against lung adenocarcinoma cells, making them 
potential candidates in the fight against lung cancer [12]. 

In the research conducted by Shi et al. [13] on the 
structure-activity relationship of methylated quercetin 
as a cancer proliferation inhibitor, it was shown that the 
methylation of quercetin’s OH groups at the 4’- or/and 7-
positions is crucial in maintaining or even enhancing its 
inhibitory activity against 16 cancer cell lines, including 
A549 lung cancer cells line. One effective strategy in 
designing drug candidates involves the use of the 
Quantitative Structure-Activity Relationship (QSAR) 
approach. The QSAR model developed on quercetin 
derivatives can provide specific activity as new 
chemotherapeutic agents. 

QSAR is defined as a mathematical equation that 
correlates the biological activities of compounds to their 
structural features [14]. QSAR modeling serves as an 
invaluable tool to prioritize a large number of chemicals 
associated with expected biological activity, employing 
an in silico approach that significantly reduces the 
number of candidate chemicals requiring in vivo 
experiments [15]. The primary objective of the QSAR 
modeling approach is to construct a model based on the 
most relevant descriptors that exhibit the highest 
correlation to the endpoint value. A highly effective model 
is characterized by the utilization of the minimum 

number of descriptors capable of encompassing most of 
the activity data involved for the investigated compounds. 
The descriptors utilized reflect a number of Hansch QSAR 
parameters, which are categorized into three categories 
according to their hydrophobic, electronic, and steric 
properties. The Hansch model, which was developed in 
1964, allowed medicinal chemists to express their 
hypotheses of structure-activity relationships in 
quantitative terms and to test them using statistical 
approaches. 

To measure hydrophobicity bioavailability, the 
octanol-water partition coefficient (log P) and steric 
properties used heat of formation (HF), surface area 
(surface area approximation (SAA) and surface area grid 
(SAG)), molar refractivity, and molar volume [16]. 
Statistical analysis in QSAR is commonly performed using 
the multiple linear regression (MLR) method, which 
represents the simplest form of linear regression 
involving the equation between the dependent variable 
and multiple independent variables. The leave-one-out 
(LOO) cross-validation method is often employed to 
assess QSAR models. This method involves systematically 
removing one compound at a time from the entire set, 
followed by training the model using the remaining 
molecules to predict all activity values [17]. 

The molecular structure will be minimized using the 
semi-empirical parameterized method 3 (PM3), which is 
based on the Hartree-Fock theory. Semi-empirical 
quantum chemical methods, such as PM3, significantly 
reduce computational cost by ignoring and 
parameterizing the integral part of electrons [16]. In this 
study, PM3 was selected as the fundamental semi-
empirical geometric optimization method due to its 
widespread use and features that leverage the self-
consistent field procedure. 

Molecular docking is a computational approach 
based on the structure of molecules, allowing the 
discovery of new compounds by forecasting interactions 
between ligand and targets on a molecular scale, or 
elucidating structure-activity relationship (SAR) [18]. In 
this study, molecular docking was conducted on both 
reference compounds and new compounds, whose 
activities were predicted using a validated QSAR model. 
The aim was to identify O-methyl quercetin analogs with 
improved activity and docking scores compared to the 
reference compounds, as potential EGFR-TK inhibitors 
for anticancer therapy. Two compounds of the analogs 
were modified by adding O-alkylamino as a new 
compound design. Molecular docking served as an in 
silico approach to evaluate and identify promising 
compound candidates. 

2. Experimental 

This research aimed to derive a QSAR model for 
predicting novel designed compounds. The dataset for 
model development comprised compounds that had 
undergone experimental antiproliferative activity testing 
via high-throughput screening on the A549 cancer cell 
line. These compounds were optimized, and their 
descriptors were calculated to obtain values for statistical 
analysis, ultimately leading to the development of the 
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QSAR equation model. Novel designed compounds 
exhibiting favorable activity values based on the validated 
QSAR equation model were subsequently subjected to 
molecular docking with the EGFR-TK receptor. This 
docking study aimed to determine if binding occurs 
between the drug candidates and the target protein of the 
receptor. 

2.1. Equipment 

The hardware used was a laptop equipped with an 
Intel Core i5-5200U processor (2.20 GHz), 8 GB of 
Random Access Memory (RAM), and 250 GB of Solid State 
Drive (SSD). The software used included ChemDraw 
Professional 16.0 for building two-dimensional 
molecular structures. HyperChem 8.0.7 for optimizing 
structures and calculating physicochemical properties as 
descriptors. SPSS Statistics 24 for data analysis. DOCK 6.9 
for molecular docking. Chimera v.1.16 for displaying 
docking results scores, and Discovery Studio Visualizer 
for visualizing docking results. 

2.2. Materials 

The inhibitory activity of 16 O-methyl quercetin 
analogs and quercetin against the proliferation of the 
human lung cancer cell line A549 was assessed using the 
high-throughput screening approach employed to 
construct the QSAR model. This data was sourced from 
the research conducted by Shi et al. [13]. For molecular 
docking, the EGFR-TK complex, bound with the native 
ligand 4-anilinoquinazoline, was utilized. The structural 
information for the receptor was retrieved from the 
Protein Data Bank (https://www.rcsb.org/ 
structure/1M17) with PDB ID: 1M17. 

