Preparation of CoFe₂O₄/SiO₂/Ag Magnetic Composite as Photocatalyst for Congo Red Dye and Antibacterial Potential

Salni a, Muhammad Said b, Eliza b, Anggun Dita Dyah Gayatri b, Poedji Loekitowati Hariani b, c

a Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia
b Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia

*Corresponding author: puji_loekitowati@mitpa.unsri.ac.id

https://doi.org/10.14710/jksa.25.7.235-244

Abstract

This research reports the synthesized CoFe₂O₄/SiO₂/Ag magnetic composite used as a photocatalyst to degrade Congo red dye and antibacterial agent against *Staphylococcus aureus* (*S. aureus*) and *Escherichia coli* (*E. coli*). The catalysts were characterized using XRD, SEM–EDS, VSM, UV–DRS, and pHzc. The effects of photocatalyst dose (0.25, 0.5, 0.75, and 1.0 g/L), dye concentration (10, 20, 30, and 40 mg/L), and irradiation time (0–210 minutes) were all examined as photocatalytic degradation variables. The results showed that the CoFe₂O₄/SiO₂/Ag composite was superparamagnetic with a saturation magnetization of 41.82 emu/g and had a band gap of 1.82 eV. The highest efficiency of decreasing the concentration of Congo red dye of 93.70% was obtained with an initial concentration of 10 mg/L, a catalyst dose of 0.5 g/L, and an irradiation time of 180 minutes. This study indicated that the composite had antibacterial properties against Gram-positive (*S. aureus*) and Gram-negative (*E. coli*) bacteria with the same MIC value of 1.25%. These results indicated that the CoFe₂O₄/SiO₂/Ag composite has significant potential for applications in wastewater treatment.

1. Introduction

Environmental pollution by chemicals is a significant problem in the manufacturing process. Therefore, it is necessary to minimize the harmful effects of the waste [1]. In the textile industry, approximately 20–30% of the dye becomes waste during the process [2]. Most dyes are carcinogenic, non-biodegradable, light stable, and ecologically safe [2, 3]. Congo red (CR) is an anionic dye used in the textile industry with diazo and aromatic groups. It is carcinogenic and mutagenic, which causes problems when discharged into the environment [4].

The Advanced Oxidation Process (AOP) is based on the degradation of pollutants using highly reactive species such as hydroxyl radicals (·OH). This method is very suitable for degrading pollutants that are difficult to remove by conventional processes such as coagulation, precipitation, filtration, and more [5, 6, 7]. Among the AOPs, heterogeneous photocatalysis is an attractive method because it has been used to degrade various organic pollutants. This method was conducted at room temperature, which caused total organic mineralization into CO₂, H₂O, and mineral acids [8]. Magnetic ferrite and its composites are promising catalysts with several advantages, such as easy separation from the solution using a permanent magnet after degradation [9].

Among magnetic ferrites, CoFe₂O₄ is one compound that has unique properties such as high Curie temperature (*Tc* ~ 520°C), cubic magnetocrystalline anisotropy, and coercivity, as well as a low toxicity, excellent chemical stability, high magnetostatic coefficient, wear resistance, and moderate magnetization [10, 11, 12]. Several photocatalytic degradation processes have been performed using CoFe₂O₄ with a combination of H₂O₂ and visible light for degrading methylene blue dye with an efficiency of 80% [2]. Meso-CoFe₂O₄/SiO₂ was also applied to degrade...
chlorpyrifos with 99.9% [13], while CoFeO₄-rGO was used for methylene blue, methyl orange, and rhodamine B dyes with an efficiency of 89%, 64%, and 58%, respectively [14].

Ferrite compounds tend to agglomerate because of their nanoscale sizes. Therefore, it is necessary to modify with other materials to reduce agglomeration. Previous research has shown that non-toxic, environmentally friendly, and biocompatible reagents could be employed to produce materials with superior properties [15]. For instance, Fe₃O₄ is coated with SiO₂ to prevent oxidation, which causes a decrease in magnetic properties, while other reagents increase the stability and compatibility of the composite [16]. Silica (SiO₂) has a hydrophilic surface, which is non-toxic and can promote single-phase formation [17]. Therefore, the coating of CoFeO₄ using SiO₂ can control particle size and magnetic properties [15, 18].

