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Abstract: Value at Risk (VaR) is a measuring tool that 

can calculate the amount of the worst losses that occur in 

the stock portfolio with a certain level of confidence and 

in certain period of time. In general, financial data has a 

high volatility value, which is caused the variance of 

residual model is not constant and nonnormally 

distributed. In this case, Copula-GARCH can be used to 

calculate the VaR. The Generalized Autoregressive 

Conditional Heterocedasticity (GARCH) model can 

resolve the time series models that have non-constant 

residual variance. This research use the t-Copula to model 

the dependency structure in the combined distribution of 

stock returns. The t-copula function is good in terms of 

reaching the extreme value state that often occurs in the 

financial data of stock returns and has heavytails. The 

empirical data uses the stock return data of PT. Indofood 

Sukses Makmur, Tbk (INDF) and Bank Mandiri (Persero) 

Tbk (BMRI) in the period of October 8, 2012 - October 8, 

2017. In this research, Value at Risk is calculated using 

the period 1 day ahead at 90% confidence level that is 

0.042, at 95% confidence level that is 0.025 and at 99% 

confidence level that is 0.017 with weight of each stock is 

50%. 

 

1. INTRODUCTION 

Company-owned property is known as an asset, for one or more of which 

investment normally is targeted. Using a long period, the investors expect to earn a profit 

(Sunariyah, 2006). Currently, stocks are one type of investment that promises benefits but 

also inflicts risks for investors. Shares are obtained trough purchases or other means that 

give rights to shareholders to obtain profits or profit sharing in accordance with their 

investments in a company. Risk investments lead to uncertainty about what will happen in 

the future. Investors or potential investors are required to master knowledge about risk 

(Jorion, 2006).  
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A portfolio is based on a basic concept of the way to allocate a number of funds to 

several types of investments to gain optimal profits. One way to measure risk is to 

calculate Value at Risk (VaR), one of the predictions of the maximum loss that occurs in a 

portfolio of stocks with a certain level of confidence and within a certain time period. The 

accuracy of the VaR is very important in determining the amount of capital to be provided 

by the company to overcome the possible losses (Darmawan, 2014). 

Stock data is time series data resulted from observations from time to time. Stock 

data tend to fluctuate rapidly leading to constantly changing residual variance. Time series 

modeling for data with non-constant residual variance is Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) (Makridakris, et al. 1999). 

The methods to determine the VaR of a stock portfolio include the Exponentialy 

Weighted Moving Average (EWMA) approach, with historical data simulations, and with 

Monte-Carlo simulations. Some researchers known to use the Exponentialy Weighted 

Moving Average (EWMA) approach are Buchdadi (2008), who applied it to shares of 

sharia-based companies, and Fadilah et al. (2018), who also applied to shares of sharia-

based companies. Determination of VaR by historical data simulation methods and Monte-

Carlo simulations was carried out by Artini et al. (2012). Historical data simulation 

methods assume multivariate normal data distribution. Stock data (stock returns) usually 

do not meet multivariate normal assumptions. One way to overcome this is to use copula. 

Copula theory is a very powerful tool for modeling joint distributions because it does not 

require multivariate normal assumptions from the data making it flexible enough for 

various data especially for stock return data as it can capture tail dependence between each 

variable (Gilli and Kllezi , 2006).  

One type of copula is t-copula which originates from Elliptical copula. Financial 

data generally have fat tails. Hence, it is suitable to use student-t copula because in 

probability theory, the student-t distribution has fatter tails than the normal distribution. 

Some researchers using copula in determining VaR are Dharmawan (2014), Iriani et al. 

(2013) and Ningrum et al. (2017). 

This study used a Monte-Carlo simulation method with t-copula. The use of Monte-

Carlo simulation methods to measure risk was introduced by Boyle in 1977. The 

estimation of the Value at Risk (VaR) at a single exchange rate or portfolio with Monte 

Carlo simulations has several types of algorithms. However, the point is to do a simulation 

by generating random numbers based on the characteristics of the data to generate and 

using them to estimate the VaR. 

This study determined the Value at Risk portfolio of stock returns using the 

Copula-GARCH method of the t-Copula type of two Indonesian shares, namely PT. 

Indofood Sukses Makmur Tbk. (INDF) and Bank Mandiri (Persero Tbk (BMRI) for the 

period of 8 October 2012 - 8 October 2017. The study resulted in an optimal portfolio 

(determining the weight of each stock return) of the two stock return data making the 

investments have minimal risk of loss (the smallest absolute VaR value). 