2.3. Experiment 

2.3.1. Geometry Optimization 

The molecular structure was minimized using the 
semi-empirical Parameterized Method 3 (PM3), which is 
based on the Hartree-Fock theory. PM3 offers better 
accuracy compared to AM1 for hydrogen bond angles. 
Furthermore, its overall predictions for HF, bond 
energies, and bond lengths are more accurate than those 
from MNDO or AM1. The primary advantage of semi-
empirical calculations like PM3 is their speed, which 
surpasses that of ab initio calculations such as DFT. The 
PM3 approach uses parameterization from experimental 
data and simpler integral calculations, in contrast to the 
DFT approach, which requires a large computational 
database because its optimization and calculation 
processes are time-consuming [19, 20]. In this study, 
PM3 was selected as the fundamental semi-empirical 
geometry optimization method due to its widespread use 
and features that leverage the self-consistent field 
procedure [17]. 

The two-dimensional structures of the O-methyl 
quercetin analogs, drawn using ChemDraw Professional 
16.0, were optimized in the HyperChem 8.0.7 program. 
The optimization was conducted using the semi-
empirical PM3 method, and hydrogen atoms were added 
using the ‘Add H & model build’ menu. The optimization 

algorithm employed was Polak-Ribiere, with the 
convergence limit set at 0.1 kcal/Å·mol. 

Physicochemical properties, including surface area 
(grid and approximation), polarizability, hydration 
energy, volume, log P, and refractivity, were used as 
descriptors and were obtained from the ‘QSAR Properties’ 
menu. Additionally, properties such as total energy, 
binding energy, electronic energy, HF, and dipole 
moment (from the ‘Molecular Properties’ menu), as well 
as EHOMO (highest occupied molecular orbital energy) and 
ELUMO (lowest unoccupied molecular orbital energy) (from 
the ‘Orbital’ menu), were also considered. 

2.3.2. Multiple Linear Regression (MLR) Analysis 

QSAR models were developed using MLR with the 
backward elimination method in SPSS Statistics 24. The 
dependent variable was the logarithm of the compound’s 
activity (log IC50). Independent variables were initially 
chosen based on their potential to form regression 
models with an R-value > 0.9. 

The backward elimination method began by 
including all potential independent variables in the 
model. Subsequently, variables were systematically 
removed one by one, starting with the least statistically 
significant, until only significant descriptors remained. 
The resulting final model was considered the 
recommended model. This final model was used to 
construct a QSAR equation based on the linear regression 
formula shown in Equation (1). To facilitate the 
formulation of the QSAR equation, the selected 
descriptors were further combined into subsets of 3, 4, or 
5 descriptors. If a model yielded an R-value less than 0.9, 
data selection was performed to improve its performance. 
This involved removing 1 to 3 compound data. A linear 
regression graph was then plotted, comparing 
experimental log IC50 values with those predicted by the 
model. If this plot indicated an improved R2 (approaching 
0.9 or higher), the refined dataset was re-analyzed in 
SPSS and subjected to LOO cross-validation. 

 Y = β0 + β1X1 + β2X2 +⋯+ βnXn (1) 

In the regression model, β0 represents the constant; 
Y is the dependent variable; and X1, X2,…Xn are 
independent variables that represent molecular 
parameters with their corresponding coefficients β1, 
β2,…βn (1). The QSAR model was then validated using LOO 
cross-validation, in which compound data were 
systematically removed one by one, and coefficients from 
the linear regression were entered. A good model is 
indicated by a Q2 value ≥ 0.5. The Q2 calculation is defined 
by Equation (2). 

 Q2 = 1 −
∑(Yobs(train)−Ypred(train))

2

∑(Yobs(train)−Y̅(train))
2

 (2) 

Where, Yobs(train) represents the activity observation 
value, Ypred(train) is the activity prediction value, and Y̅(train) 
is the average activity value. 

2.3.3. New Compounds Design 

The design of new compounds involved modifying 
the substituent locations in the reference compounds, 
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which were altered with O-alkylamino. The 
antiproliferative activity (IC50) of these modified 
compounds was then predicted using the validated QSAR 
model. 

2.3.4. Molecular Docking 

The structure of the EGFR-TK receptor complexed 
with the native ligand, 4-anilinoquinazoline (erlotinib), 
was obtained from X-ray diffraction with a resolution of 
2.60 Å and downloaded from the Protein Data Bank with 
the code 1M17. Using Discovery Studio Visualizer, water 
molecules were removed, and the native ligand was 
separated from the receptor, the saved in .pdb format. 
Subsequently, the ligand was separated and prepared in 
the Chimera program by adding hydrogen and applying 
the AMBER ff14SB force field charges. The receptor, with 
hydrogen removed, was prepared for sphere 
identification based on the native ligand location, with an 
RMSD of 5 Å. 