CoFeO₄ also shows antibacterial activity that can be applied in the industrial and medical fields [19]. CoFeO₄ showed antibacterial activity against Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus cereus) bacteria [20]. The antibacterial activity of CoFeO₄/SiO₂ can be increased by adding Ag nanoparticles to kill bacteria and antibiotic resistance [21, 22]. Moreover, Ag deposited on the CoFeO₄/SiO₂ composite improved the antibacterial activity of the nanocomposite and is oxidized to Ag⁺ ions, which leads to toxic effects on microorganisms [23].

In this work, CoFeO₄/SiO₂/Ag magnetic composites were synthesized, where CoFeO₄ was the magnetic core, and SiO₂ and Ag were the inner and outer shells. CoFeO₄/SiO₂ composite magnetic was used as a photocatalyst to degrade Congo red dye and its ability as an antibacterial agent against E. coli and S. aureus. These two types of bacteria were selected because they are often available in wastewater.

2. Methodology

2.1. Materials

The reagents were obtained from Merck, including CoCl₂·6H₂O, FeCl₃·6H₂O, NaCl, HCl, NaOH, NH₄OH, ethanol, Nutrient agar (NA), Dimethylsulfoxide (DMSO), Polyvinylpyrrolidone (PVP), glucose, AgNO₃, Tetraethyl orthosilicate (TEOS), and Congo red. The other ingredients used were Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), and distilled water.

2.2. Synthesis of CoFeO₄

The synthesis of CoFeO₄ nanoparticles was performed using the co-precipitation method by mixing 3.37 mL HCl (37%) and 2.38 g CoCl₂·6H₂O and dissolving 5.41 g FeCl₃·6H₂O in 20 mL distilled water. The mixture was stirred using a magnetic stirrer for 15 minutes. Subsequently, 2 M NaOH solution was gradually added to the mixture and stirred with a magnetic stirrer at 80°C until it reached pH 12. The precipitate formed was separated with a permanent magnet and washed several times using distilled water and ethanol until the pH was neutral. The CoFeO₄ was dried in an oven at 100°C for 60 minutes and calcined at 400°C for 2 hours.

2.3. Synthesis of CoFeO₄/SiO₂ composite

CoFeO₄/SiO₂ composite was synthesized using the Stöber method with modifications. Approximately 1.5 g of CoFeO₄ was dissolved in 20 mL of ethanol, and the mixture was stirred using an ultrasonic bath for 20 minutes at room temperature. Subsequently, 5 mL of 6.5 M NH₄OH was added to the mixture and stirred using a magnetic stirrer for 30 minutes. This was followed by adding 10 mL of TEOS and stirring for 4 hours. The product obtained (CoFeO₄/SiO₂ composite) was washed several times using distilled water and ethanol until the pH was neutral. The CoFeO₄/SiO₂ composite was dried in an oven at 80°C for 3 hours.

2.4. Synthesis of CoFeO₄/SiO₂/Ag composite

CoFeO₄/SiO₂/Ag composite was synthesized using a modified procedure by Niknam et al. [23]. A total of 0.5 g of CoFeO₄/SiO₂ was dispersed into a 20 mL solution containing 1.27 g PVP, 0.96 g NaOH, and 5.94 g glucose. The mixture was heated and stirred using a magnetic stirrer at 70°C for 30 minutes. Approximately 5 mL of 0.1 M AgNO₃ solution was added dropwise and stirred for 1 hour. The product (CoFeO₄/SiO₂/Ag composite) was washed frequently using distilled water and ethanol to obtain a neutral pH. The CoFeO₄/SiO₂/Ag composite was dried in an oven at 80°C for 3 hours.

2.5. Characterization

The structure of the catalyst was identified using an XRD Panalytical with incident radiation Cu Kα radiation (λ = 1.542 Å) and 2θ range of 10°–90°. The average crystal size was calculated using the Scherrer formula. Morphology and elemental catalysts were analyzed by scanning electron microscopy with an energy dispersive spectrometer (SEM–EDS JSM 6510). A vibrating sample magnetometer (VSM Oxford Type 1.2 T) was used to determine the saturation magnetization value. The absorbance and band gap of the catalyst were identified using UV–Vis Diffuse Reflectance Spectroscopy (Pharmaspec, UV–1700). Congo red dye concentration was determined using a UV–Vis spectrophotometer (Type Orion Aquamate 8000).