 

2. LITERATURE REVIEW 

2.1 Stock Returns 

Stock Return is the rate of return or the results obtained from investments (Ruppert, 

2004). The return value is calculated using the following formula (Tsay, 2002):   
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Rti = ln 
𝑃𝑡

𝑃𝑡−1
 

where Rti is the i stock return, Pt is the closing price of the current period and Pt-1  is the 

closing price of the previous period. Conversely, the stock portfolio return formula can be 

calculated as follows:  

𝑅𝑝𝑡 = ∑ 𝑤𝑖𝑅𝑡𝑖
𝑁
𝑖=1   

 The weight of 𝑤𝑖 is determined by trial and error with the condition ∑ 𝑤𝑖
𝑛
𝑖=1 =

𝟏𝑁
𝑇 𝒘 = 1. The weights resulted from trial and error are used to form a portfolio and the 

maximum VaR is calculated, formed, and selected from each portfolio. 

2.2. Time Series Analysis 

Time series data analysis is used to analyze data that considers the influence of 

time. Time series analysis is based on the principle that the current events (yt) are 

influenced by several previous events (yt-k), k = 1,2, ..., q. In simple terms, time series data 

analysis is used because statistically there is a correlation (dependent) between the series of 

observations (Makridakis et.al 1999). 

2.2.1. Box-Jenkins Model 

The Box-Jenkins model is an analysis model generally used for modeling time 

series data. This model assumes stationarity of the AR, MA, and ARMA models and the 

non-stationary time series model of the ARIMA model, with the following models: 

a. Autoregressive Model (AR)  

𝑦𝑡 = 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑎𝑡 

b. Moving Average Model (MA)  

𝑦𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 

c. Autoregressive Moving Average (ARMA) Model  

𝑦𝑡 = 𝜙1𝑦𝑡−1 + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯ − 𝜃𝑞𝑎𝑡−𝑞 

d. Autoregressive Integrated Moving Average (ARIMA) Model 

𝜙(𝐵)(1 − 𝐵)𝑑𝑍𝑡 =  Ө(𝐵)𝑎𝑡 

The stages for modeling ARIMA, according to Wei (1989), are (1) The models are 

identified with ACF plot and PACF, (2) Parameter estimation was done using Ordinary 

Least Square or Maximum Likelihood Estimation method, (3) Parameter Significance Test, 

(4) Verification of the residual model consists of the residual independence test using the 

Ljung-Box test, the residual normality test using the Jarque-Bera, and residual 

homogeneity test using Lagrange Multiplier. 

Ljung-Box Test 

Hypothesis: 

H0 : 𝜌1 = 𝜌2 =⋅⋅⋅= 𝜌𝐾 = 0  

  (no residual correlation between lags) 

H1 : There is at least one 𝜌𝑖 ≠ 0 with i = 1,2,...,K  

  there is a residual correlation between lags) 

Test Statistics:  

𝑄 = 𝑛(𝑛 + 2) ∑ (𝑛 − 𝑘)−1�̂�𝑘
2𝐾

𝑘=1   
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where n is the amount of data, m is the number of parameters tested, and �̂�𝑘 is the residual 

autocorrelation in the k-th lag. Q has a chi-square distribution with free degrees m. Each 

lag of this test statistic value is calculated, so there are several Q values in one model.  

Test Criteria:  

 H0 is rejected if 𝑄(𝑚) > 𝜒(𝐾−𝑚)
2  or p-value< α 

Jarque-Bera Test 

Hypothesis: 

H0 : Residuals are normally distributed    

H1 : Residuals are not normally distributed  

Test Statistics: 

JB = 
𝑛

6
(𝑆2 +

(𝐾−3)2

4
)                                      

𝐾 =

1
𝑛

∑ (𝑦𝑡 − �̅�)4𝑛
𝑡=1

(
1
𝑛

∑ (𝑦𝑡 − �̅�)2)𝑛
𝑡=1

2 

𝑆 =
1

𝑛
∑ (𝑦𝑡−�̅�)3𝑛

𝑡=1

(
1

𝑛
∑ (𝑦𝑡−�̅�)2)𝑛

𝑡=1

3
2⁄
  

where n: the amount of data, k: the number of parameter, S: skewness , and K:  kurtosis.  

