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Aluminated Santa Barbara Amorphous-15 (Al-SBA-15) materials were 
successfully synthesized using an ultrasonic-enhanced hydrothermal method. 
The synthesis was conducted by varying the mole ratio of Si precursor and Al 
precursor (10 and 20), sonication time (3 and 5 hours), and solvent type (2 M 
hydrochloric acid (HCl) and distilled water). The resulting materials were 
characterized using N2 sorption analyzer, Fourier Transform Infrared 
Spectroscopy (FTIR), Small-Angle X-ray Diffraction (SAXRD), Scanning Electron 
Microscopy (SEM), and Ammonia-Temperature Programmed Desorption (NH3-
TPD). FTIR spectra confirmed the presence of siloxane, silanol, and hydroxyl 
functional groups in all Al-SBA-15 samples. SAXRD analysis showed three 
characteristic peaks of SBA-15, indicating a two-dimensional hexagonal 
structure (p6mm). Increasing the sonication time enhanced the surface area from 
718 to 767 m2/g, while reducing the pore diameter from 5.96 to 4.81 nm and the 
pore volume from 1.07 to 0.92 cm3/g. Raising the Si:Al molar ratio slightly 
increased the surface area (718 to 722 m2/g) and decreased the pore diameter and 
volume. Additionally, using distilled water instead of 2 M HCl as the solvent raised 
the surface area from 722 to 785 m2/g, while decreasing the pore diameter from 
5.61 to 5.05 nm and slightly lowering the pore volume. The acidity of the Al-SBA-
15 material varied according to the sonication time and the amount of Al precursor 
used, suggesting the potential of regulating the acidic properties through 
optimization of the synthesis parameters. 

 

1. Introduction 

The synthesis of materials for various applications 
continues to expand through the development of diverse 
methods. Despite providing significant benefits, well-
established methods often generate hazardous chemical 
waste that negatively impacts the environment. With the 
increasing awareness of sustainability, the concept of 
green chemistry is being applied to develop cleaner, more 
efficient, and environmentally friendly synthesis 
processes, with a focus on reducing hazardous waste and 
improving the safety of the synthesis process [1]. 

One of the most widely developed materials is a 
catalyst with a large surface area and physicochemical 
properties that can be controlled. Mesoporous silica, such 
as Santa Barbara Amorphous-15 (SBA-15), effectively 
supports catalysts due to its high surface area. This 
material can be synthesized using various methods, most 
of which employ specific templates to control the pore 
structure, such as the microemulsion template method 
[2], the ionic block copolymer template method [3], the 
emulsion-mediated method using oil [4], or the 
hydrothermal method using structure-directing 
molecules [5]. 
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SBA-15 is a mesoporous material characterized by an 
organised hexagonal architecture, exhibiting elevated 
surface areas, significant pore volumes [6]. In addition to 
its mesopores, SBA-15 contains micropores within its 
pore walls, which enhance its surface area and pore 
volume and are advantageous for adsorption and catalysis 
[7]. The properties of SBA-15 enable this mesoporous 
material to be suitable for use as a catalyst support [8, 9] 
and adsorbent [10, 11]. SBA-15 exhibits greater 
hydrothermal stability than Mobil Composition of Matter 
No. 41 (MCM-41) and Hexagonal Mesoporous Silica 
(HMS), which possess a hexagonal structure, owing to 
their thicker pore walls [12]. However, pure silica-based 
SBA-15 has a limited number of acid sites, which can be a 
drawback in certain catalytic applications. 

Increased acidity can be achieved by metal doping 
into the SBA-15 framework [13]; one of which uses 
aluminium to produce Al-SBA-15. This modification aims 
to introduce more Brønsted acid sites into the structure, 
improving catalytic performance. The addition of other 
metals, such as nickel, is also reported to enrich Lewis 
acid sites and improve the catalytic properties of SBA-15 
[14]. Thus, the addition of aluminium is based on its 
ability to enhance both the structural stability and acidity 
of the SBA-15 framework. Incorporating Al into the silica 
network in place of silicon has been shown to increase the 
number of acid sites and improve catalytic performance 
[14]. 