2.6. Determination of the pH_{pzc}

The pH_{pzc} was determined using the pH drift method [24]. A total of 25 mL of 0.01 M NaCl solution was adjusted from pH 2 to 11 by adding 0.1 M HCl or 0.1 M NaOH solution. Subsequently, 0.2 g of CoFeO₄/SiO₂/Ag composite was added to each Erlenmeyer, and the mixture was stirred using a shaker for 48 hours. The final pH of the solution was measured with a pH meter, and the pH_{pzc} value was determined from a graph plot of ΔpH versus the initial pH.

2.7. Photocatalytic Activity

The photocatalytic activity of the CoFeO₄/SiO₂/Ag composite to degrade Congo red dye was determined using a radiation source of 30 W LED lamps (Philips) with a batch reactor. The distance between the light...
source and the solution was 30 cm. The determined photocatalytic activities include catalyst dose, dye concentration, and irradiation time. The volume of Congo red dye used was 50 mL, the catalyst doses were 0.25, 0.5, 0.75, and 1 g/L, and the dye concentrations were 10, 20, 30, and 40 mg/L. The catalyst was added to the dye solution and stirred using a magnetic stirrer without irradiation for 60 minutes. Subsequently, the irradiation was performed from 0 to 240 minutes, the catalyst was separated from the solution using a magnet, and the concentration of the remaining dye at 30-minute intervals was determined using a UV-Vis spectrophotometer. The dye reduction efficiency was expressed by the ratio of C/C0, where C0 and C are the initial and the concentration remaining after photocatalytic degradation.

2.8. Antibacterial test

The antibacterial test was conducted using the Kirby–Bauer disc diffusion method. The concentration of CoFe2O4/SiO2/Ag composite was varied to 0.315%, 0.625%, 1.25%, 2.5%, and 5.0% with DMSO as solvent. The NA medium was poured into a petri dish and mixed with 0.1 mL of each S. aureus and E. coli solution. Subsequently, the solution was homogenized and allowed to solidify. Paper discs with a diameter of 5 mm were immersed in the composite solution and placed on the surface of the medium using sterile tweezers. The petri dishes were incubated at 37°C for 24 hours until inhibition zones appeared, while amoxicillin (0.05%) and DMSO were used as positive and negative controls, respectively.

3. Results and Discussion

3.1. Characterization of CoFe2O4, CoFe2O4/SiO2, and CoFe2O4/SiO2/Ag composites

The XRD spectra of CoFe2O4, CoFe2O4/SiO2, and CoFe2O4/SiO2/Ag are shown in Figure 1. The diffraction peaks of CoFe2O4 were observed at 2θ = 30.53, 35.59, 43.41, 54.15, 57.55, and 63.01, correlated with crystal planes (220), (311), (400), (422), (511), and (440) according to the standard structure of CoFe2O4 by Joint Committee on Powder Diffraction Standards (JCPDS No. 22-1086) which has spinel cubic type. The CoFe2O4/SiO2 composite showed a similar diffraction pattern to CoFe2O4 but with a lower intensity. This is because the amorphous SiO2 coating affects the microstructure of the composite[18]. The same pattern on different ferrite compounds, namely Fe2O3/SiO2, decreased in the intensity of Fe3O4 spectra after coating with SiO2[25].

The XRD spectra of the CoFe2O4/SiO2/Ag composite revealed the presence of additional peaks at 2θ = 38.09, 44.17, 65.45, and 77.11, which is a reflection of the plane (111), (200), (220) and (311) according to JCPDS cards Number 4-0783, showing the structure of Ag in the form of cubic symmetry. The presence of Ag crystal peaks demonstrated that the CoFe2O4/SiO2/Ag composite was successfully synthesized. The crystal size of CoFe2O4 calculated using the Debye-Scherrer formula obtained a value of 15.4 nm, whereas the crystal size of Ag was 20.6 nm. This value is close to the research of Kalam et al.[2], who synthesized CoFe2O4 using the coprecipitation method ranging from 11.85 to 15.0 nm.