After obtaining the sphere output, the Showbox 
command (in the Ubuntu command prompt) was used to 
generate a box around the ligand, and the output from the 
network was obtained. Before performing molecular 
docking with DOCK 6.9, energy minimization was carried 
out. Subsequently, flexible molecular docking was 
conducted, allowing the ligand to be completely free-

rotational. The grid score was shown using the View Dock 
menu in the Chimera program. The molecular docking 
method was validated by redocking the native ligand, 
with a parameter value of RMSD < 2 Å. The chemical 
interactions from the molecular docking results were 
visualized with Discovery Studio Visualizer. 

3. Results and Discussion 

The modifiable positions on the basic structure are 
denoted as R1, R2, R3, R4, and R5, as illustrated in Figure 
1. The basic structure (Figure 1) was modified by 
introducing methyl groups (CH3) as substituents at 
various positions, as listed in Table 1, which also presents 
their corresponding biological activity values. 

 

Figure 1. The basic structure 

Table 1. IC50 value* (µM) antiproliferative activity of quercetin analog compounds against A549 lung cancer cells  

No. Code Compound name 
Substituent IC50 

(µM) 
log IC50 

R1 R2 R3 R4 R5 

1. QC1 Quercetin H H H H H 6.20 0.7924 

2. QC2 Isorhamnetin CH3 H H H H 10.78 1.0326 

3. QC3 Tamarixetin H CH3 H H H 2.63 0.4200 

4. QC4 3-O-methylquercetin H H CH3 H H 8.14 0.9106 

5. QC5 Azaleatin H H H CH3 H 6.26 0.7966 

6. QC6 Rhamnetin H H H H CH3 3.08 0.4886 

7. QC7 3’,5-O-dimethylquercetin CH3 H H CH3 H 3.14 0.4969 

8. QC8 3,7-O-dimethylquercetin H H CH3 H CH3 5.40 0.7324 

9. QC9 Dillenetin CH3 CH3 H H H 6.29 0.7987 

10. QC10 3,5-O-dimethylquercetin H H CH3 CH3 H 10.32 1.0137 

11. QC11 5,7-O-dimethylquercetin H H H CH3 CH3 6.67 0.8241 

12. QC12 Ombuin H CH3 H H CH3 3.07 0.4871 

13. QC13 Ayanin H CH3 CH3 H CH3 20.79 1.3179 

14. QC14 3’,4’,5-tri-O-methylquercetin CH3 CH3 H CH3 H 4.66 0.6684 

15. QC15 
Quercetin 3’,4’,7-trimethyl 

ether CH3 CH3 H H CH3 5.90 0.7709 

16. QC16 Retusin CH3 CH3 CH3 H CH3 > 50● - 

17. QC17 
Quercetin 3’,4’,3,5,7-

pentamethyl ether CH3 CH3 CH3 CH3 CH3 23.72 1.3751 

*IC50 values of compounds to inhibit human lung cancer cell lines A549 are shown as the mean of three determinations.  
●IC50 value > 50 means that the data were not applicable. 
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QSAR is a chemoinformatic technique that utilizes 
data mining to expedite drug design and discovery. Its 
objective is to predict the biological activity of compounds 
and facilitate the design of new active compounds. 
Seventeen compounds were assessed for their 
proliferation inhibitory activity using high-throughput 
screening on the A549 lung cancer cell line. Of these, 
sixteen were O-methyl quercetin analogs, and one was 
quercetin itself. The results revealed that 15 out of these 
compounds exhibit an IC50 value < 50 µM, making them 
eligible for inclusion in the QSAR analysis. These details 
are summarized in Figure 1 and Table 1. 

3.1. Geometry Optimization and Descriptors 
Calculation 

In constructing a QSAR model, it is crucial to select 
descriptors that effectively capture the physicochemical 
properties of molecules. For this study, descriptors were 
specifically chosen to mirror the parameters outlined in 
the Hansch equation, encompassing hydrophobic, 
electronic, and steric parameters. The hydrophobicity 
parameter is represented by log P. Electronic parameters 
include descriptors such as total energy, electronic 
energy, binding energy, hydration energy, dipole 
moment, polarizability, EHOMO, and ELUMO. The steric 
parameters encompass HF, SAA, SAG, refractivity, and 
molar volume (Supplementary Table). 

Rouane et al. [21] conducted a study using seven 
physicochemical properties of eighteen quercetin 
derivatives as new chemotherapeutic agents. The QSAR 
properties calculated from HyperChem 8.0.3 were: molar 

weight, surface area grid, molar volume, molar 
polarizability, molar refractivity, hydration energy, and 
partition coefficient octanol/water (log P). Various 
physicochemical parameters, especially the log P, could 
be successfully used to model the chemotherapeutic 
activity of quercetin derivatives. 

Hydrophobicity plays a crucial role in regulating 
passive membrane transport, and calculated 
hydrophobicity metrics are often employed to predict 
drug absorption. Log P represents the molecular log P 
between the water and hydrophobic phase, with 
parameters like water and octanol commonly used to 
define hydrophobicity. Atom-based log P prediction 
considers the contribution of each atom to the log P [22]. 
In Table 2, the 15 compounds exhibited log P values 
ranging from −3.091 to −3.854, which were higher than 
the log P value of quercetin (−4.013). This indicates that as 
the number of methyl substituents increases, the 
compound’s polarity decreases. 