Test criteria:  

H0 is rejected  if JB >𝜒(2)
2  or p-value< α 

Lagrange Multiplier Test 

Residual homoscedasticity test is used to test the homogeneity of the variance of 

residuals. In this case, the Lagrange Multiplier (LM) test can also be used to detect the 

ARCH/GARCH process by regressing the square of the ARIMA residual model as follows 

(Tsay 2002). 

𝑎𝑡
2 = 𝜓0 + 𝜓1𝑎𝑡−1

2 + 𝜓2𝑎𝑡−2
2 + ⋯ + 𝜓𝑘𝑎𝑡−𝑘

2 + 𝑒𝑡 , t = k+1,…,n 

Hypothesis: 

H0 : 𝜓1 = 𝜓2 = ... = 𝜓𝑘 = 0  

  (no ARCH/GARCH effect in the residuals until the k-th lag) 

H1 : there is at least one value 𝜓𝑖 ≠ 0, i = 1, 2, ..., k 

  (there is an ARCH/GARCH in residuals until the k-th lag)   

Test Statistics: 

𝐿𝑀 =
(𝑆𝑆𝑅0−𝑆𝑆𝑅1)/𝑚

𝑆𝑆𝑅1/(𝑛−2𝑚−1)
        

𝑆𝑆𝑅0 = ∑ (𝑎𝑡
2 − �̅�)2𝑛

𝑡=𝑚+1   

�̅� =
∑ 𝑒𝑡

2𝑛
𝑡=1

𝑛
         

𝑆𝑆𝑅1 = ∑ 𝑒𝑡
2𝑛

𝑡=𝑚+1   
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where m is the maximum lag 

Test Criteria:  

 H0  is rejected if the value of LM >𝜒(α,𝑚)
2  or p-value< α 

2.2.2. GARCH Model 

 The GARCH model is used to model residual volatility that often occurs in 

financial data. The general form of the GARCH model (m, s) is as follows (Tsay, 2002): 

𝜎𝑡
2 = 𝑎0 + ∑ 𝛼𝑖𝑎𝑡−𝑖

2

𝑚

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑠

𝑗=1

 

where  𝑎0: positive constant, 𝛼𝑖: parameter of ARCH, 𝑎𝑡−𝑖
2 : squared residuals at time t-i t-

i, 𝛽𝑗: parameter of GARCH, and 𝜎𝑡−𝑗
2 : variance of residuals at t-j. The coefficients of the 

GARCH model (m, s) are: 

1. α0>0 

2. αi≥ 0 for i=1,2,….,m 

3. βj ≥ 0 for j=1,2,…,s 

4. ∑ (𝛼𝑖 + 𝛽𝑗) < 1
max (𝑚,𝑠)
𝑖=1  

To estimate GARCH model parameter we can use the Maximum Likelihood 

method. As an illustration, if we have the following GARCH(1,1) model  (Cryer, 2008)  

𝜎𝑡
2 = 𝑎0 + 𝛼1𝑎𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

with the density probability function of : 𝑓(𝑎𝑡|𝑎𝑡−1, … , 𝑎1) =
1

√2𝜋𝜎𝑡
2

exp [−
𝑎𝑡

2

2𝜎𝑡
2] 

and the combined function of the density opportunities of:  

𝑓(𝑎𝑚, … , 𝑎1) = 𝑓(𝑎𝑚−1, … , 𝑎1)𝑓(𝑎𝑚|𝑎𝑚−1, … , 𝑎1) 

Then the likelihood function is as follows: 

𝐿(𝑎0, 𝛼1, 𝛽1) = −
𝑛

2
log(2𝜋) −

1

2
∑{log(𝜎𝑡−1

2 ) +
𝑎𝑡

2

𝜎𝑡
2}

𝑛

𝑖=1

 

These estimates are completed numerically (Newton-Rapshon's method), because the 

likelihood function is not closed form for parameters 𝑎0, 𝛼1 and 𝛽1 and the residual 

homogeneity test uses the Lagrange Multiplier test.  