The choice of synthesis method is crucial to produce 
Al-SBA-15 with optimal characteristics. The 
hydrothermal method, involving the formation of sol and 
gel, is a common approach involving the formation of a 
homogeneous precursor solution at the molecular level, 
followed by polymerization into a gel [15]. The 
hydrothermal method, which involves the formation of 
sol and gel, is a widely used technique wherein a 
homogeneous precursor solution is prepared at the 
molecular level and subsequently polymerized into a gel 
[15]. However, this process is relatively slow (up to 24 
hours in the hydrolysis process) and sometimes results in 
a less uniform particle size distribution [5, 15]. One 
approach to overcoming these limitations is using 
ultrasonic irradiation (sonication) to accelerate sol–gel 
reactions. Sonication produces strong mechanical 
vibrations that accelerate chemical reactions and improve 
material homogeneity [16]. The combination of the 
hydrothermal method and sonication offers great 
potential in improving the structure and properties of the 
synthesized material [14]. 

This study aims to prepare Al-SBA-15 material using 
the ultrasonic-enhanced hydrothermal method. The 
novelty in this study is the use of sonication to accelerate 
the synthesis while evaluating the effect of variation in 
sonication time, solvent acidity, and mole ratio of Si 
precursor and Al precursor on the characteristics of the 
resulting mesoporous material. Previous studies have 
demonstrated that ultrasonic treatment improves 
precursor dispersion and facilitates the formation of a 
more uniform mesostructure, resulting in materials with 
increased surface areas and enhanced porosity [17, 18]. 
The acidity of the solvent was evaluated as it may affect 

the hydrolysis-condensation kinetics and the template-
silica interaction, while the Si:Al ratio may influence the 
material’s acidity and catalytic performance. The 
resulting materials synthesized under different 
conditions were characterized with a BET surface area 
and pore size analyzer, Fourier transform infrared 
(FTIR), small-angle X-ray diffraction (SAXRD), scanning 
electron microscopy (SEM), and ammonia temperature 
programmed desorption (NH3-TPD). 

2. Experimental 

2.1. Equipment 

The equipment used were an analytical balance 
(Precision Instruments), oven (Kirin KBO-90M), 
desiccator, set of glassware, thermometer, pH meter 
(Hanna Instruments HI98107), porcelain cup, Krisbow 
Vacuum Pump 3/4 HP ERSV07, Buchner funnel, furnace 
(Kalstein Model YR 05273), and Krisbow Ultrasonic 
Cleaner 1400 mL with Ultrasonic Frequency 42 kHz. 

2.2. Chemicals 

The chemicals used were Pluronic 123 (poly(ethylene 
glycol)-block-poly(propylene glycol) block-
poly(propylene glycol)) (Sigma-Aldrich), 32% 
hydrochloric acid (Allinckrodt), tetraethylorthosilicate 
(TEOS) (Sigma-Aldrich), aluminum nitrate nonahydrate 
(Al(NO3)3.9H2O) (Merck KGaA), and Whatman 42 filter 
paper. 

2.3. Al-SBA-15 Synthesis 

The synthesis of Al-SBA-15 mesoporous silica 
material was carried out using a modification of the 
method of Zhao et al. [15] and Sarah et al. [16]. Sixteen 
grams of Pluronic 123 were added to an Erlenmeyer flask 
containing 640 mL of 2 M HCl solution and dissolved by 
stirring at room temperature until complete dissolution 
occurred (Solution A). Solution B was prepared by 
dissolving 3.46 g of Al(NO3)3.9H2O in distilled water (mole 
ratio of Si to Al precursors = 20) or 6.91 g of Al(NO3)3.9H2O 
in distilled water (mole ratio of Si to Al precursors = 10). 
Solution A was subjected to sonication at an ultrasonic 
frequency of 42 kHz for 10 minutes, after which solution 
B was incorporated into solution A. After 30 minutes of 
mixing, 38.4 mL of TEOS was added dropwise, and the 
mixture was subjected to sonication for a duration of 
either 3 or 5 hours at 40–50°C, depending on the targeted 
sample code (e.g., 103A for 3 hours sonication, 105A for 
5 hours sonication, Table 1). 