Figure 1. XRD diffraction pattern of (a) CoFe2O4, (b) CoFe2O4/SiO2, (c) CoFe2O4/SiO2/Ag composites

Magnetic properties can be identified from the value of saturation magnetization. Figure 2 shows the magnetic hysteresis loops of CoFe2O4, CoFe2O4/SiO2, and CoFe2O4/SiO2/Ag composites, where the saturation magnetization value of CoFe2O4 was 54.67 emu/g. The value is lower than bulk CoFe2O4, which is ± 81 emu/g [26], but it is higher than CoFe2O4 synthesized using a combustion route, which is 39 emu/g [27]. The magnetic properties of a particle are influenced by particle size and homogeneity [18, 23]. CoFe2O4/SiO2 composite sizes 42 and 8 nm had saturation magnetization values of 25 and 10 emu/g, respectively [28]. Therefore, the magnetic saturation values of CoFe2O4/SiO2 and CoFe2O4/SiO2/Ag composites were 44.67 emu/g and 41.82 emu/g, respectively. Previous research showed that CoFe2O4 coating with rGO reduces magnetic dipole interactions between adjacent magnetic particles and isolates the particles from magnetic fields [29].

Figure 2. Magnetic hysteresis loops of (a) CoFe2O4, (b) CoFe2O4/SiO2, and (c) CoFe2O4/SiO2/Ag composites
Figure 3. SEM of (a) CoFe₂O₄, (b) CoFe₂O₄/SiO₂, (c) CoFe₂O₄/SiO₂/Ag composites

The morphology of CoFe₂O₄, CoFe₂O₄/SiO₂, and CoFe₂O₄/SiO₂/Ag composites with a magnification of 3000× is shown in Figure 3. The surface of CoFe₂O₄ is rough and uneven, while the CoFe₂O₄/SiO₂ composite appears to have agglomeration due to the coating of SiO₂ on CoFe₂O₄. The surface of the CoFe₂O₄/SiO₂/Ag composite was more heterogeneous than CoFe₂O₄ and CoFe₂O₄/SiO₂ composites. Several small spheres appeared on the surface, indicating that Ag had been dispersed on the surface of the CoFe₂O₄/SiO₂ composite.

Figure 4 shows an elemental mapping analysis that indicates the elements in the CoFe₂O₄/SiO₂/Ag composite. The results showed that the CoFe₂O₄/SiO₂/Ag composite was composed of Co, Fe, O, Si, and Ag elements. This confirmed the distribution of elements on the surface of the CoFe₂O₄/SiO₂/Ag composite. Table 1 shows the mass percentages of the constituent elements of CoFe₂O₄, CoFe₂O₄/SiO₂, and CoFe₂O₄/SiO₂/Ag composites. The presence of Ag in the CoFe₂O₄/SiO₂/Ag composite indicates its dispersion on the surface of the CoFe₂O₄/SiO₂ composite.

The amount of light absorbed by the photocatalyst depends on band gap energy, which is the difference between the valence and conduction bands [2]. The UV-DRS spectra and optical band gap energy are shown in Figure 5. The wavelength was observed at 200–750 nm, while the optical band gap determined using the Wood–Tauc equation was obtained at 1.82 eV. The band gap value of CoFe₂O₄/SiO₂/Ag composite < 2.0 eV indicates that CoFe₂O₄ dominates the CoFe₂O₄/SiO₂/Ag composite, while CoFe₂O₄ has a 1.35 eV. The band gap of pure CoFe₂O₄ is ~1.76 eV [30]. Another research showed that CoFe₂O₄/rGO and Ag₃PO₄–CoFe₂O₄ ~10% had band gaps of 1.75 and 1.4 eV [14, 31].

Table 1. The elemental composition of CoFe₂O₄, CoFe₂O₄/SiO₂, and CoFe₂O₄/SiO₂/Ag composites

