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Abstract: East Nusa Tenggara Province, according to the 

findings of 2013 Baseline Health Research and 2016 and 

2017 Nutritional Status Surveys, was recorded as the 

province with the highest prevalence of stunting in 

Indonesia. Efforts should be made to formulate policies 

that are integrated with spatial aspects in order to reduce 

the prevalence of stunting. The LCR-GWR model 

approach is used by using locally compensated ridge, 

which were meant to adjusts to the effect of collinearity 

between predictor variables (i.e., the factors affecting the 

prevalence of stunting) in each area. Results of the analysis 

showed that factors affecting the prevalence of stunting in 

all districts/cities in East Nusa Tenggara Province are the 

percentage of children aged under five who were weighed 

≥ 4 times, the percentage of children aged under five who 

receive complete basic immunization, the percentage of 

households consuming iodized salt, the percentage of 

households with decent source of drinking water and the 

real per capita expenditure. The analysis showed that LCR-

GWR is able to produce a better model than the GWR 

model in overcoming local multicollinearity problems in 

stunting in East Nusa Tenggara Province, with lower 

RMSE value (0.0344) than the GWR RMSE model 

(3.8899).  

 

1. INTRODUCTION 

Stunting is a condition in which children aged under five years fail to reach full 

potential for growth as a result of chronic malnutrition; their body height is below the 

standard height of their age. The results of the 2013 Baseline Health Research showed that 

East Nusa Tenggara was recorded as the province with the highest national prevalence of 

stunting among children aged under five years with a percentage of 51.7%. Results of the 

2016 and 2017 Nutritional Status Survey by the Indonesian Ministry of Health showed that 
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East Nusa Tenggara Province was the province with the highest prevalence of stunting 

among children aged under five, with percentage of 41.2% and 40.3% respectively 

(Indonesian Ministry of Health, 2013, 2016, 2017). 

The Geographically Weighted Regression (GWR) model may be the right option to 

study the factors affecting the prevalence of stunting because this approach has the ability to 

overcome spatial diversity/heterogeneity. However, due to several factors that are thought to 

have an effect on the prevalence of stunting, such as location of residence (geographic); 

maternal conditions; conditions of infants/children aged under five; household 

environmental conditions; clean living habits; quality of human resources; and economic 

level, which is very likely to be correlated or linearly related in each region, the use of the 

GWR model would be less effective. This is because GWR ignores any dependencies that 

could possibly occur on local regression coefficients between different predictor variables, 

which technically known as local multicollinearity (Páez et al., 2011; Wheeler, 2007, 2009; 

Wheeler & Calder, 2007; Wheeler & Tiefelsdorf, 2005).  

In spatial regression, local multicollinearity can be overcome using the concept of 

the ridge regression method into GWR which is known as Geographically Weighted Ridge 

Regression (GWRR). The parameter estimation solution for the GWRR model is obtained 

using the Weighted Least Square (WLS) method, namely by giving different weights to each 

location and adding the coefficient 𝜆𝑰 to the matrix 𝑿∗𝑇𝑾(𝑢𝑖 , 𝑣𝑖)𝑿
∗, where 𝜆 is the 

magnitude of the bias coefficient of the parameter estimator located at the interval 0 < 𝜆 <
1, 𝑰 is the 𝑘 × 𝑘 identity matrix, and 𝑿∗is the 𝑿 matrix that has been centered-scaling. 

The GWRR has its shortcoming: this model uses a bias coefficient, 𝜆, for the entire 

observation area. In fact, not all observation areas may experience local multicollinearity 

problems. Adding a ridge parameter to the matrix 𝑿∗𝑇𝑾(𝑢𝑖 , 𝑣𝑖)𝑿
∗ which in fact does not 

have a local multicollinearity problem between X variables can actually reduce the 

effectiveness of this model. Gollini et al. (2015) introduced a Locally Compensated Ridge-

Geographically Weighted Regression (LCR-GWR) model that uses one bias coefficient for 

a certain area, which means that if there are 𝑁 areas of observation, there are 𝑛 different 

ridge bias coefficients. This method produces a ridge bias coefficient locally. The ridge 

parameter is allowed to vary across areas to adjust to the influence of collinearity between 

the predictor variables in each area so that it is expected that more accurate estimation 

solutions of the parameter coefficients in the model could be obtained (Fadliana et al., 2019). 