Table 1. The synthesis conditions of Al-SBA-15 

Sample code 
Molar ratio of 

Si and Al 
precursors 

Solvent 
Sonication 

time 
(hour) 

Al-SBA-15 
203A 20 HCl 2 M 3 

Al-SBA-15 
103A 10 HCl 2 M 3 

Al-SBA-15 
105A 10 HCl 2 M 5 

Al-SBA-15 
203 20 

Distilled 
water 3 
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The mixture was then subjected to an oven at 100°C 
for 24 hours to undergo the hydrothermal aging process. 
The mixture was allowed to cool to room temperature and 
then filtered with a Buchner funnel and vacuum pump 
until a white solid was obtained. During the filtration 
procedure, the white particles were rinsed with distilled 
water until the pH of the filtrate matched that of distilled 
water. The resultant white solid was dried in an oven at 
100°C and subsequently calcined at 500°C for 16 hours. 
The outcome achieved was a white, fine powder. In order 
to investigate the effect of solvent acidity, a comparative 
synthesis was conducted using 640 mL of distilled water 
to dissolve Pluronic 123 instead of 2 M HCl, while all other 
synthesis conditions were kept constant. In addition, 
after the sonication process for 3 hours, the mixture was 
allowed to stand for 48 hours at room temperature before 
aging. The variation of synthesis conditions and the 
naming of the resulting materials are shown in Table 1. 

Characterization of Al-SBA-15 material was carried 
out using several instruments. Surface area, pore 
diameter, and pore volume were analyzed with the BET 
surface area and pore size analyzer Nova Touch LX-4 with 
a degassing temperature of 150°C. FTIR Bruker Alpha II 
was used to determine the functional groups of the 
material produced. Small-angle XRD analysis was 
conducted using a D-8 Advance XRD instrument under 
the following conditions: 20 kV/5 mA, divergence slit 0.1, 
Soller slit 2.5°, and LYNXEYE-XET detector with a 5.8° 
opening. The acidity of the catalyst was determined by 
NH3-TPD analysis using a ChemiSorb 2750 instrument 
(Micromeritics). Surface morphology was observed using 
a Phenom X5 Pro Desktop SEM (Thermo Fisher 
Scientific). 

3. Results and Discussion 

SAXRD analysis of the synthesized Al-SBA-15 
materials (Figure 1) shows three clear diffraction peaks, 
attributed to the (100), (110), and (200) planes, 
respectively. These three planes are characteristic of a 
two-dimensional hexagonal mesoporous structure with 
p6mm symmetry [15, 19], which confirms that the 
Al- SBA-15 material has been successfully synthesized 
with high mesostructure regularity. 

Peak (100) has a dominant intensity, while peaks 
(110) and (200) appear with weak intensity at larger 2θ 
angles, following the typical diffraction pattern of SBA-15 
[15]. A shift of the diffraction peaks towards larger angles 
was observed as the sonication time increased. This shift 
indicates a decrease in the lattice spacing (d100), 
indicating a contraction in the mesoporous framework 
[16]. 

In addition, increasing the molar ratio of Si and Al 
precursors and the use of acid solvents also caused the 
(100), (110), and (200) diffraction peaks to shift more to 
the right. This indicates that modification of Si and Al 
composition and synthesis conditions affects the 
regularity and shrinkage of the mesoporous structure 
formed. Presumably, the integration of Al into the silica 
framework through condensation reactions results in a 
denser structure [20]. 