The difference in electronegativity between two 
atoms forming a covalent bond is represented by the 
dipole moment value [23]. A substantial difference in 
electronegativity values indicates correspondingly large 
dipole moment values [24]. Molecules with a significant 
electronegative difference exhibit polarity due to the 
uneven distribution of electrons between bonded atoms, 
resulting in a dipole moment close to 0 (zero). Based on 
the dipole moment values presented in Table 2, the 
largest and smallest dipole moments are observed in 
compounds QC8, with a value of 4.0299 Debye, and QC14, 
with a value of 1.2120 Debye, respectively. 

Table 2. Recapitulation of descriptors (5 of 14) 

No. Code 

Descriptors 
IC50 

(µM) 
Predicted IC50 

(µM) log P 
Dipole 

moment 
(D) 

HF 
(kcal/mol) 

EHOMO 
(eV) 

ELUMO 
(eV) 

GAP 
(eV) 

1 QC2 -3.981 2.2016 -219.6104 -8.9417 -0.9713 7.9705 10.78 3.18 

2 QC3 -3.981 1.4872 -217.0653 -9.0379 -0.9910 8.0469 2.63 2.28 

3 QC4 -3.981 3.6956 -169.2159 -9.1968 -1.1141 8.0827 8.14 7.78 

4 QC5 -3.981 1.7248 -208.1270 -8.6723 -1.0051 7.6672 6.26 1.60 

5 QC6 -3.981 1.7618 -217.8947 -8.7235 -1.0721 7.6514 3.08 2.18 

6 QC7 -3.949 1.8568 -202.5358 -8.8920 -0.8845 8.0075 3.14 2.96 

7 QC8 -3.949 4.0299 -162.0914 -9.1799 -1.0783 8.1016 5.40 14.07 

8 QC9 -3.949 2.0807 -209.2738 -8.9104 -0.9853 7.9251 6.29 4.46 

9 QC10 -3.949 3.8894 -151.6564 -9.1106 -0.9933 8.1173 10.32 9.14 

10 QC11 -3.949 2.6890 -200.8729 -8.6577 -0.9617 7.6960 6.67 4.26 

11 QC12 -3.949 2.2266 -207.8881 -8.6579 -1.0517 7.6062 3.07 4.02 

12 QC13 -3.918 3.4176 -152.5533 -9.2124 -1.0995 8.1129 20.79 15.66 

13 QC14 -3.918 1.2120 -191.7244 -8.8310 -1.0443 7.7868 4.66 3.60 

14 QC15 -3.918 1.4628 -203.0709 -9.0300 -0.9503 8.0798 5.90 5.16 

15 QC17 -3.854 3.2063 -128.3908 -9.1191 -09751 8.1440 23.72 22.48 
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The calculated results of electronic descriptors such 
as EHOMO, ELUMO, and the ELUMO−EHOMO gap (GAP) provide 
insights into electron transfer [23]. EHOMO denotes the 
ability to donate electrons to an acceptor. Higher EHOMO 
value indicates a tendency to donate electrons to a low-
energy acceptor (which lacks electrons). ELUMO represents 
the lowest energy level capable of accepting electrons 
[25]. The GAP serves as an index of molecular stability and 
reactivity. A higher GAP value suggests greater molecular 
stability. Molecules with large GAPs tend to have lower 
reactivity due to the increased energy required for 
electronic transitions. Conversely, molecules with a 
smaller GAP are typically more reactive as they undergo 
electronic transitions more readily. Therefore, the 
compound QC17, with the highest GAP value, exhibits the 
lowest reactivity and optimal stability. 

The HF is the alteration in enthalpy occurring when 1 
mole of a compound is created from its constituent 
elements in their standard states at 25°C and 1 
atmosphere pressure [21]. Among the 15 O-methyl 
analogs of quercetin compounds, it was observed that 
compound QC17 has the highest HF value (−128.3908 
kcal/mol), while compound QC2 has the lowest 
(−219.6104 kcal/mol). This indicates that compound QC2 
requires the least energy to form under standard 
conditions (25°C, 1 atm). Compound QC2, QC6, and QC5 
share the top three positions based on the same log P 
descriptors value (−3.981), along with other parameters 
such as HF, SAA, SAG, molar volume, total energy, 
binding energy, electronic energy, hydration energy, and 
the lowest GAP. 

In this research, the geometry optimization method 
employed is Parameterized Method 3 (PM3), processed 
using the HyperChem 8.0.7 program for Windows. PM3 is 
a semi-empirical quantum mechanical calculation 
method widely used for energy minimization. This 
method is based on Hartree-Fock theory, well-
documented with features, and recognized for its 
simplicity utilizing self-consistent field procedures [17]. 
Geometry optimization was performed after converting 
the two-dimensional compound structure into a three-
dimensional form. A stable conformation was achieved 
through an iterative process, repeated until the 
convergence limit of 0.1 kcal/mol was met. During the 
iteration process, energy calculations were conducted to 
track the compound’s conformational changes. 