This study specifically discusses the implementation of the LCR-GWR model to 

analyze the factors that affect the prevalence distribution of stunting among children aged 

under five in East Nusa Tenggara Province, which indicates local multicollinearity problems. 

 

2. THEORETICAL REVIEW 

2.1. Geographically Weighted Regression (GWR)  

The Geographically Weighted Regression (GWR) model is a development of a global 

linear regression model with regard to regional or spatial aspects. In matrix notation, the 

GWR model can be written as 

𝒚 = 𝑿𝜷(𝑢𝑖, 𝑣𝑖) + 𝜺   (1) 

The local parameter �̂�(𝑢𝑖, 𝑣𝑖) are estimated by Weighted Least Square (WLS), 

namely by giving different weights for each observation area 
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�̂�(𝑢𝑖, 𝑣𝑖) = [𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿]−1𝑿𝑇𝑾(𝑢𝑖 , 𝑣𝑖)𝒚  (2) 

where 𝑿 = [𝑿𝑇(1);𝑿𝑇(2);…𝑿𝑇(𝑛)]𝑇 is the design matrix of predictor variables, which 

typically includes a column of 1s for the intercept, 𝑾(𝑢𝑖, 𝑣𝑖) =
𝑑𝑖𝑎𝑔(𝑤1(𝑢𝑖, 𝑣𝑖), 𝑤2(𝑢𝑖, 𝑣𝑖),… ,𝑤𝑛(𝑢𝑖, 𝑣𝑖)) is the diagonal weights matrix that varies by 

calibration location 𝑖, 𝒚 is the 𝑛 × 1 vector of response variables, and �̂�(𝑢𝑖, 𝑣𝑖) =

(�̂�0(𝑢𝑖, 𝑣𝑖), �̂�1(𝑢𝑖, 𝑣𝑖),… , �̂�𝑝(𝑢𝑖, 𝑣𝑖))
𝑇

is the vector of (𝑝 + 1) local regression coefficient at 

location 𝑖 for 𝑝 predictor variables and an intercept term (Wheeler, 2009). 

The weights matrix 𝑾(𝒖𝒊, 𝒗𝒊), is calculated from Adaptive Gaussian Kernel 

function, given by 

𝑤𝑖𝑗 = 𝑒𝑥𝑝 [−
1

2
(
𝑑𝑖𝑗

ℎ𝑖
)

2

] (3) 

where 𝑑𝑖𝑗 is the euclidean distance between the calibration location 𝑖 and location 𝑗, and ℎ𝑖 

is referred to as the bandwidth. The search for the optimum bandwidth value is obtained 

through an iteration process by changing the ℎ value until the minimum Cross Validation 

(CV) is obtained 

𝐶𝑉 = ∑(𝑦𝑖 − �̂�≠𝑖(ℎ))
2

𝑛

𝑖=1

   (4) 

where �̂�≠𝑖(ℎ) is the fitted value of 𝑦𝑖 with the observations for point 𝑖 omitted from the 

calibration process (Fotheringham et al., 2002). 

2.2. Local Multicollinearity 

Local multicollinearity is defined as a condition where there is a perfect or nearly 

perfect linear relationship between predictor variables at each observation location. One 

measure that can be used to test for multicollinearity is Variance Inflation Factors (VIF). In 

GWR modeling, the VIF value is calculated using the following formula 

𝑉𝐼𝐹(𝑢𝑖 , 𝑣𝑖) =
1

1 − 𝑅𝑘
2(𝑢𝑖, 𝑣𝑖)

   (5) 

where 𝑅𝑘
2(𝑢𝑖, 𝑣𝑖) is local 𝑅2 or determination coefficient between 𝑥𝑘 other predictor 

variables for each location (𝑢𝑖, 𝑣𝑖) (Wheeler, 2007). 