2.2.3. Selecting The Best Model 

If the diagnostic test indicates several models that are worthy of use, it is necessary 

to choose the best model. The best model selection is done by the AIC (Akaike 

Information Criterion) method with the following formula (Wei, 1989):  

𝐴𝐼𝐶 = 𝑁𝐿𝑛(�̂�𝑎
2) + 2𝑀 

where: N : number of observations in the parameter estimation process 

 �̂�𝑎
2 : maximum likelihood estimator of 𝜎𝑎

2 
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 M : number of parameters expected in the model 

The best model is that with the smallest AIC value. 

2.3. Tau-Kendall 

 The most commonly known invariant scale size of the combined distribution is 

Tau-Kendall which measures the shape of the dependencies referred to as concordants. 

Suppose that P states a concordant size and Q states a discordant size, the Tau-Kendall 

correlation value can be defined as follows (Nelson, 2006):  

𝜏 =
𝑃−𝑄

𝑃+𝑄
=

𝑃−𝑄

(
𝑛
2

)
  

where n is the sample size. 

Tau Kendall Correlation Hypothesis testing is: 

H0 : τ = 0 (no correlation between variables) 

H1 : τ ≠ 0 (there is a correlation between variables) 

Test Statistics:   

𝑍ℎ𝑖𝑡 = √
9𝑛(𝑛−1)

2(2𝑛+5)
|𝜏|       

Test Criteria: H0 is rejected if Zhit>Zα/2  or p-value< α 

2.4. Copula 

Copula is a tool to model shared distributions because it does not require 

multivariate normal assumptions (Paralo and Hotta, 2006). Copula is described as a 

function that encompasses various forms of marginal distribution into a combined form of 

distribution (Sklar, 1959).  

2.4.1. Sklar's theorem 

Sklar's theorem (1959) explains that the combined distribution of H can be 

separated into its marginal distribution function Fi, i = 1,2, ..., d which is commonly called 

margins and its dependency structure, namely the Copula C function which satisfies : 

H(x1,…,xd) = C(F1(x1),...,Fd(xd)) 

The Sklar Theorem points out that the combined distribution function, marginal 

distribution function and its dependent structure (copula) can be separated. Suppose H is a 

d-dimensional distribution function, then: 

𝐶(𝑢1, … , 𝑢𝑑) = 𝐻(𝐹1
−1(𝑢𝑖), … , 𝐹𝑑

−1(𝑢𝑑)) 

where ui ϵ [0,1], ui = 𝐹𝑑
−1(𝑢𝑑), i = 1, 2,….,d and 𝐹−1(𝑡) = inf{𝑥 ∈  ℝ | 𝐹(𝑥) ≥ 𝑡} is an 

inverse function of the marginal distribution of Fi. 

2.4.2. Student-t Copula 

 𝐶𝑣,𝜌
𝑡  is the copula of the standard t-student distribution of the d-dimension formed 

from free degrees v> 0 and the correlation matrix ρ. It is the distribution of random vectors 

(𝑡𝑣(𝑋1), … . , 𝑡𝑣(𝑋𝑑)). Suppose X is a random vector that has a distribution of X ~ td(v,0,ρ) 

the t-copula function is a single function of the random vector X which is defined as 

follows (Bob, 2013): 
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𝐶𝑣,𝜌
𝑡 = P(𝑡𝑣(𝑋1) ≤ 𝑢1, … . , 𝑡𝑣(𝑋𝑑) ≤ 𝑢𝑑) = 𝑡𝑣,𝜌

𝑑(𝑡𝑣
−1(𝑢1), … . , 𝑡𝑣

−1(𝑢𝑑) 

where tv is the t-student univariate distribution function and tv,ρ is the combined distribution 

function of the random vector X~td(v,0,ρ). 

 Student-t Copula is one type of copula that uses the t-student distribution. The t-

student copula form using the bivariate student distribution is written as follows:  

𝐶𝑣,𝜌
𝑡 = 𝑡𝑣,𝜌

2(𝑡𝑣
−1(𝑢1), 𝑡𝑣

−1(𝑢2)) 

2.4.3. Estimation of Copula Parameters with Maximum Likelihood Estimation (MLE) 

This study used two variables, so the form of the L likelihood function in the 

bivariate case is written as follows (Nelson, 2006): 

𝐿 = 𝑐𝑢1,𝑢2
{𝐹1(𝑥1), 𝐹2(𝑥2)} 𝑓1(𝑥1)𝑓2(𝑥2) 

It can be explained as follows: 

ln ℎ(𝑥1, 𝑥2 ; 𝑣, 𝜌) = ln 𝑐(𝐹1(𝑥1;𝑣), 𝐹2(𝑥2;𝑣), ; 𝜌) + 𝑙𝑛 𝑓1(𝑥1;𝑣) + 𝑙𝑛𝑓2(𝑥2;𝑣)     (a) 

where the ρ parameter indicates the overall dependency between two random variables and 

v is the degree of freedom from the marginal parameters of the copula. Estimated 

parameters v and ρ are inseparable. The equation (a) is not the closed form so it is 

completed numerically.  