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Co</th>
<th>Fe</th>
<th>O</th>
<th>Si</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoFe₂O₄</td>
<td>24.12</td>
<td>42.59</td>
<td>33.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoFe₂O₄/SiO₂</td>
<td>14.11</td>
<td>29.98</td>
<td>60.94</td>
<td>8.97</td>
<td></td>
</tr>
<tr>
<td>CoFe₂O₄/SiO₂/Ag</td>
<td>9.66</td>
<td>18.67</td>
<td>39.38</td>
<td>5.92</td>
<td>26.37</td>
</tr>
</tbody>
</table>
The pH_{pzc} is the value where the charge on the surface material is zero. Based on Figure 6, the pH_{pzc} of the CoFe_{2}O_{4}/SiO_{2}/Ag composite was obtained at 8.41. The catalyst surface was negatively charged at a solution pH > the pH_{pzc} and positively charged at pH < pH_{pzc} \[32\]. In this research, pH_{pzc} of CoFe_{2}O_{4}/SiO_{2}/Ag composite was obtained at pH 8.42. The anionic Congo red dye has a high solubility in an acidic pH (pKa = 4.1 at 25°C) and dissociates into R−SO_{3}^{−} \[33\]. The photocatalytic degradation process is more effective when there is an electrostatic attraction between the negatively and positively charged dye and catalyst. Therefore, the pH of the solution < than pH_{pzc} is effective for the catalytic degradation process. Another research that was carried out using metal selenide–chitosan obtained an optimum degradation at the original pH of the dye in deionized water \[34\]. At a high pH, the surface of the catalyst becomes more negative due to the presence of OH− ions, which cause repulsion between the negatively charged dye and the catalyst to reduce the degrading ability \[35\]. This research used the natural pH of Congo red dye in the range of 5–6.

3.2. Photocatalytic Activity

The photocatalytic degradation of Congo red dye versus irradiation time at various doses of CoFe_{2}O_{4}/SiO_{2}/Ag composite is shown in Figure 7. Congo red dye concentration of 20 mg/L. After the dark adsorption for 60 minutes, it was followed by irradiation. This study indicates that the longer the irradiation, the more Congo red dye will be degraded. The concentration of adsorbed dye increased with a higher dose of CoFe_{2}O_{4}/SiO_{2}/Ag composite (dark adsorption) but not in photocatalytic degradation. The highest reduction in Congo red dye concentrations in the photocatalytic degradation process was at doses of 0.5 and 0.75 g/L, whereas the lowest was at 0.25 g/L. The dye
concentration decreased by 87.2% at a dose of 0.5 g/L. Another research showed that the addition of the catalyst dose did not coincide with the amount of dye degraded, where the photocatalytic degradation of rhodamine B with a volume of 50 mL by CoFeO₄@SiO₂@Dy₂O₃ composite was most excellent at the addition of 4 mg catalyst as compared to 2 and 6 mg [27].

Figure 7. Photocatalytic degradation of Congo red at different catalyst doses

The effect of concentration on the amount of Congo red dye degraded is shown in Figure 8. The dye dose was 0.5 g/L, and the volume was 50 mL with 10, 20, 30, and 40 mg/L concentrations. In this research, the highest degradation efficiency of 93.70% was obtained at a concentration of 10 mg/L. The high concentration of dye blocks cause the catalyst absorbs more light, thereby reducing the photocatalytic degradation performance [36]. In the degradation process, the CoFeO₄@SiO₂ composite absorbs energy from light, which leads to the activation of the semiconductor. The photon energy is greater than the photocatalyst band gap energy, and electrons are transmitted from the valence to the conduction band. The electron–hole pair produces oxidative species such as hydroxide and superoxide radicals, which can degrade dyes [30].

Figure 8. Photocatalytic degradation of Congo red at a different initial dye concentration

Figure 9 shows the performance of CoFeO₄, CoFeO₄@SiO₂, CoFeO₄@SiO₂@Ag composites, and only UV for Congo red dye degradation. The studies employed 10 mg/L of Congo red dye, 0.5 g/L of catalyst, and 180 minutes of irradiation. Photolysis (UV) provides low efficiency (< 5%), indicating the role of the catalyst in the degradation process. CoFeO₄@SiO₂@Ag catalyst degradation efficiency is more excellent than CoFeO₄, CoFeO₄@SiO₂, and UV. Ag nanoparticles have been widely applied in various catalytic processes. The addition of Ag to CoFeO₄@SiO₂ increases catalyst performance and stability. The other studies show that Fe₃O₄/SiO₂ catalysts have a greater degradation efficiency than Fe₃O₄/SiO₂ to 4-nitrophenol [37]. SiO₂ serves to protect Fe₃O₄ from agglomeration.