According to Fotheringham et al. (2002), local 𝑅2 is calculated using the following 

formula 

𝑅𝑘
2(𝑢𝑖, 𝑣𝑖) = 1 −

𝑅𝑆𝑆𝑤

𝑇𝑆𝑆𝑤
   (6) 

where 𝑇𝑆𝑆𝑤 is the geographically weighted total sum of squares, defined as  

𝑇𝑆𝑆𝑤 = ∑𝑤𝑗(𝑢𝑖 , 𝑣𝑖)[𝑦𝑗 − �̅�]
2

𝑗

   (7) 

and 𝑅𝑆𝑆𝑤 is the geographically weighted residual sum of squares, defined as 
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𝑅𝑆𝑆𝑤 = ∑𝑤𝑗(𝑢𝑖, 𝑣𝑖)[𝑦𝑗 − �̂�𝑗]
2

𝑗

   (8) 

2.3. Locally Compensated Ridge-Geographically Weighted Regression (LCR-GWR) 

Locally Compensated Ridge-Geographically Weighted Regression (LCR-GWR) 

model is a development of the GWRR model using one bias coefficient for a particular 

region. That is, if there are 𝑁 observation regions, then there are 𝑛 different ridge bias 

coefficients. This method produces a ridge bias coefficient locally. The parameters of the 

ridge are left to vary in each region adjusting to the effect of collinearity between predictor 

variables in each region so that the expected parameter coefficients on the model could be 

more accurate (Fadliana et al., 2019). 

The solution of parameter estimation for the LCR-GWR model is done using the 

WLS method on the GWR model by first centering on the 𝑦 variable and centering-scaling 

on 𝑋 variables, and then adding the coefficient 𝜆𝑰(𝑢𝑖, 𝑣𝑖) which is the Locally Compensated 

(LC) value of 𝜆 in the (𝑢𝑖, 𝑣𝑖) region. So that the estimator of the LCR-GWR model, 

�̂�(𝑢𝑖, 𝑣𝑖), is obtained at the specified value 𝜆 for each location as follows 

�̂�(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) = [𝑿∗𝑇𝑾(𝑢𝑖 , 𝑣𝑖)𝑿
∗ + 𝜆𝑖𝑰(𝑢𝑖, 𝑣𝑖)]

−1
𝑿∗𝑇𝑾(𝑢𝑖 , 𝑣𝑖)𝒚

∗    (9) 

where, �̂�(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) =

[
 
 
 
 
 
�̂�0(𝑢0, 𝑣0, 𝜆0)

�̂�1(𝑢1, 𝑣1, 𝜆1)

�̂�2(𝑢2, 𝑣2, 𝜆2)
⋮

�̂�𝑝(𝑢𝑝, 𝑣𝑝, 𝜆𝑝)]
 
 
 
 
 

 

The ridge bias coefficient in the LCR-GWR model is determined by the equation =

((𝜖1 − 𝜖𝑝) (𝑐 − 1)⁄ ) − 𝜖𝑝, which is obtained by connecting the eigenvalue and conditional 

number (𝑐) of matrix multiplication 𝑿𝑇𝑾(𝑢𝑖 , 𝑣𝑖)𝑿. Conditional number (𝑐) is defined as 

𝜖1 𝜖𝑝⁄ , where 𝜖1 is the largest eigenvalue and 𝜖𝑝 is the smallest eigenvalue (Gollini et al., 

2015). 

 

3. RESEARCH METHOD  

3.1. Data 

This study used secondary data sourced from the published results of Nutritional 

Status Survey by the Indonesian Ministry of Health in 2017 (Indonesian Ministry of Health, 

2018) and the publication of Indonesian Central Bureau of Statistics in the form of People's 

Welfare Statistics which is based on the National Socio-Economic Survey in 2017 (East 

Nusa Tenggara Province Central Bureau of Statistics, 2017), poverty data for 2017 (Central 

Bureau of Statistics, 2018a), and publication of the Human Development Index (HDI) in 

2017 (Central Bureau of Statistics, 2018b). The research area covered 21 districts and 1 city 

in East Nusa Tenggara Province. 
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3.2. Variables 

The research variables used in this study are shown in Table 1. 

