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Abstract. The Generalized AutoRegressive Conditional 

Heteroskedasticity (GARCH) type models have become 

important tools in financial application since their ability to 

estimate the volatility of financial time series data. In the 

empirical financial literature, the presence of skewness and 

heavy-tails have impacts on how well the GARCH-type models 

able to capture the financial market volatility sufficiently. This 

study estimates the volatility of financial asset returns based on 

the GARCH(1,1) model assuming Skew Normal and Skew 

Student-t distributions for the returns errors. The models are 

applied to daily returns of FTSE100 and IBEX35 stock indices 

from January 2000 to December 2017. The model parameters 

are estimated by using the Generalized Reduced Gradient Non-

Linear method in Excel’s Solver and also the Adaptive Random 

Walk Metropolis method implemented in Matlab. The 

estimation results from fitting the models to real data 

demonstrate that Excel’s Solver is a promising way for 

estimating the parameters of the GARCH(1,1) models with non-

Normal distribution, indicated by the accuracy of the estimation 

of Excel’s Solver. The fitting performance of models is 

evaluated by using log-likelihood ratio test and it indicates that 

the GARCH(1,1) model with Skew Student-t distribution 

provides the best fitting, followed by Student-t, Skew-Normal, 

and Normal distributions. 

 

1. INTRODUCTION 

In the world of financial markets, volatility is an important indicator needed by market 

players to anticipate potential losses on financial assets. This is because volatility can be 

interpreted as a measurement of rising or falling asset prices, thus reflecting investment risk 

level. Meanwhile, in statistics, volatility is defined as distribution of financial returns 

(changes in asset prices) and can be measured using standard deviation or variance of returns 

(Abdalla & Winker, 2012). The higher the volatility, the greater the financial asset risk. 

The return value of financial assets, such as stock prices and exchange rates, is 

generally heteroscedastic, which varies over time, so that its volatility can also be 

heteroscedastic. A well-known model that can be used to describe heteroscedastic volatility 

is Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model proposed by 
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Bollerslev (1986). Many financial studies have shown that financial returns also have 

skewness characteristics, for example see Iqbal and Triantafyllopoulos (2019) and Cerqueti 

et al. (2020). Since both characteristics of tail thickness and skewness provide a better fit for 

returns than Normal distribution, it suggests the use of more flexible and superior 

distributions than Normal and Student-t distributions. Therefore, this study focuses on the 

application of Skew-Normal distribution (abbreviated as SN) proposed by Azzalini (2011), 

which generalizes Normal distribution, and Skew Student-t (abbreviated as ST) distribution 

introduced by Fernandez & Steel (1998), which generalizes Student-t distribution. 

A common approach for estimating GARCH models is based on the maximum 

likelihood estimation (for example, see Tyas et al., 2019 and Sartika et al., 2019). When a 

model has a complex likelihood function with many parameters, an attractive alternative 

method for estimating the model is Markov Chain Monte Carlo (MCMC) method. For 

financial practitioners, this method becomes unattractive since it requires advanced 

mathematical/statistical knowledge and computer programming. Therefore, a number of 

tools or tool packages, such as Excel, Matlab, R, and WinBugs, can be used to estimate 

special cases of GARCH models. For example, Solver in Microsoft Excel was studied by 

Nugroho et al. (2018) for GARCH(1,1) model cases with Normal distribution. Recently, 

Nugroho, Kurniawati, et al. (2019), Nugroho, Susanto, et al. (2019), and Kusumawati et al. 

(2020) successfully employed Excel’s Solver to estimate GARCH type models, such as 

GARCH-in-Mean, GJR-GARCH, log-GARCH, and EGARCH, with return errors in the 

models following Normal and Student-t distributions. 

Motivated by the above results, first, this study contributes to the use of Excel’s Solver 

to estimate GARCH models with return errors in the models following SN and ST 

distributions. In particular, we chose Generalized Reduced Gradient (GRG) Non-Linear 

method in Excel’s Solver since this method has contributed to solving non-linear problems, 

is a popular linear programming method, is quite efficient, and has faster computation than 

the other two methods available in Excel’s Solver (Maia et al., 2017). To observe the 

accuracy of the GRG Non-Linear’s Excel’s Solver method, the estimation results were 

compared with Adaptive Random Walk Metropolis (ARWM) method in the MCMC scheme 

implemented in Matlab. This method was successfully employed and demonstrated its 

statistical efficiency by Nugroho & Susanto (2017) and Nugroho (2018) in estimating 

APARCH and GARCH models, respectively, where the return errors have Normal and 

Student-t distributions. Therefore, the first objective of this study is to determine the ability 

of GRG Non-Linear’s Excel’s Solver method in estimating GARCH(1,1) models with SN 

and ST distributions. 