Figure 9. Comparison of photocatalytic degradation of Congo red using UV, CoFeO₄, CoFeO₄@SiO₂, and CoFeO₄@SiO₂@Ag composites

The mechanism of photocatalytic degradation using CoFeO₄@SiO₂@Ag composite is as follows [38, 39]:

CoFeO₄@SiO₂@Ag + hν → CoFeO₄@SiO₂(e⁺CB + h⁺VB)

h⁺VB + dye → dye+* → oxidation of the dye

Highly reactive species (hydroxyl radicals) result from the breakdown of water molecules or reactions h⁺VB with hydroxyl ions.

h⁺VB + H₂O → •OH + H⁺

•OH + dye → degradation product

The adsorbed oxygen on the catalyst surface reacts with electrons in the conduction band.

e⁻CB + O₂ → •O₂

•O₂ + H₂O → HO₂⁻ + OH⁻

•O₂ + dye → degradation product

HO₂⁻ + dye → degradation product

Table 2 shows the photocatalytic degradation of Congo red dye using several catalysts with variable dye concentration, catalyst dose, irradiation time, and dye removal. This study indicates that the CoFeO₄@SiO₂@Ag composite can potentially have a better ability in photocatalytic degradation than some current research.
Table 2. Photocatalytic degradation of Congo red dye using several catalysts

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Concentration (mg/L)</th>
<th>Catalyst dose (g/L)</th>
<th>Time (h)</th>
<th>Removal (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellulose/PVC/ZnO</td>
<td>50</td>
<td>0.6</td>
<td>2</td>
<td>90</td>
<td>[40]</td>
</tr>
<tr>
<td>Mg–TiO2–P25 NPS</td>
<td>7</td>
<td>0.5</td>
<td>7</td>
<td>80</td>
<td>[41]</td>
</tr>
<tr>
<td>PbTiO3</td>
<td>0.0069</td>
<td>0.75</td>
<td>2.5</td>
<td>92</td>
<td>[42]</td>
</tr>
<tr>
<td>Ba–CoFeO4</td>
<td>5</td>
<td>0.35</td>
<td>1.67</td>
<td>84</td>
<td>[43]</td>
</tr>
<tr>
<td>Fe–CoFeO4</td>
<td>5</td>
<td>0.35</td>
<td>1.67</td>
<td>87</td>
<td>[43]</td>
</tr>
<tr>
<td>As–CoFeO4</td>
<td>5</td>
<td>0.35</td>
<td>1.67</td>
<td>92</td>
<td>[43]</td>
</tr>
<tr>
<td>CoFeO4/SiO2/Ag</td>
<td>10</td>
<td>0.5</td>
<td>3</td>
<td>93.70</td>
<td>In this study</td>
</tr>
</tbody>
</table>

3.3. Photocatalytic Degradation Kinetics

The kinetics of photocatalytic degradation was determined based on the pseudo–first–order equation as stated below [14, 44]:

\[
\ln \frac{C_0}{C} = kt
\]

Where \(C_0\) and \(C\) are the concentration of dye before and after photocatalytic degradation (mg/L), \(k\) is the apparent rate constant, and \(t\) is the irradiation time (minutes). The photocatalytic degradation kinetics at Congo red dye concentrations of 10, 20, 30, and 40 mg/L are shown in Figure 10. The \(R^2\) values close to 1 for all concentrations indicate that the photocatalytic degradation kinetics follows pseudo–first–order. The \(k\) value of each concentration was 0.0145, 0.0108, 0.0061, and 0.0055 min\(^{-1}\). There was a decrease in the value of \(k\) from the dye concentration of 10 to 40 mg/L. According to Kalam et al. [2], the decrease in the rate constant was caused by the fast recombination of electron–hole pairs, which interfered with the photocatalytic degradation process.

Figure 10. Photocatalytic degradation kinetics of Congo red by CoFeO4/SiO2/Ag composite

3.4. Antibacterial Activity

Table 3 shows the antibacterial properties of CoFeO4/SiO2/Ag composite against S. aureus and E. coli. The concentration of CoFeO4/SiO2/Ag composite were varied at 0.3125, 0.625, 1.25, 2.5, and 5%. It was discovered that the concentration and size of the material affect the antibacterial properties [45]. The CoFeO4 inhibits the growth of E. coli and S. aureus, where the antibacterial properties against E. coli are greater than S. aureus [19]. This research obtained the Minimum Inhibitory Concentration (MIC) value at the same concentration of 1.25%; however, the diameter of the inhibition zone of S. aureus is smaller than E. coli (Figure 11). The presence of SiO2 on the surface of Fe3O4 nanoparticles increases the antibacterial activity by acting as a molecular link between nanoparticles and microorganisms [23].