Table 1. Research Variables 

Variables Units 

Stunting among children under five (𝑌) Percentage (%) 

Pregnant women at chronic energy deficiency risk (𝑋1) Percentage (%) 

Pregnant women who received <90 blood booster tablets (𝑋2) Percentage (%) 

Low-birthweight babies (𝑋3) Percentage (%) 

Babies given exclusive breast milk (𝑋4) Percentage (%) 

Children under five who were weighed ≥4 times (𝑋5) Percentage (%) 

Children under five who got complete basic immunization (𝑋6) Percentage (%) 

Households consuming iodized salt (𝑋7) Percentage (%) 

Households with no defecation facilities (𝑋8) Percentage (%) 

Households with decent source of drinking water (𝑋9) Percentage (%) 

Human Development Index (HDI) (𝑋10) - 

Real per capita expenditure (𝑋11) Thousands rupiah/year 

Poor population (𝑋12) Percentage (%) 

Easting coordinate of 𝑖 district/city (𝑢𝑖) Meters (m) 

Northing coordinate of 𝑖 district/city (𝑣𝑖) Meters (m) 

3.3. Analysis Steps 

The data analysis techniques used in this study are as follows: 

1. Mapping the characteristics of the districts/cities based on the prevalence of stunting. 

2. Conducting multicollinearity testing. 

3. Performing LCR-GWR modeling with the following steps: 

a. Calculating euclidean distances. 

b. Determining the optimum bandwidth with the Cross Validation (CV) approach 

(Equation 4). 

c. Determining the weighting matrix with Adaptive Gaussian Kernel function (Equation 

3). 

d. Determining the ridge bias coefficient, 𝜆, for each location. 

e. Estimating the parameters of LCR-GWR model (Equation 9). 

f. Testing the significant of the LCR-GWR model parameters. 

g. Interpreting dan making conclusion.  

 

4. RESULTS AND DISCUSSION 

4.1 General Characteristics of Districts/Cities in East Nusa Tenggara Province based 

on the Prevalence of Stunting among Children Aged Under Five 

The prevalence of stunting among children under five can be used as a parameter of 

the nutritional status of children under five based on indicators of height for age (height/age) 

of a country or region. Figure 1 shows the prevalence distribution of stunting among children 

under five in districts/cities in East Nusa Tenggara in 2017. 

4.2 Multicollinearity Testing 

Multicollinearity examination in this study was carried out using the local Variance 

Inflation Factor (VIF) criteria (Equation 5). Predictor variables that have high local VIF 

values include HDI (X10) and real per capita expenditure (X11). The local VIF value of the 

HDI variable and real per capita expenditure for 22 districts/cities are greater than 10. This 
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indicates that several predictor variables in this study present local multicollinearity 

problems. The presence of multicollinearity can make it possible to estimate the parameters 

of the GWR model but the resulting standard error tends to be large. Consequently, the 

population value of the coefficient cannot be estimated at the high level of precision or 

accuracy. Local multicollinearity in the weighted predictor variables can lead to estimates of 

GWR coefficients that are correlated locally and across space, have increased variability, 

and are sometimes counterintuitive and contradictory to global regression estimates 

(Czarnota et al., 2015; Tu et al., 2008; Wheeler, 2007). 

Mapping of stunting prevalence data (Figure 1) shows there are 11 districts/cities that 

fall into the very high prevalence category, 8 districts/cities in the high prevalence category, 

and 3 districts/cities classified as medium prevalence. This mapping category refers to the 

prevalence cut-off values public health significance set by World Health Organization 

(WHO) (2010), namely: low prevalence (<20%), medium prevalence (20-29%), high 

prevalence (30-39), dan very high prevalence (≥40%). 

