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Abstract 

 
Maehara in [Maehara, 1960/1961] introduces a proof-theoretical method for 
proving the interpolation theorem for standard logics. In the present paper we 
modify Maehara’s method to prove the interpolation theorem for the systems 
LBB’IK , LBB’IW  and LBB’IKW  introduced in [Bayu Suraraso, 2005] and 
consequently the interpolation theorem holds for the logics BB’IK , BB’IW  
and BB’IKW . 
 
Keywords: interpolation theorem, Maehara’s method, BB’IK , BB’IW  and         

BB’IKW . 
 
 
1. INTRODUCTION 

Let the expression V(D) denote the set of propositional variables which 

occur in the formula D. Interpolation theorem state the folowing property: 

Suppose the formula A ⊃ B is provable. Then there exists a formula C such that 

V(C) ⊂  [V(A)   ∩ V(B)],  for which both A ⊃ C and C ⊃ B are provable. 

Using cut eliminaton theorem, Maehara in [Maehara, 1960/1961] introduces a 

proof-theoretical method for proving the interpolation theorem for standard logics. 

Now it’s well known as Maehara’s method. (Detail proof of the interpolation 

method for standard logics, using Maehara’s method, can be seen for example in 

[Takeuti, 1975].) By this method or just a minor modifications of it, FL  and some 

of its contractionless extensions such as Fle, FLw and Fle,w can be shown to enjoy 

the interpolation theorem (See for example [Ono and Komori, 1985]).  

In [Komori, 1994], Komori introduces a Gentzen-type formulation LBB’I 

for BB’I and proves its cut elimination theorem. Using a slight modification of 

Maehara’s method he then shows that the interpolation theorem holds for BB’I. In 

[Bayu Surarso, 2005] the author introduces Gentzen-type formulations for BB’IK, 

BB’IW and BB’IKW . In the present paper, we will extend and modify Komori’s 
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proof of interpolation theorem for BB’I  to show the interpolation theorem for 

BB’IK, BB’IW and BB’IKW . 

We will follow notations used in [Bayu Surarso, 2005]. Thus we assume 

here a familiarity with Gentzen-type formulations LBB’IK, LBB’IW and 

LBB’IKW for BB’IK, BB’IW and BB’IKW , respectively.   

 

2.  MAEHARA’S METHOD 

Before showing the interpolation theorem for noncommutative standard 

extensions of logic BB’I , let us first consider the idea of the original Maehara’s 

method for proving the interpolation theorem for intuitionistic propositional logic. 

In the following, the Greek capital letters Τ, ∆, Σ, Π1, … will denote finite 

sequences of formulas separated by commas. Let the expression V(Τ) denote the 

set of propositional variables which occur in the sequence Τ. We define partitions 

of sequence Γ as follows. Suppose Γ1  is a sequence of some formula-occurences 

in Γ and suppose Γ2  is the sequences of formula-occurences in Γ except those in  

Γ1. Then we call ([Γ1 ];[Γ2 ]) a partition of  Γ. For example, ([A,A,C];[D,B]) is a 

partition of A,B,A,C,D. Next we prove that the following statement holds for the 

intuitionistic propositional logic. 
 

Let Γ→ D be a provable sequent and ([Γ1];[Γ2]) be an arbritary partition of  Γ. 

Then there exist a formula C, called an interpolant of  Γ→ D, such that 

1) Γ1→ C and  C,Γ2→ D are both provable, 

2) V(C) ⊂  V( Γ1) ∩ [V( Γ2) ∪ V(D)]. 
 

This statement is proved by induction on the number of inferences k in a cut-free 

proof of  Γ→ D. For example, for the case  k > 0 and the last inference is (→ ∧ ) 

as follow  )(
BA

BA
∧→

∧→Γ
→Γ→Γ . 