Table 3. Antibacterial activity of CoFeO4/SiO2/Ag composite

<table>
<thead>
<tr>
<th>Concentration (%)</th>
<th>Diameter of the inhibition zone (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. aureus</td>
</tr>
<tr>
<td>5</td>
<td>11.10 ± 0.05</td>
</tr>
<tr>
<td>2.5</td>
<td>9.10 ± 0.09</td>
</tr>
<tr>
<td>1.25</td>
<td>7.84 ± 0.09</td>
</tr>
<tr>
<td>0.625</td>
<td>0</td>
</tr>
<tr>
<td>0.3125</td>
<td>0</td>
</tr>
<tr>
<td>(+)</td>
<td>19.10 ± 0.12</td>
</tr>
<tr>
<td>(-)</td>
<td>0</td>
</tr>
</tbody>
</table>

The interaction of SiO2 with cell membranes can change the structure and permeability of bacteria, causing the attraction of metal oxide nanoparticles into the microbial system and damaging the microbial cellular wall [46]. Ag also increases antibacterial activity by damaging bacterial cells through the protein denaturation process. Meanwhile, Ag interacts with functional groups such as protein enzymatic function and accumulates around the microbial cell. The cysteine chain forms –S–Ag bonds, which block the enzymatic function of the protein and inactivate the microbial cell [23, 47].

Figure 11. Antibacterial activity of CoFeO4/SiO2/Ag composite against (a) S. aureus and (b) E. coli

4. Conclusion

Magnetic composites consisting of CoFeO4 as core, SiO2 as shell, and Ag distributed on the surface of SiO2 were successfully synthesized. The composite was superparamagnetic with a saturation magnetization of 41.82 emu/g and a band gap of 1.82 eV. The efficiency of photocatalytic degradation, with a value of 93.70%, was obtained at a composite dose of 0.5 g/L, 10 mg/L dye concentration, and 180 minutes of irradiation time using UV irradiation. The pseudo–first–order kinetics were suitable to describe the photocatalytic degradation of the Congo red dye with a k value of 0.0145 min\(^{-1}\). CoFeO4/SiO2/Ag composite had antibacterial properties with a MIC value of 1.25% against S. aureus and E. coli. Therefore, the composite can be developed in wastewater treatment because it has high efficiency in reducing the
dye concentration, is easy to separate from the solution using a magnet, and has antibacterial properties.

Acknowledgment

The author thanks the Ministry of Education and Culture, Research and Technology for funding through the Penelitian Dasar Unggulan Perguruan Tinggi (PDUBT) in 2022 with Contract Number 0063.01/UN9.3.1/PL/2022.

References


[37] Yue Chi, Qing Yuan, Yanjuan Li, Liang Zhao, Nan Li, Xiaotian Li, Wenfu Yan, Magnetically separable FeOx@SiO2–Ag nanocomposites with well-designed nanostructure and enhanced photocatalytic activity, *Journal of Hazardous Materials*, 262, (2013), 404–411. https://doi.org/10.1016/j.jhazmat.2013.08.077


of Materials Science: Materials in Electronics, 29, 18, (2018), 15436–15444
https://doi.org/10.1007/s10854-018-9069-1

https://doi.org/10.1016/j.matpr.2016.04.106

https://doi.org/10.1016/j.jphotochem.2017.06.043

https://doi.org/10.1002/slct.201802303

https://doi.org/10.1007/s11270-020-4410-8

[44] Nguyen Thi To Loan, Nguyen Thi Hien Lan, Nguyen Thi Thu Hang, Nguyen Quang Hai, Duong Thi Tu Anh, Vu Thi Hau, Lam Van Tan, Thuan Van Tran, CoFe2O4 nanomaterials: Effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-Fenton properties, Processes, 7, 12, (2019), 1–14
https://doi.org/10.3390/pr7120885

http://dx.doi.org/10.21776/ub.jpacr.2018.007.02.393

https://doi.org/10.1016/j.ijantimicag.2016.11.011

https://doi.org/10.1111/j.1462-2920.2007.01448.x