3.2. Multiple Linear Regression (MLR) Analysis for 
QSAR Model Development 

The determination of the QSAR model involved 
statistical analysis using SPSS Statistics 24 with MLR. The 
dependent variable was the logarithm of the proliferation 
inhibition variable was the logarithm of the proliferation 
inhibition activity value (log IC50), while the independent 
variables comprised the values of fourteen molecular 
descriptors for the fifteen compounds in the dataset, 
utilizing the backward elimination method. MLR is a 
statistical process aimed at identifying correlations 
between descriptors as independent variables and 
activities as the dependent variable. The correlation in 
MLR was modeled with a linear function, attempting to 
predict the unknown independent variables [26]. 

The results of the MLR analysis using the backward 
elimination method, presented in Table 3, reveal three 
models. The first model, comprising ten descriptors, 
produced a correlation coefficient (R-value) of 0.973. The 
backward elimination method worked by eliminating 
descriptors with significance values > 0.1, thus reducing 
descriptors in the first model due to the significance 
values of binding energy and hydration energy being 
0.484 and 0.532, respectively. In the second model, the 
binding energy descriptor was removed, resulting in nine 
descriptors. Subsequently, the backward elimination 
method further reduced one descriptor due to the 
significance value of hydration energy being 0.290. In the 
third model, the significance values of the remaining 
eight descriptors met the criteria (< 0.1). 

In model 3, a combination of eight descriptors, 
including log P, HF, molar volume, surface area (SAA and 
SAG), dipole moment, EHOMO, and ELUMO, was created by 
grouping them into 3, 4, and 5 descriptors. This combined 
set was reanalyzed using the enter method. The purpose 
of combining descriptors was to simplify the formulation 
of the QSAR model. Subsequently, eighteen models with 
an R-value < 0.9 were generated. To improve the R-value, 
a selection process for the compound was initiated. This 
involved iteratively removing one to three compounds 
and plotting the experimental log IC50 values against the 
predicted log IC50 values using the QSAR model, resulting 
in fifteen equations with an R-value > 0.7. Microsoft Excel 
aided in predicting R2-values by creating linear 
regression graphs of experimental log IC50 and predicted 
log IC50. 

Table 3. Result of MLR with the backward method 

Model Descriptor n m R R2 SEE 

1. 
Molar volume, ELUMO, dipole moment, EHOMO, HF, 
binding energy, SAA, SAG, hydration energy, log P 15 10 0.973 0.947 0.124546 

2. 
Molar volume, ELUMO, dipole moment, EHOMO, HF, 
binding energy, SAA, SAG, log P 15 9 0.970 0.940 0.117726 

3. 
Molar volume, ELUMO, dipole moment, EHOMO, HF, 
SAA, SAG, log P 15 8 0.961 0.924 0.121603 

Note: Model is a linear regression representation; n is the number of compound data; R is the correlation coefficient; R2 is the 
coefficient determination; SEE (Standard Error of the Estimation) is an estimate of the accuracy of predictions; SAA is a surface area 
(approximation); SAG is a surface area (grid). 
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Table 4. QSAR models validation 

Model Descriptor n R R2 SEE Fcount/Ftable Q2 PRESS 

7 log P, HF, SAG, molar volume 12 0.927 0.860 0.148990 2.608 0.046 1.0579 

8 log P, dipole moment, HF, ELUMO 12 0.946 0.895 0.128636 3.634 0.964 0.3102 

18 
log P, dipole moment, HF, ELUMO, 
EHOMO 

12 0.966 0.933 0.110881 3.830 0.752 0.2742 

Note: Q2 is the LOO cross-validation coefficient; PRESS (Predicted Residual Error Sum of Squares) is a form of cross-validation in 
regression analysis to provide a summary measure of model fit to a sample of observations not used to estimate the model. 

Validation of the QSAR model aimed to assess its 
goodness and demonstrate repeatability. In linear 
regression analysis, the quality of the LOO cross-
validation, represented by the Q2-value, served as a 
crucial indicator. Q2 was utilized to evaluate the model’s 
predictive ability in the LOO method. Among the three 
QSAR models presented in Table 4, only QSAR model 7 
(Equation 3) exhibited a positive Q2-value of 0.0465. 
However, it is essential to note that the minimum 
acceptable Q2-value is 0.5 [11]. As QSAR model 7 shows 
below this threshold, indicating a lower predictive ability, 
it was not chosen for predicting the activity values of new 
compounds. 

 log IC50 = -101.998 – (22.694) log P + (0.000093) HF – 
(0.011) SAG + (0.022) molar volume (3) 

The QSAR model 8 (Equation 4) showed a Q2-value of 
0.9645. Despite meeting the Q2-value criteria, the QSAR 
model 8 had an R2-value of 0.895, which is less than 0.9. 

 log IC50 = -19.786 − (5.036) log P + (0.189) dipole 
moment − (0.001) HF − (0.570) ELUMO (4) 