 

Figure 1. Prevalence Map of Stunting among Children Under-Five in East Nusa Tenggara in 2017  

4.3 Locally Compensated Ridge-Geographically Weighted Regression (LCR-GWR) 

Modelling 

The first step that must be taken in forming the LCR-GWR model is to construct a 

weighting matrix through a function that involves the euclidean distance component between 

districts/cities. The matrix weighting function used in this study is the Adaptive Gaussian 

Kernel weighting function (Equation 3). The Adaptive Gaussian Kernel weighting function 

requires a certain bandwidth value as the basis for determining the weight at each observation 

area. The determination of the optimal bandwidth is performed by an iteration process so 

that the minimum value of the Cross Validation (CV) is obtained (Equation 4). 

By substituting the optimum bandwidth value and euclidean distance into the 

Adaptive Gaussian Kernel weighting function as in Equation 3, a weighting matrix 𝑾𝑖 will 
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be obtained. For example, Table 2 presents the weighted values for each district/city against 

Kupang City. 

Table 2. Adaptive Gaussian Kernel Weighting against to Kupang City 

District/City 
Weighting Value 

(WKota Kupang) 

 
District/City 

Weighting Value 

(WKota Kupang) 

West Sumba 0.49729  Ngada 0.70224 

East Sumba 0.64712  Manggarai 0.60656 

Kupang 0.99437  Rote Ndao 0.98066 

South Central Timor 0.97099  West Manggarai 0.54649 

North Central Timor 0.93962  Central Sumba  0.54147 

Belu 0.89199  Southwest Sumba 0.46279 

Alor 0.83811  Nagekeo 0.74138 

Lembata 0.87811  East Manggarai  0.64955 

East Flores 0.86166  Sabu Raijua 0.88412 

Sikka 0.84815  Malaka 0.92192 

Ende 0.79776  Kupang City 1.00000 

The weighting matrix used in the LCR-GWR modelling is formed as a diagonal 

matrix as follows 

𝑾𝐾𝑢𝑝𝑎𝑛𝑔 𝐶𝑖𝑡𝑦 = 𝑑𝑖𝑎𝑔[𝑾𝐾𝑢𝑝𝑎𝑛𝑔 𝐶𝑖𝑡𝑦(1),𝑾𝐾𝑢𝑝𝑎𝑛𝑔 𝐶𝑖𝑡𝑦(2), … ,𝑾𝐾𝑢𝑝𝑎𝑛𝑔 𝐶𝑖𝑡𝑦(22)] 

= 𝑑𝑖𝑎𝑔[0.49729, 0.64712,… ,1] 

Next, the analysis step proceeds by determining the local ridge bias coefficient that 

varies across the observation locations, 𝜆𝑖(𝑢𝑖, 𝑣𝑖).  

This ridge bias coefficient is obtained by connecting the eigenvalue and conditional 

number (𝑐) of matrix multiplication 𝑿𝑇𝑾(𝑢𝑖 , 𝑣𝑖)𝑿. Conditional number (𝑐) of matrix 

multiplication 𝑿𝑇𝑾(𝑢𝑖 , 𝑣𝑖)𝑿 is defined as ratio of the largest eigenvalues to the smallest 

eigenvalues of the matrix 𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿, defined as 𝜖1 + 𝜆 𝜖𝑝 + 𝜆⁄  where the eigenvalues 

of the matrix (𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿 + 𝜆𝑰) are 𝜖1 + 𝜆, 𝜖2 + 𝜆,… , 𝜖𝑝 + 𝜆. The ridge bias coefficient 

can be obtained based on the equation 𝜆 = ((𝜖1 − 𝜖𝑝) (𝑐 − 1)⁄ ) − 𝜖𝑝. 

The LCR-GWR model is compatible with local ridge regression with their own ridge 

parameters (i.e., ridge parameters vary across observation areas), and only matches those 

ridge regressions in areas where the local conditional number is above the specified threshold 

defined by users. Thus, the addition of ridge bias coefficient is not used in all observation 

areas, but only in areas where multicollinearity tends to be a problem, so as to produce a 

more accurate model with the problem of spatial heterogeneity and local multicollinearity. 