2.5. Value at Risk 

VaR is a measuring tool that can calculate the magnitude of the worst losses that 

may occur by knowing the position of assets, the level of confidence in the occurrence of 

risk, and the period of asset placement (time horizon) (Jorion, 2006). VaR at the level of 

confidence (1-α) in the time period t days on a single return or portfolio can be calculated 

with (Ruppert, 2004):  

𝑉𝑎𝑅(1−𝛼)(𝑡) = 𝑊0𝑅∗√𝑡 

where: W0 : initial investment of portfolio fund 

 R* : α-quantile value of the portfolio return distribution 

 T : time periode 

 

3. RESEARCH METHODS 

3.1. Data Sources and Research Variables 

This study used secondary data obtained from finance.yahoo.com, in the form of 

the daily share price of Bank Mandiri (Persero), Tbk (BMRI) and PT. Indofood Sukses 

Makmur, Tbk (INDF) on 8 October 8 2012 to 8 October 2017. 

3.2. Data Analysis Steps 

The analysis covers the following steps: 

1. Calculating the return of each stock and its characteristics.  

2. Conducting the stationarity test of each stock return. If the data is not stationary in the 

variant, a Box-Cox transformation is performed. Whereas if the data is not stationary 

in the mean, differentiation is performed. 

3. Making ACF and PACF plots of each stock return. 
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4. Identifying the ARIMA model of each stock return. 

5. Estimating the model parameters of each stock return. 
6. Testing the significance of the model parameters of each stock return. 
7. Verifying the model that is residual independence test, residual homoscedasticity test 

and residual normality test. If the test is not fulfilled, the ARIMA model cannot be 

used. 

8. Choosing the best model based on the smallest AIC value. 
9. Forming the ARIMA-GARCH model if needed. 
10. Testing the residual normality model of the ARIMA-GARCH model. If the normality 

assumption is fulfilled, the ARIMA-GARCH model can be used and the analysis is 

complete, but if the normality assumption is not met, the t-copula model is used. The 

process continues in the next step and so on. 
11. Testing the Tau Kendall correlation between BMRI shares and INDF shares. 

12. Estimating t-copula parameters and forming t-copula. 

13. Calculating the Value at Risk (VaR) value using data generation from t-copula with a 

Monte Carlo simulation. 
 

4. RESULTS AND DISCUSSION 

4.1. Data Characteristics 

Data on INDF and BMRI shares for the period of 8 October 2012 - 8 October 2017 

was obtained from finance.yahoo.com. The data of each stock return was added with a time 

series plot as shown in Figure (1). 

 

Figure 1 Stock Return Plot for INDF dan BMRI 

Figure 1 shows that the data is around the average line. This means that the data has 

been stationary in the average. Augmented Dickey Fuller test for both stock returns 

obtained the Pvalue = 0,0000, indicating that both data are stationary. 

Descriptive analysis results for each INDF and BMRI stock returns can be seen in 

Table 1. Based on Table 1, the two stock returns have a positive average value, meaning 

that the two stocks will provide benefits for investors. The standard deviation of BMRI is 

slightly lower than INDF, meaning that INDF has more potential for loss. The highest 

return value is shown by BMRI with a profit of 0,128121 and the lowest return value is 

indicated by INDF with a loss of 0,102279. The skewness value of the two shares is not 

equal to zero and both stock returns have a kurtosis value of more than 3. This insinuates 

that the data are not normally distributed and it is often found that the value of stock 

returns is not normally distributed. 
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Table 1 Descriptive Statistics of Stock  Return of INDF and BMRI 

Variabel INDF BMRI 

Mean 0.000316 0.000398 

Standard of Deviation 0.019795 0.019706 

Minimum -0.102279 -0.081550 

Maximum 0.098672 0.128121 

Skewness 0.065573 0.297623 

Kurtosis 6.778511 6.614423 

4.2. Model Identification 

Data stationarity test is the first step to identify the time series model. In Figure 1, 

we can see that the two stock returns are stationary in a visual average. The Box-Cox 