 

Figure 1. SAXRD patterns of Al-SBA-15 materials 

 

Figure 2. The FTIR spectra of Al-SBA-15 materials: 
(a) Al-SBA-15 105A, (b) Al-SBA-15 103A, (c) Al-SBA-15 

203A, (d) Al-SBA-15 203 

FTIR analysis was conducted to identify functional 
groups in the Al-SBA-15 materials and compared with 
those of SBA-15 to examine the effect of aluminum 
incorporation into the silica framework. The FTIR spectra 
of Al-SBA-15 material (Figure 2) show absorption bands 
at 3100-3700 cm−1, indicating the excitation of H-bound 
groups from Si-OH [21]. More specifically, in the Al-SBA-
15 203A material, there is an absorption at 3418 cm−1 
associated with silanol hydroxyl groups and adsorbed 
water molecules, as well as an absorption at 1620 cm−1 
indicating adsorbed water vibrations. Anti-symmetric 
and symmetric stretching siloxane groups are 
characterized by absorption at 1050 cm−1 and 776 cm−1, 
while symmetric stretching silanol groups are seen at 960 
cm−1 [16]. Al-SBA-15 103A, Al-SBA-15 105A, and Al-SBA-
15 203 materials show similar patterns with absorption 
bands at slightly different wavelengths (Table 2). 

When compared to a study by Xie and Hu [22] on pure 
SBA-15 material, the absorption bands of the synthesized 
Al-SBA-15 material have slightly shifted, especially for 
the Si-O-Si (anti-symmetric stretching) (Table 2). This 
shift indicates that the integration of aluminium metal 
into the SBA-15 framework affects the chemical 
environment of the molecule and strengthens the Al-O 
bond compared to the Si-O [21]. This may be due to the 
smaller ionic radius of Al and its lower electronegativity 
than Si, resulting in stronger metal-oxide interactions 
[23]. 
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Table 2. Comparison of FTIR absorption bands of Al-SBA-15 materials 

Functional group 
Wave number (cm−1) 

Al-SBA-15 
203A 

Al-SBA-15 
103A 

Al-SBA-15 
105A 

Al-SBA-15 
203 SBA-15* [22] 

Si-O-Si (symmetric 
stretching) 

776 796 795 790 780 

Si-OH (symmetric 
stretching) 960 965 966 965 950 

Si-O-Si (anti-symmetric 
stretching) 1050 1069 1066 1065 1080 

-OH (bending vibration) 1620 1629 1631 - 1635 

-OH (silanol) 3418 3408 3366 3349 3460 

 

Figure 3. N2 adsorption-desorption isotherm curves of 
Al-SBA-15 materials 

The N2 adsorption/desorption isotherm curves of all 
Al-SBA-15 materials synthesized in this study show a 
type IV isotherm curve with H1 type hysteresis loop [15] 
(Figure 3). Thus, these isotherms confirm that all the 
synthesized Al-SBA-15 materials are mesoporous. The 
appearance of the hysteresis loop is due to capillary 
condensation, which occurs because the pore width 
exceeds a certain size, depending on the adsorption 
system and temperature [24]. The isotherm curve also 
shows the difference in the amount of nitrogen gas in the 
adsorption and desorption process. At the same relative 
pressure, a larger amount of nitrogen remains on the 
material surface during desorption than during 
adsorption, resulting in a hysteresis loop. At a relative 
pressure (P/Po) of ≤0.6, nitrogen gas adsorption forms a 
monolayer; as the relative pressure increases to ≥0.6, 
multilayer adsorption occurs. Based on the isotherm, the 
total nitrogen adsorbed of the synthesized Al-SBA-15 
materials ranges from 600 to 700 cm3/g, with the highest 
uptake observed in sample Al-SBA-15 203. 

Increasing the concentration of the aluminium 
precursor (i.e., reducing the Si/Al molar ratio) results in a 
slight decrease in surface area, with an increase in pore 
diameter and pore volume, as shown in the samples Al-
SBA-15 203A (Si/Al = 20) and Al-SBA-15 103A (Si/Al = 10) 
(Table 3). The surface area showed a minimal change 
from 722 m2/g to 718 m2/g, which is within the expected 
range of variation for BET measurements. Meanwhile, the 
pore diameter increased from 5.61 nm to 5.96 nm, and the 
pore volume rose from 1.01 to 1.07 cm3/g. The effect of Al 
incorporation was studied by comparing these values 
with those of an SBA-15 sample synthesized without 
aluminum under similar synthesis conditions [9], which 
had a surface area of 652 m2/g, a pore diameter of 7.72 
nm, and a pore volume of 1.31 cm3/g. These results suggest 
that aluminium incorporation may affect pore size 
development, resulting in narrower mesopores and 
slightly lower pore volumes, while enhancing the surface 
area under optimized conditions. The observed changes 
align with previous findings, indicating that 
incorporation of aluminium can affect the mesostructure 
by distorting the silica network, decreasing wall 
regularity, and influencing pore dimensions [15, 25]. 