Furthermore, by using the Adaptive Gaussian Kernel weighted diagonal matrix 

formed by the optimum bandwidth which minimizes CV and by adding the 

coefficient 𝜆𝑰(𝑢𝑖, 𝑣𝑖) which is the Locally Compensated (LC) value of 𝜆 in the region 

(𝑢𝑖, 𝑣𝑖), the parameter estimator (coefficient) of the LCR-GWR model will be obtained for 

each district/city. The value of the bias ridge coefficient and the parameter coefficient of the 

LCR-GWR model for each district/city in the East Nusa Tenggara Province can be seen in 

the attachment. 

The parameter estimation solution for the LCR-GWR model is then partially tested 

to show that the parameters have a significant or insignificant effect. Partial testing is done 

using the 𝑡-test statistic. If the statistical value of the test |𝑡| > 𝑡(0.0025)(22−12−1) = 1.83311, 

then it is decided that 𝐻0 is rejected or the parameter has a significant effect. For example, 
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Table 3 shows the results of a partial test of the LCR-GWR model parameters for the Kupang 

City. 

Table 3 shows that the predictor variables: 𝑋5 (children under five were weighed ≥4 

times), 𝑋6 (children under five get complete basic immunization), 𝑋7 (households consume 

iodized salt), 𝑋9 (households with decent source of drinking water), and 𝑋11 (real per capita 

expenditure) in the LCR-GWR model with the Adaptive Gaussian Kernel weighting function 

have a significant effect on the response variable, Y, (stunting among children under-five) 

in Kupang City. Table 4 presents the predictor variables that have a significant effect on the 

prevalence of stunting among children under-five for each district/city of East Nusa 

Tenggara Province. 

Table 3. The Results of a Partial Test of the LCR-GWR Model Parameters for the Kupang City 

Parameters 
Estimation 

Value 

Standard Error 𝒕-Test Statistics 
Decision 

𝛽1 0.25297 0.276396 0.915246 𝐻0 accepted 

𝛽2 -0.11761 0.145111 -0.810448 𝐻0 accepted 

𝛽3 -0.02400 0.327273 -0.073324 𝐻0 accepted 

𝛽4 -0.07561 0.138325 -0.546607 𝐻0 accepted 

𝛽5 -0.49167 0.250346 -1.963962 𝐻0 rejected 

𝛽6 0.61039 0.257525 2.370219 𝐻0 rejected 

𝛽7 -0.51755 0.106227 -4.872138 𝐻0 rejected 

𝛽8 -0.04578 0.192207 -0.238163 𝐻0 accepted 

𝛽9 0.40122 0.158493 2.531486 𝐻0 rejected 

𝛽10 -0.85077 0.800955 -1.062191 𝐻0 accepted 

𝛽11 0.51518 0.002794 184.412906 𝐻0 rejected 

𝛽12 0.50102 0.416946 1.201636 𝐻0 accepted 

 

Table 4. District/City Grouping based on Predictor Variables with Statistically Significant Effect 

Variables Districts/Cities 

X1 - 

X2 - 

X3 - 

X4 - 

X5 All districts/cities in East Nusa Tenggara Province 

X6 All districts/cities in East Nusa Tenggara Province 

X7 All districts/cities in East Nusa Tenggara Province 

X8 - 

X9 All districts/cities in East Nusa Tenggara Province 

X10 - 

X11 All districts/cities in East Nusa Tenggara Province 

X12 - 

The estimation results of the LCR-GWR model parameters show that only the GWR 

coefficient 𝛽8 has a variable estimation value which is in positive and negative numbers with 

the average estimated coefficient of GWR located in negative numbers. The LCR-GWR 

coefficients 𝛽1, 𝛽6, 𝛽9, 𝛽11, and 𝛽12 have the same variable estimation values for positive 

numbers. Whereas the other LCR-GWR coefficients, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽7, 𝛽7, and 𝛽10 variations 

in the estimation values lie in negative numbers. 