Transformation produces a rounded value for both stock return data of 1, so that the data 

has been stationary in variants. Based on the Augmented Dickey Fuller test, both of these 

stock returns have a p value of 0.000 so stationary data is on average. Next, the ARMA 

model is determined by looking at the ACF and PACF plots of both stock returns (Figure 2 

and Figure 3). The AR order is determined by looking at the PACF plot. If it is interrupted 

in the p-lag, AR (p) is formed. The MA order is determined by looking at the ACF plot. If 

interrupted in the q-lag, MA (q) is formed. 

Figure 2 highlights that the INDF stock return for the ACF plot is truncated at lag 3 

and the PACF plot is truncated at lag 3. Meanwhile, the ACF of BMRI stock returns based 

on Figure 3 is truncated in lags 2 and 30 and the PACF plot is truncated at lags 2 and 30. 

However, in ACF plot lag 3, 20, 21 and in PACF plot lag 3 and 21 are located around the 

ACF and PACF boundary lines. Thus, these lags need to be incorporated into possible 

models.  

  

Figure 2a PACF Plot of INDF Stock Return Figure 2b ACF Plot of INDF Stock Return 
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After determining the possible models, a model verification test was performed and 

the best model was selected with the smallest AIC value. Then, it led to the best ARIMA 

model for the two stock returns: 

1. INDF : ARMA([3],0)  

  𝑦𝑡 = −0.144316𝑦𝑡−3 + 𝑎𝑡  

2. BMRI : ARMA([2,3],[30]);  

  𝑦𝑡 = −0.092048𝑦𝑡−2 − 0.054822𝑦𝑡−3 + 𝑎𝑡 − 0.090136𝑎𝑡−30 

4.3. Lagrange Multiplier Test  

Lagrange Multiplier (LM) test aims to see whether the ARIMA model has the 

GARCH effect or not. The LM Test results for both INDF and BMRI stock returns have p-

value = 0.0000 so it can be concluded that all ARIMA models have heterogeneous 

residuals or have an ARCH / GARCH effect.  

4.4. ARIMA-GARCH Modeling 

The initial GARCH models formed for INDF stock returns are ARIMA ([3], 0.0) 

GARCH (1.1) and ARIMA ([3], 0.0) GARCH (1.2). While the BMRI stock returns are 

ARIMA ([2,3], 0, [30]) GARCH (1,1) and ARIMA ([2,3], 0, [30]) GARCH (1,2). Then the 

parameter significance test was conducted to choose the best model for each stock, namely: 

1. INDF : ARIMA ([3],0,0) GARCH(1,2). 

   𝑦𝑡 = −0.159576𝑦𝑡−3 + 𝑎𝑡 

   𝜎𝑡
2 = 0.000012 + 0.123838𝑎2

𝑡−1 + 0.442775 𝜎𝑡−1
2 + 0.403667 𝜎𝑡−2

2  

2. BMRI : ARIMA([2,3],0,[30]) GARCH(1,1) 

   𝑦𝑡 = −0.098132𝑦𝑡−2 − 0.061610𝑦𝑡−3 + 𝑎𝑡 − 0.088134𝑎𝑡−30 

   𝜎𝑡
2 = 0.000006 + 0.055129𝑎2

𝑡−1 + 0.928182 𝜎𝑡−1
2  

Then the residual normality test was obtained using the Jarque-Bera test, which 

produced residuals in the two models that were not normally distributed. 

4.5. Student-t Copula 

The residuals resulted from the ARIMA-GARCH model of INDF and BMRI shares 

are determined by the dependency structure using the Tau Kendall correlation. The results 

of INDF and BMRI stock returns have a correlation of 0.216. Based on the correlation test, 

  
Figure 3a PACF Plot of BMRI Stock Return Figure 3b ACF Plot of BMRI Stock Return 
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the value of Zhitung = 24.40814 > Z5% = 1.96. It can be concluded that the INDF and BMRI 

stock returns are correlated. Thus, the analysis continued with t-copula. The process began 

by transforming the ARIMA-GARCH residual data into the form U ~ (0,1). The 

transformation data was used to find the t-copula parameter using maximum likelihood 

estimation (MLE). The estimated results of the t-copula parameter are: Rho (ρ) = 0.3387 

and v = 5.5947. The t-copula model for INDF and BMRI shares is: 