By the hypothesis of induction, there are formulas C1 and C2 such that 

1) Γ1→ C1 and  C1,Γ2→ A are both provable, 

2) V(C1) ⊂  V( Γ1) ∩ [V( Γ2) ∪ V(A)] 

and 
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3) Γ1→ C2 and  C2,Γ2→ B are both provable, 

4) V(C2) ⊂  V( Γ1) ∩ [V( Γ2) ∪ V(B)]. 

From 1) and 3), using (→ ∧), (∧ → 1) and (∧ → 2), the sequent Γ1 → C1 ∧ C2 and  

C1 ∧ C, Γ2 → A ∧ B can be derived. From 2) and 4), it can be easily seen that  

V(C1 ∧ C2) ⊂  V( Γ1) ∩ [V( Γ2) ∪ V(A ∧ B)]. Thus C1 ∧ C2 become an interpolant 

of  Γ→ D. 

From the above statement, by taking a single formula for Γ and empty sequence 

for Γ2, then it follows that the interpolation theorem holds for intuitionistic 

propositional logic. 

 

3.  INTERPOLATION THEOREM FOR BB’IK, BB’IW AND BB’IKW 

 In the present section we will show the interpolation theorem for BB’IK, 

BB’IW and BB’IKW. By the lack of exchange rule, the original Maehara’s 

method will not work well for both of them. Then we will modificate it. By this 

modification we will see that the existence of guard-merge “� ” in their Gentzen-

type formulations gives no difficulties. 

 We prove first the interpolation theorem for BB’IK  by the help of 

Gentzen-type system LBB’IK. To prove the theorem we need the following 

lemma. 
 

Lemma 1. Suppose that the sequent D, →ΣΓ∆ �  is provable (in LBB’IK) , where 

Γ  is not void. Then there exists a formula C such that : 

1) C→Γ  is provable, 

2) D,C, →Σ∆  is provable, 

3) ).D,,(V)(V)C(V Σ∆∩Γ⊂  
 

Proof. We prove the lemma using induction on the number of inferences k, in a 

cut-free proof  D, →ΣΓ∆ � . Here we will show only for the case when the last 

inference of the proof P of D, →ΣΓ∆ �  is weakening rule since the remaining 

cases can be treated essentially in the same way as the proof for the interpolation 

theorem for BB’IK in [Komori, 1994].  
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Suppose that the principal formula A of this application of weakening rule appears 

in Γ , that is 21 ,A, ΓΓ=Γ . Then the last part of  P will be of the form           

)weak(
D),,A,(

D),(

21

2,1

→ΣΓΓ∆
→ΣΓΓ∆

�

�
. 

Let us consider the upper sequent. By the hypothesis of induction there exists a 

formula C'  such that: 

1) 'C, 21 →ΓΓ  is provable, 

2) D,'C, →Σ∆  is provable, 

3) ).D,,(V),(V)C(V 21
' Σ∆∩ΓΓ⊂  

From 1), by an application of wekening rule, we can get the following proof of  

'C→Γ :                         
)weak(

'C,A,

'C,

21

21

→ΓΓ
→ΓΓ
⋮  

Next, obviously ). ,A,V( ) ,V( 2121 ΓΓ⊂ΓΓ  Then from 3) we can easily seen that 

).D,,(V),(V)C(V 21
' Σ∆∩ΓΓ⊂  Here C'  become the interpolation of D, →ΣΓ∆ � . 

In the same way we can get the interpolation  D, →ΣΓ∆ �  for the case the last 

inference of  the proof P of  it is weakening rule and the principal formula A 

appears in ∆  or in Σ . 