Based on the results of the LCR-GWR model, it can be concluded that the factors 

causing the high prevalence of stunting among children aged under five for all districts/cities 
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in East Nusa Tenggara Province include: (1) the percentage of children aged under five who 

were weighed ≥4 times, (2) the percentage of children aged under five who get complete 

basic immunization, (3) the percentage of households consuming iodized salt, (4) the 

percentage of households with decent source of drinking water and (5) the real per capita 

expenditure. The higher the percentage of children aged under five who were weighed ≥4 

times and the percentage of households consuming iodized salt, the lower the prevalence of 

stunting among children aged under five. In addition, the decreasing percentage of children 

aged under five who receive a complete basic immunization, the percentage of households 

with decent source of drinking water and real per capita expenditure will increase the 

prevalence of stunting among toddlers. Meanwhile, the remaining variables did not have a 

statistically significant effect on the prevalence of stunting among children aged under five 

in any district/city of East Nusa Tenggara Province. 

 

Table 5. Minimum, Maximum, and Average Value of �̂�(𝑢𝑖, 𝑣𝑖) LCR-GWR Model 

Parameters Min Max Average 

𝛽1 0.148212 0.257244 0.202414 

𝛽2 -0.223639 -0.110505 -0.169719 

𝛽3 -0.086204 -0.017222 -0.052270 

𝛽4 -0.157071 -0.073620 -0.117766 

𝛽5 -0.545428 -0.465231 -0.501763 

𝛽6 0.517246 0.630520 0.578419 

𝛽7 -0.528042 -0.501588 -0.520363 

𝛽8 -0.045777 0.046066 -0.001780 

𝛽9 0.394338 0.472187 0.438286 

𝛽10 -0.881632 -0.835494 -0.863963 

𝛽11 0.464781 0.541917 0.518352 

𝛽12 0.492739 0.539530 0.510100 

Root Mean Square Error (RMSE) can be used to demonstrate that the LCR-GWR 

model is able to solve the local multicollinearity problem in the GWR model. Outcome of 

the calculation results show that the RMSE value of the LCR-GWR model is 0.0344, which 

is lower than that of the RMSE model GWR (3.8899), so it can be said that the LCR-GWR 

model is better at overcoming local multicollinearity problems in case data of stunting in 

East Nusa Tenggara Province compared to the GWR model. 

 

5. CONCLUSION 

Based on results and discussion, it can be concluded that the LCR-GWR model with 

the Adaptive Gaussian Kernel weighting function that is formed shows that the percentage 

of children aged under five who were weighed ≥4 times, the percentage of children aged 

under five who get complete basic immunization, the percentage of households consuming 

iodized salt, the percentage of households with decent source of drinking water, and the real 

per capita expenditure have a statistically significant effect on the prevalence of stunting 

among children aged under five in all districts/cities in East Nusa Tenggara Province. The 

results of the LCR-GWR analysis with the Adaptive Gaussian Kernel weighting function are 

more effective or able to produce a better model than the GWR model in overcoming local 

multicollinearity problems in case data of stunting in East Nusa Tenggara Province, with a 

lower RMSE value (0.0344) compared to RMSE GWR model (3.8899). 
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ATTACHMENT 

Ridge Bias Coefficient Value and LCR-GWR Model Parameter Coefficient 

No District/City 𝝀 𝜷𝟎 𝜷𝟏 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 𝜷𝟔 𝜷𝟕 𝜷𝟖 𝜷𝟗 𝜷𝟏𝟎 𝜷𝟏𝟏 𝜷𝟏𝟐 

1 West Sumba 0.0338 -0.0275 0.1544 -0.2143 -0.0833 -0.1469 -0.4780 0.5172 -0.5188 0.0422 0.4619 -0.8807 0.5411 0.4963 

2 East Sumba 0.0364 -0.0271 0.1632 -0.2048 -0.0733 -0.1458 -0.4778 0.5192 -0.5152 0.0351 0.4573 -0.8752 0.5349 0.4973 

3 Kupang 0.0520 0.0143 0.2502 -0.1215 -0.0275 -0.0757 -0.4975 0.6161 -0.5204 -0.0450 0.4044 -0.8557 0.5182 0.5043 

4 South Central Timor 0.0500 0.0157 0.2482 -0.1241 -0.0315 -0.0736 -0.4973 0.6181 -0.5226 -0.0440 0.4048 -0.8614 0.5254 0.5039 