𝐶𝑣,𝜌
𝑡 = P(𝑡𝑣(𝑋1) ≤ 𝑢1, … . , 𝑡𝑣(𝑋𝑑) ≤ 𝑢𝑑) = 𝑡𝑣,𝜌

𝑑(𝑡𝑣
−1(𝑢1), … . , 𝑡𝑣

−1(𝑢𝑑) 

𝐶5.5947;0.3387
𝑡 = P(𝑡5.5947(𝑋1) ≤ 𝑢1, 𝑡5.5947(𝑋2) ≤ 𝑢2) 

𝐶5.5947;0,3387
𝑡 = 𝑡5.5947;0,3387

2(𝑡5.5947
−1(𝑢1), 𝑡5.5947

−1(𝑢2)) 

4.6. Value at Risk 

The estimated VaR will be carried out for the next 1 day at a confidence level of 

99%, 95% and 90% by performing a Monte-Carlo simulation with a repetition of 2500 

times. The programming using R led to the VaR as presented in Table 2. 

 
Tabel 2 Value at Risk in the Confidence Level of 99%, 95%, and 90% 

Weight  Value at Risk 

BMRI INDF  99% 95% 90% 

0.9 0.1  -0.04735481 -0.03016964 -0.01984257 

0.8 0.2  -0.04493325 -0.02798011 -0.01892359 

0.7 0.3  -0.04302594 -0.02628314 -0.01817486 

0.6 0.4  -0.04203865 -0.02509852 -0.01766649 

0.5 0.5  -0.04184399 -0.02448757 -0.01731187 

0.4 0.6  -0.04283844 -0.02434828 -0.01723275 

0.3 0.7  -0.04507268 -0.02466021 -0.01758310 

0.2 0.8  -0.04812428 -0.02539512 -0.01831818 

0.1 0.9  -0.05155981 -0.02657656 -0.01936621 

Table 2 highlights that the best weight for stock investment in BMRI and INDF is 

of 50% for each because it has the smallest VaR value. In a simple interpretation, if an 

investor makes an initial investment of IDR 100,000,000, at a significance level of 99%, it 

will lead to the VaR value of -0.042. Then, within the next 1 day, it is likely to experience 

a maximum loss of IDR 4,200,000. The 95% confidence level leads to a VaR value of -

0.025, and within the next 1 day, it is likely to experience a maximum loss of IDR 

2,500,000. Meanwhile, the 90% confidence level results in a VaR value of -0.017, and 

within the next 1 day, it is likely to experience a maximum loss of IDR 1,700,000.  

A research by Dharmawan (2014) on portfolios of the Jakarta Stock Echange index 

and Kuala Lumpur Stock Exchange index revealed the VaR t-copula that was better than 

VaR Gaussian copula. Its free t-copula degree was ν = 4.3 with ρ = 0.5002, but the VaR 

results were not very good. Ningrum et al. (2017) examining portfolio of shares of PT Vale 

Indonesia Tbk, PT Bank Central Asia Tbk (BBCA) and PT Indocement Tunggal Perkasa 

Tbk (INTP), using the Frank copula, Gumbel copula and Clayton copula revealed the VaR 

portfolio that was best with Gumbel copula, VaR at a 99% with a confidence level of 

3.922%, VaR at a 95% with a confidence level of 2.397%, and VaR at a 90% with a 

confidence level of 1,745%. Whereas Iriani et al. (2013), analyzed a VaR of the Indonesian 

Telecommunications stock portfolio (TLKM), Gudang Garam (GGRM), Bank Rakyat 

Indonesia (BBRI) and Astra International (ASII) using Clayton copula and obtained VaR 

of 0.1472872.  
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5. CONCLUSION 

Characteristics of INDF and BMRI stock returns based on the value of the standard 

deviation indicates that BMRI is slightly lower than INDF, meaning that INDF has the 

potential to experience greater losses than BMRI. The t-Copula model parameters obtained 

free degrees of v = 5.5947 and rho (ρ) = 0.3387. Value at Risk in the period of 1 day in the 

future is 0.042 at a confidence level of 90%, 0.025 at a confidence level of 95% and 0.017 

at a confidence level of 99% with a weighting of each INDF and BMRI shares at 50%.  
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