 Then by the above lemma we get, 
 

Theorem 2. The interpolation theorem holds BB’IK . More precisely, suppose A 

and B are formulas in LBB’IK  such that A → B is provable. Then there exists a 

formula C such that both A → C and C → B are provable (in LBB’IK ) and  

).B(V)A(V)C(V ∩⊂  
 

Proof. Note that by using cut rule we can easily show that the formula A ⊃ B is 

provable if and only if the sequent A → B is provable. Now, take ∆ is empty, Γ = 

A, Σ is empty and D = B. Then by Lemma 1, if A → B is provable then there 

exists a formula C such that  

1) CA →  is provable, 

2) BC →  is provable, 

3) ).B(V)A(V)C(V ∩⊂  
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Similarly to the proof of the interpolation theorem for BB’IK , we can also show 

that the interpolation theorem holds for BB’IW . In fact, Lemma 1 for BB’IW  can 

be proved similarly to that of BB’IK. Note however that for the case when the last 

inference is contraction rule, the last part of proof P of  D, →ΣΓ∆ �  may be as the 

following form     )con(
D),,A,(),(

D),,A,(),A,(

2121

2121

→ΣΓΓ∆∆
→ΣΓΓ∆∆

�

�
, 

Here 21 ,A, ΓΓ=Γ  and 21, ∆∆=∆ . However, since in the application of (con) the 

indicated occurrences of the formula A in the antecedent of the upper sequent 

must occur consecutively, then we can also write this by the following form 

)con(
D,,A),,(

D,,A,A),,(

2211

2211

→ΣΓ∆Γ∆µ

→ΣΓ∆Γ∆µ

�

�
 

where ),( 11 Γ∆µ  denotes the sequences obtained by merging 1∆  and 1Γ . Then we 

can find the interpolant of  ( D),,A,(), 2121 →ΣΓΓ∆∆ �  by the following way. 

First let us consider the upper sequent. By the hypothesis induction there exists a 

formula C'  such that 

1)   C,,A,A),,( '
2211 →ΣΓ∆Γ∆µ �  is provable, 

2) D,'C →Σ  is provable, 

3) ).D,(V),A,A),,((V)C(V 2211 Σ∩Γ∆Γ∆µ⊂ �  

From 1), by an application of contraction rule, we can get the following proof of 

'C,A),,( 2211 →Γ∆Γ∆µ �   

)con(
'C,,A),,(

'C,,A,A),,(

2211

2211

→ΣΓ∆Γ∆µ

→ΣΓ∆Γ∆µ

�

�

⋮  

Next, it is obvious that ),A),,((V),A,A),,((V 22112211 Γ∆Γ∆µ=Γ∆Γ∆µ �� . Then from 

3) we can easily seen that ).D,(V),A),,((V)'C(V 2211 Σ∩Γ∆Γ∆µ⊂ �  Here 'C  become 

the interpolant of D,,A),,( 2211 →ΣΓ∆Γ∆µ � . 

By the similar way, we can also find the interpolant of D, →ΣΓ∆ �  for the case 

when the last part of the proof P is as the forms 
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)con(
D),,(),A,(

D),,A,(),A,(

2121

2121

→ΣΓΓ∆∆
→ΣΓΓ∆∆

�

�
, )con(

D),A,'(

D,A),A,'(

→ΣΓ∆
→ΣΓ∆

�

�  and 

    )con(
D)',A(,

D)',A(),A,(

→ΣΓ∆
→ΣΓ∆

�

�  

Now, since Lemma 1 holds for LBB’IW , then by the same way to the 

proof of Theorem 2 we get the following 
 

Theorem 3. The interpolation theorem holds BB’IW . More precisely, suppose A 

and B are formulas in LBB’IW  such that A → B is provable. Then there exists a 

formula C such that both A → C and C → B are provable (in LBB’IW ) and  

).B(V)A(V)C(V ∩⊂  
 

 Finally, from the proofs of Theorem 2 and Theorem 3 we directly get the 

following theorem 
 

Theorem 4. The interpolation theorem holds BB’IKW . More precisely, suppose A 

and B are formulas in LBB’IKW  such that A → B is provable. Then there exists a 

formula C such that both A → C and C → B are provable (in LBB’IKW ) and  

).B(V)A(V)C(V ∩⊂  
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