5 North Central Timor 0.0479 0.0146 0.2445 -0.1289 -0.0347 -0.0760 -0.5028 0.6221 -0.5247 -0.0418 0.4088 -0.8644 0.5263 0.5074 

6 Belu 0.0464 0.0146 0.2421 -0.1317 -0.0375 -0.0764 -0.5030 0.6226 -0.5259 -0.0400 0.4100 -0.8673 0.5298 0.5076 

7 Alor 0.0436 0.0104 0.2348 -0.1407 -0.0414 -0.0845 -0.5142 0.6281 -0.5280 -0.0347 0.4188 -0.8681 0.5249 0.5153 

8 Lembata 0.0439 0.0043 0.2314 -0.1449 -0.0387 -0.0948 -0.5254 0.6305 -0.5265 -0.0315 0.4264 -0.8603 0.5090 0.5231 

9 East Flores 0.0433 -0.0036 0.2241 -0.1529 -0.0382 -0.1089 -0.5352 0.6289 -0.5246 -0.0240 0.4360 -0.8524 0.4933 0.5305 

10 Sikka 0.0441 -0.0186 0.2130 -0.1636 -0.0338 -0.1339 -0.5454 0.6160 -0.5174 -0.0109 0.4500 -0.8355 0.4648 0.5395 

11 Ende 0.0384 -0.0308 0.1830 -0.1920 -0.0517 -0.1533 -0.5323 0.5802 -0.5183 0.0164 0.4640 -0.8525 0.4862 0.5327 

12 Ngada 0.0336 -0.0336 0.1593 -0.2139 -0.0732 -0.1568 -0.5121 0.5487 -0.5219 0.0364 0.4703 -0.8726 0.5166 0.5187 

13 Manggarai 0.0320 -0.0333 0.1505 -0.2220 -0.0829 -0.1564 -0.5033 0.5369 -0.5235 0.0439 0.4722 -0.8793 0.5278 0.5123 

14 Rote Ndao 0.0587 0.0133 0.2572 -0.1105 -0.0172 -0.0775 -0.4757 0.5941 -0.5104 -0.0453 0.3943 -0.8388 0.5087 0.4927 

15 West Manggarai 0.0317 -0.0324 0.1482 -0.2236 -0.0862 -0.1548 -0.4974 0.5311 -0.5235 0.0461 0.4715 -0.8816 0.5330 0.5082 

16 Central Sumba 0.0340 -0.0284 0.1546 -0.2143 -0.0820 -0.1482 -0.4807 0.5188 -0.5187 0.0418 0.4628 -0.8800 0.5388 0.4981 

17 Southwest Sumba 0.0333 -0.0276 0.1530 -0.2160 -0.0850 -0.1472 -0.4786 0.5177 -0.5196 0.0433 0.4628 -0.8816 0.5419 0.4965 

18 Nagekeo 0.0349 -0.0331 0.1659 -0.2078 -0.0668 -0.1563 -0.5179 0.5575 -0.5209 0.0309 0.4686 -0.8674 0.5085 0.5229 

19 East Manggarai 0.0325 -0.0338 0.1534 -0.2195 -0.0794 -0.1571 -0.5080 0.5423 -0.5232 0.0413 0.4721 -0.8769 0.5230 0.5155 

20 Sabu Raijua 0.0526 -0.0090 0.2244 -0.1406 -0.0262 -0.1169 -0.4652 0.5484 -0.5016 -0.0120 0.4169 -0.8390 0.5067 0.4931 

21 Malaka 0.0478 0.0156 0.2448 -0.1283 -0.0355 -0.0743 -0.4993 0.6202 -0.5247 -0.0418 0.4071 -0.8657 0.5298 0.5052 

22 Kupang City 0.0542 0.0143 0.2530 -0.1176 -0.0240 -0.0756 -0.4917 0.6104 -0.5176 -0.0458 0.4012 -0.8508 0.5152 0.5010 

 