The R2-value of QSAR model 8 was lower than that of 
model 18 (Equation 5), which exhibited a Q2-value of 
0.7522 and an R2-value of 0.933. In addition to a superior 
R2-value, the PRESS value of QSAR value for model 18 at 
0.2742, compared to model 8, is 0.3192. PRESS, a type of 
cross-validation in regression analysis, offers a summary 
measure of model fitness using observation samples not 
employed in model estimation. A lower PRESS value 
signifies a better model, indicating decreased potential 
errors [27]. Consequently, QSAR model 18 was selected as 
the best model for prediction. 

 log IC50 = 23.059 + (7.397) log P + (0.273) dipole moment 
− (0.005) HF − (0.733) ELUMO − (0.501) EHOMO (5) 

To validate a QSAR model, most researchers apply 
the LOO or leave-many-out (LMO) cross-validation 
procedure. Q2 is frequently used as a criterion of both 
robustness and predictive ability of the model. They do 
not test the models for their ability to predict the activity 
of compounds in an external test set. Hawkins et al. [28], 
as leading advocates of internal validation, believe that 
cross-validation is an effective method for evaluating 
model fit and determining whether the predictions can be 
applied to new, unused data. They argue that when the 
sample size is small, holding a portion of it back for 
testing is wasteful, and it is much better to use 
‘computationally more burdensome’ LOO cross-
validation [29]. 

Assessment of prediction capability and applicability 
of a QSAR model to predict newly designed or untested 
molecules is done using external validation metrics. In 
most cases, some compounds from the original dataset 
are used for validation purposes when true external data 
points are limited or not available [30]. Rouane et al. [21] 
tested the validity of their model using the LOO cross-
validation technique. A positive Q2 value indicated good 
predictive power. The PRESS value was also an important 
parameter in the validation, as it is a good estimate of the 
model’s true prediction error. 

3.2.1. New Compounds Design 

Based on QSAR model 18 (Equation 5), the activity 
prediction results in Table 2 indicated that compounds 
tamarixetin (QC3) and rhamnetin (QC6) exhibited both 
low experimental IC50 values (2.63 µM and 3.08 µM, 
respectively) and low predicted IC50 values (2.28 µM and 
2.18 µM, respectively). Notably, azaleatin (QC5) had the 
lowest predicted IC50 value (1.60 µM), even though its 
experimental IC50 value was relatively high (6.26 µM). 

On the other hand, ombuin (QC12) had a low 
experimental IC50 value (3.07 µM), but its predicted IC50 
value was comparatively higher (4.02 µM). Considering 
these factors, tamarixetin and rhamnetin were selected as 
reference compounds for structural modification. 
Apigenin, a flavonoid compound structurally similar to 
quercetin, has previously been modified by adding an O-
alkylamino group at the 4’-position, resulting in an 
increased inhibitory effect compared to apigenin itself 
[31]. 

 

Figure 2. The structures of a) tamarixetin (QC3), 
the tamarixetin that was modified with b) O-alkylamino 

in 3’-position (QC3_8), and c) O-alkylamino in 
7- position (QC3_9) 
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In this research, O-methyl analogs at the 3’- and/or 
4’-positions were modified with amino groups to 
synthesize O-methylamino-tethered quercetin 
derivatives, and their activities were predicted using 
QSAR model 18. Additionally, the hydroxyl groups of the 
reference compounds were modified with O-alkylamino 
groups at the 3’- and/or 4’-positions, and their activities 
were predicted using the QSAR model, favoring secondary 
or primary amines with free amino groups at the terminal 
of the side chains. 

The catechol groups (3’- and 4’-OH from ring B) and 
the 3-OH group from ring C of quercetin are known to be 
more reactive sites. The 7-OH group participates as a 
reaction orientor, not as a direct H donor in radical 
scavenging. It is believed that the loss of the H atom from 
the 4’-OH group gives rise to the semiquinone quercetin 
radical, considered the most stable radical that promotes 
deactivation of radicals when proton and/or electron 
transfers occur [32]. Elevated levels of reactive oxygen 
species (ROS) can lead to oxidative stress, causing an 
overstimulation of signal transduction pathways and 
heightened cell proliferation. High ROS levels also lead to 
metabolic adaptation to the tumor microenvironment, 
promoting tumorigenesis. Quercetin modulates both 
internal and external pathways within protein kinase-C 
(PKC) signaling. PKC, a crucial regulator of cell growth 
and differentiation in mammals, depends partially on 
ROS activation. PKC inhibits cell proliferation and 
apoptosis in cancer cells. Quercetin acts as a preventive 
agent against cancer by improving the regulation of p53, 
the frequently inactive tumor suppressor [32]. 

Quercetin’s bioavailability is intricately linked to its 
bioaccessibility. However, the effectiveness of quercetin 
is constrained by factors such as its hydrophobicity, 
inadequate gastrointestinal absorption, instability in 
physiological fluids, and significant xenobiotic 
metabolism in the liver and intestines, primarily through 
glucuronidation or sulfation. These factors collectively 
contribute to the notably low oral bioavailability of 
quercetin [33]. 