In addition, variations in sonication time showed 
that longer sonication increased the surface area of the 
materials but decreased their pore diameter and volume. 
For example, Al-SBA-15 105A (5 hours of sonication) 
exhibited a higher surface area (767 m2/g) than Al-SBA-
15 103A (3 hours of sonication), which had a surface area 
of 716 m2/g. However, the pore diameter and volume of 
Al-SBA-15 103A were larger (5.96 nm and 1.07 cm3/g, 
respectively) than those of Al-SBA-15 105A, which were 
4.81 nm and 0.92 cm3/g. The results can be attributed to 
the sonication mechanism, in which ultrasonic waves 
induce acoustic cavitation (the formation and collapse of 
microbubbles within the solution). This cavitation 
improves the mixing and dispersion of precursors on the 
molecular scale [26]. Sonication for a sufficiently long 
time (e.g., 3 hours) helps a more homogeneous 
distribution between Pluronic 123 surfactant as template 
and TEOS as silica source, thus forming denser pore walls 
and higher surface area [27]. However, excessive 
sonication (e.g., 5 hours) potentially destabilizes the 
mesoporous structure, causing the pore walls to become 
thinner or partially collapse, resulting in decreased pore 
diameter and volume [28]. 

Revised figure: 
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Table 3. Surface area, pore diameter, and pore volume of 
Al-SBA-15 synthesized under various conditions 

Material 
Surface 

area 
(m2/g) 

Pore 
diameter 

(nm) 

Pore 
volume 
(cm3/g) 

Al-SBA-15 203A 722 5.61 1.01 

Al-SBA-15 103A 718 5.96 1.07 

Al-SBA-15 105A 767 4.81 0.92 

Al-SBA-15 203 785 5.05 0.99 

Al-SBA-15 (stirring 
for 20 hours, 

Si/Al=20) [19] 
448 11.3 1.45 

 

Figure 4. SEM images of Al-SBA-15 (a) 203A and (b) 203 
with 25,000× magnification 

Compared to the Al-SBA-15 material synthesized 
under similar conditions using Pluronic 123 as a template 
and TEOS as the silica source, but with 20 hours of 
conventional stirring (non-sonication) [19], the 
sonication-assisted material synthesized in this study 
exhibits a higher surface area (722–785 m2/g vs. 448 
m2/g) (Table 3). This indicates that the sonication method 
significantly improves the dispersion of the precursors 
and forms a more ordered silica network structure in a 
shorter time. Meanwhile, the pore diameter and pore 
volume of the samples with sonication were lower than 
those of the non-sonicated samples. This is possible 
because the use of ultrasonic waves accelerates the 
formation of silica walls around the surfactant template, 
resulting in smaller pore sizes [17]. 

The use of acidic solvents (2 M HCl) compared to 
distilled water resulted in a decrease in surface area (from 
785 to 722 m2/g), alongside a slight increase in pore 
diameter (from 5.05 to 5.61 nm) and pore volume (from 
0.99 to 1.01 cm3/g) (Table 3). Under acidic conditions, the 
hydrolysis of TEOS was facilitated by the protonation of 
ethoxy groups, resulting in the formation of silanol (Si–
OH). The following condensation could occur rapidly 
because of the high proton concentration; however, the 
fast polycondensation rate may disrupt the self-assembly 
involving the Pluronic 123 template. Wang et al. [29] 
found an increase in the rate of silica polycondensation in 
acidic conditions, which can result in larger pores but 
with less uniform pore size distribution and lower surface 
areas. In contrast, water, acting as a neutral solvent, may 
slow these processes, facilitating improved template–
silica interaction and yielding an increased surface area. 