 

Figure 3. The structures of a) rhamnetin (QC6); the 
rhamnetin that is modified with b) O-alkylamino in 3’-

position (QC6_7), c) O-alkylamino in 4’-position 
(QC6_8), and d) O-alkylamino in 3’- and 4’-positions 

(QC6_9) 

3.2.2. Molecular Docking 

Before initiating molecular docking, the EGFR-TK 
receptor complexed with the native ligand 
4- anilinoquinazole (erlotinib) from PDB with PDB ID: 
1M17 was prepared. This involved removing water 
molecules and separating the receptor from the native 
ligand. The purpose of removing water molecules was to 
prevent interference during the docking process. 

Molecular docking was conducted using the DOCK 
6.9 program, employing an incremental construction 
algorithm. In this approach, the ligand was fragmented 
from rotatable bonds into several segments. The anchor 
segment, considered a fragment demonstrating 
maximum interaction with the receptor surface, 
possessing a minimum number of alternative 
conformations, and exhibiting relative rigidity, such as a 
ring system, was prepared first. Subsequently, each 
additional fragment was added step by step. Fragments 
with a higher fragment were added step by step. 
Fragments with a higher probability, indicating 
interactions like hydrogen bonds, were ideally first to 
account for the specificity and ensure accurate geometric 
prediction. The algorithm evaluated the poses with the 
least energy after adding each fragment for the next 
iteration, making it robust and fast [34]. 

The classical force field-based scoring function 
calculated bond energies by accumulating van der Waals 
and electrostatic interactions between atom-ligand pairs 
[35]. However, a limitation of this function was its failure 
to consider charged groups, leading to a preference for a 
polar environment. On the contrary, no polar groups, 
typically associated with the desolvation effect, tended to 
favor a non-polar environment. 

The validation assessment aimed to assess the 
simulation’s capability to generate the pose and structure 
of the native ligand. The validation process was based on 
the RMSD, which quantifies the deviation in pose distance 
between redocking compared to before docking. The 
molecular docking validation using DOCK 6.9 was carried 
out on the Ubuntu operating system through the terminal 
to execute commands. The flexible molecular docking 
command was executed with the flex.in file setting until a 
qualified RMSD value was achieved. Redocking of native 
ligand resulted in an RMSD value of 1.0987 Å, meeting the 
specified requirements (< 2 Å). 

 

Figure 4. Visualization of redocking results with a) UCSF 
Chimera and the RMSD value is 1.0987 Å, and with 

b) Discovery Studio Visualizer for showing the 
interaction bond between ligand and receptor 
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Table 5. Molecular docking of new compounds results 

No. Code IUPAC name 
Predicted IC50 

(µM) 
Grid score 
(kcal/mol) 

Amino acid residues 

Hydrogen bond Hydrophobic bond 

1. QC3_8 
3,5,7-trihydroxy-2-(4-methoxy-3-
((methylamino)methoxy) phenyl-
4H-chromen-4-one 

4.39 −68.464 
Lys721; 

Met769; Asp831 

Leu694; Val702; 
Ala719; Cys751; 

Met742; Leu820 

2. QC3_9 
3,5-dihydroxy-2-(3-hydroxy-4-
methoxyphenyl)-7-((methyl amino) 
methoxy)-4H-chromen-4-one 

4.50 −70.847 
Gln767; 

Met769; Cys773 

Leu694; Val702; 
Ala719; Glu738; 
Gly772; Leu820 

3. QC6_7 
3,5-dihydroxy-2-(4-hydroxy-3-
((methylamino)methoxy) phenyl)-7-
methoxy-4H-chromen-4-one) 

1.76 −77.699 
Met742; 
Met769 

Leu694; Val702; 
Ala719; Lys721; 
Glu738; Cys773; 

Leu820 

4. QC6_8 
3,5-dihydroxy-2-(3-hydroxy-4-
((methylamino)methoxy) phenyl)-7-
methoxy-4H-chromen-4-one 

1.98 −79.458 

Glu738; 
Met769; 

Gly772; Thr830; 
Asp831 

Leu694; Val702; 
Ala719; Lys721; 

Leu820 

5. QC6_9 
2-(3,4-bis(methylamino)methoxy) 
phenyl)-3,4-dihydroxy-7-methoxy-
4H-chromen-4-one 

2.81 −96.153 

Ala719; Lys721; 
Glu738; 
Leu764; 
Thr766; 
Met769; 

Gly772; Thr830 

Leu694; Val702; 
Leu820; Asp831 

 

Figure 5. Binding interactions of (a) QC6 (rhamnetin as 
O-methyl quercetin analog) and (b) QC6_9 

(modification of rhamnetin with O-alkylamino) with 
Met769 as the active amino acid of EGFR-TK 

The results were obtained by setting the parameters 
in the flex.in file, such as: pruning_max_orients 
(maximum orientations produced before pruning), set to 
900; pruning_clustering_cutoff (maximum number of 
clusters retained from pruning), set to 90; 
pruning_conformer_score_cutoff (maximum score 
allowed for the conformer), set to 10; max_orientations 
(maximum number of orientations), set to 2000; and 
simplex_grow_max_orientations (maximum number of 
iterations per cycle per receptor), set to 471. 