Table 4. The acidity of Al-SBA-15 materials 

No. Material 
Acidity 

(mmol/g) 

1 Al-SBA-15 203A 0.8328 

2 Al-SBA-15 103A 0.3842 

3 Al-SBA-15 105A 0.5835 

4 Al-SBA-15 203 0.6784 

5 SBA-15 [30] 0.0400 

 

Figure 5. NH3-TPD curves for Al-SBA-15 materials 

The SEM image of the Al-SBA-15 203A material 
shows that the aggregate shape is rod-shaped [31], while 
the Al-SBA-15 203 material has a hexagonal prism 
structure [32] (Figure 4). Based on the results obtained, 
there are differences in the morphology of the two Al-
SBA-15 mesoporous silica materials synthesized using 
acidic solvents and distilled water. This difference in 
morphology indicates that the type of solvent affects the 
formation of the Al-SBA-15 structure. Research by Lee et 
al. [33] showed that the morphology of SBA-15 can be 
controlled through synthesis conditions. 

NH3-TPD is a method used to calculate the number of 
acid sites on solid catalysts [30]. Figure 5 shows a broad 
peak in the temperature range of 650-750°C on the NH3-
TPD curves of the four mesoporous Al-SBA-15 materials, 
suggesting that these materials contain acid sites with 
varying acid strengths. The occurrence of desorption 
temperature in the range above 500°C states the strong 
acidity of the material [14]. The acidity of each material 
studied can be seen in Table 4. Compared to the acidity of 
SBA-15 tested by Rakngam et al. [34], these 
characterization results prove that the integration of 
aluminium metal into the SBA-15 structure can increase 
the acidity of the material. The ordered acidity of the 
tested materials is as follows: Al-SBA-15 203A > Al-SBA-
203 > Al-SBA-15 105A > Al-SBA-15 103A. 

An increase in the mole ratio of Si to Al precursors in 
this study resulted in a decrease in the acidity of the 
synthesized material. A similar trend was reported for Al-
SBA-15 synthesized without sonication at Si/Al ratios of 
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10 and 20 [19]. This reduction in acidity may be attributed 
to the decreased regularity and stability of Brønsted acid 
sites. At higher aluminum content, the acid sites tend to 
be less uniformly distributed, which may reduce the 
overall number of effective acid sites. Although the 
formation of additional Lewis acid sites occurs, these are 
generally weaker than Brønsted acid sites and therefore 
contribute less to the material’s total acidity. Conversely, 
increasing the sonication time enhances the acidity, likely 
by promoting a more uniform distribution of Al and Si 
atoms, which facilitates the formation of additional 
surface acid sites [14]. 

4. Conclusion 

The Al-SBA-15 synthesized in this study exhibits 
mesoporous silica characteristics, with a surface area of 
718–785 m2/g, pore diameter of 4.81–5.96 nm, and pore 
volume of 0.92–1.07 cm3/g. Optimization of the synthesis 
conditions, particularly the use of distilled water as 
solvent and the application of optimal sonication time, 
proved effective in increasing the surface area. FTIR 
spectra confirmed the presence of siloxane, silanol, and 
hydroxyl functional groups, while SAXRD patterns 
showed a two-dimensional hexagonal structure (p6mm) 
with indications of changes in lattice spacing due to the 
mole ratio of Si and Al precursors and the type of solvent 
used. The morphological variations identified through 
SEM analysis, namely hexagonal prisms in Al-SBA-15 203 
and rod shapes in Al-SBA-15 203A, indicate that the 
solvent plays an important role in directing the growth of 
mesoporous structures. In addition, NH3-TPD analysis 
showed that the acidity of the materials varied between 
0.38 and 0.83 mmol/g, with Al-SBA-15 203A achieving 
the highest acidity, indicating the potential of these 
materials for high acidity-based catalytic applications. 
Overall, these results confirm the importance of synthesis 
parameter control in designing Al-SBA-15 materials with 
optimized texture, structure, and acidity properties. 
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