The redocking results were visualized with the 
Chimera program (Figure 4a), revealing that the native 
ligand acted as a hydrogen bond acceptor with the active 
amino acid residue Met769 in the EGFR-TK receptor. This 
interaction occurred through the nitrogen atom in the 
heterocyclic structure, forming various bonds. These 
include conventional hydrogen bonds (N...HN) with 
residue Met769, carbon-hydrogen bonds with residues 
Leu694 and Gln767, pi-sigma (symbol) bonds with 
residues Leu820, alkyl bonds with residue Leu764, and 
pi-alkyl (symbol) bonds with residues Leu694, Ala719, 
Lys721, and Leu820. Van der Waals interactions occurred 
with residues Glu738, Leu753, Leu763, Gly772, and 
Asp831 (Figure 4b). 

A conventional hydrogen bond was formed between 
the new O-alkylamino-modified compound and the 

catalytic residue Met769, with the carbonyl group on ring 
C acting as the hydrogen bond acceptor (O...HN). Among 
the compounds, QC3_8 (Figure 2b) had the longest bond 
distance (2.407 Å), while QC3_9 (Figure 2c) formed the 
strongest and most stable bond with Met769 (1.910 Å). 
Consistent with Zubair et al. [4] study, in the molecular 
docking of quercetin compounds with EGFR-TK, 
quercetin was found to interact with the catalytic residue 
Met769 via a hydrogen bond and exhibit hydrophobic 
interactions with several amino acids, namely Leu820, 
Leu694, Ala719, and Lys721 within the hydrophobic 
pocket of the EGFR-TK protein. Met769 is a key residue in 
inhibitor binding to the EGFR-TK receptor, similar to how 
erlotinib binds to the EGFR-TK receptor [36]. 

The docking results for five newly designed 
compounds (Table 5) showed grid scores ranging from 
−68.4645 to −96.1534 kcal/mol, which were more 
negative than those of quercetin (−47.2471 kcal/mol) and 
the reference compound rhamnetin (−55.9166 kcal/mol). 
Notably, QC6_7 (Figure 3b) and QC6_8 (Figure 3c) 
exhibited better predicted IC50 values at 1.76 µM and 1.98 
µM, respectively, with corresponding grid scores of 
−77.6986 kcal/mol and −79.4575 kcal/mol. The 
determination of the most stable drug and receptor 
complex was based on the smallest docking score [30], 
indicating that QC6_7 and QC6_8 formed more stable 
complexes with EGFR-TK than quercetin and rhamnetin. 
Considering the predicted IC50 value and docking scores 
indicate that QC6_7 and QC6_8 have strong potential as 
more potent lung cancer drug candidates than quercetin. 

Compared to molecular docking, QSAR provides a 
statistical model that correlates structural features with 
activity. A total of seventeen O-methyl quercetin analogs, 
as small molecules, were screened and optimized to 
predict active compounds. Derivatization through 
structural modification with O-alkylamino groups can 
potentially enhance biological activity and reduce 



 Jurnal Kimia Sains dan Aplikasi 28 (6) (2025): 316-326 325 

toxicity. Molecular docking shows how and where the 
compounds might bind to the active amino acid of EGFR-
TK, giving hit compounds a mechanistic understanding. 
The bioactive compounds of Glycyrrhiza glabra as EGFR 
inhibitors have been screened against the EGFR catalytic 
site and binding energies to the EGFR. These active 
compounds were found to engage with essential residues 
of the EGFR, indicating their possible role as receptor 
inhibitors. Moreover, these hits exhibit favorable drug-
like characteristics and warrant additional investigation 
for their possible use in cancer treatment [37]. 

4. Conclusion 

From this computational research, the optimal QSAR 
model was established using five validated descriptors 
through the LOO method: log P, dipole moment, heat of 
formation (HF), EHOMO, and ELUMO. The statistical criteria 
for model accuracy include R = 0.966; R2 = 0.933; 
Fcount/Ftable = 3.829853; and Q2 = 0.752226. Among five new 
O-alkylamino-modified compounds predicted, QC6_7 
and QC6_8 had the lowest IC50 values. Both are rhamnetin 
derivatives with O-alkylamino substitutions at the 3’- 
and 4’-positions of ring B, and molecular docking 
indicated more negative grid scores than quercetin, 
rhamnetin, and the native ligand. Consequently, QC6_7 
and QC6_8 emerge as promising candidates for cancer 
drugs, specifically as EGFR-TK receptor inhibitors, based 
on their favorable QSAR predictions and molecular 
docking outcomes. To determine whether the O-methyl 
quercetin and O-methyl quercetin-O-alkylamino are able 
to inhibit EGFR-TK as an anticancer, it is necessary to 
conduct an in vitro test on the EGFR enzyme and A549 
human cancer cells. To support the in vitro test, 
additional expensive in vivo research is needed to verify 
the molecule’s safety and activity in a biological system.  
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