Furthermore, analysis of model and estimation method was based on empirical 

application to real daily data of FTSE100 and IBEX35 stock indices from January 2000 to 

December 2017. Therefore, the second contribution of this study is to provide empirical 

evidence on performance comparison between SN and ST distributions against Normal and 

Student-t distributions in GARCH model contexts. In particular, it aims to obtain the best 

distribution in GARCH models in fitting two observation data. To the best of our knowledge, 

there has not been any study related to the two objectives mentioned in this study. 

 

2. LITERATURE REVIEW 

GRG Non-Linear method was first developed by Abadie & Carpenter (1969) to 

expand Reduced Gradient (RG) method so that it accommodates non-linear inequality 

constraints in optimization problems. The GRG Non-Linear method was proven by Lee et al. 
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(2004) as an effective method for non-linear problems with non-linear constraints. Based on 

our study, few researches study the use of GRG Non-Linear method to estimate GARCH type 

models, even though the method is available in Excel’s Solver tool which makes it easier for 

financial practitioners. 

Nugroho et al. (2018) provided fairly clear steps on how to estimate GARCH models 

using the GRG Non-Linear’ Excel’s Solver method. As a simple framework, they focused on 

GARCH(1,1) models with Normally distributed return errors, and noted a critical issue in 

selecting initial values, namely that the initial values should be close to the possible solutions. 

For more complex models, the GRG Non-Linear’s Excel’s Solver method was used by 

Nugroho, Kurniawati, et al. (2019) to estimate GARCH-in-Mean, GJR-GARCH, and log-

GARCH models with Normally distributed return errors, and by Nugroho, Susanto, et al. 

(2019) to estimate non-linear GARCH models with return errors that have Normal and 

Student-t distributions. Both studies found that Excel’s Solver produces estimation values 

for several parameters that violate the model constraints even though it has no effect on other 

parameter values and objective functions. The violation happened because the estimation 

values are extremely close to zero or one. Recently, Kusumawati et al. (2020) employed the 

GRG Non-Linear’s Excel’s Solver method to estimate EGARCH models with return errors 

following Normal and Student-t distributions. In particular, they did not find any violation of 

the estimation results against the model constraints. In general, the above studies have 

concluded that GRG Non-Linear’s Excel’s Solver method has a good ability in estimating 

the other types which are more complicated than GARCH models since their estimation 

values are relatively close to the estimation results of ARWM method. 

ARWM method was developed by Atchade & Rosenthal (2005) as one of the methods 

to improve the performance of Random Walk Metropolis (RWM) method, which was first 

applied by Metropolis et al. (1953). This improvement is done by handling changes in 

parameter proposal values automatically. To the best of our knowledge, only few researches 

study the use of ARWM method to estimate GARCH-type models, for example see Salim et 

al. (2016), Nugroho & Susanto (2017), Nugroho (2018), Nugroho, Kurniawati, et al. (2019), 

Nugroho, Susanto, et al. (2019), and Kusumawati et al. (2020). In particular, Nugroho (2018) 

reported that the ARWM method was statistically efficient (in terms of correlation) to 

estimate GARCH(1,1) models with Normal and Student-t distributions. In all these studies, 

none focuses on models with return errors that have SN and ST distributions as observed in 

this study. 

SN distribution was developed by Azzalini (2011) to extend Normal distribution so 

that it can accommodate distribution’s skewness. The performance of SN distribution in 

GARCH models were compared with Normal, Student-t, Skew-t, Generalized Error 

Distribution (GED), and Skewed GED distributions by Altun et al. (2018), and the study 

showed that SN distribution is only better than Normal distribution. 

In contrast to Altun et al. (2018) that applied Skew Student-t distribution of Azzalini 

& Capitanio (2003), this study applied Skew Student-t distribution of Fernandez & Steel 

(1998). Compared to Normal and Student-t distributions, Cifter (2012) provided evidence 

that Skew Student-t distribution of Fernandez & Steel (1998) is superior when applied to 

GARCH-type models. 
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3. METHODOLOGY 

3.1 GARCH(1,1) Model  

The GARCH model introduced by Bollerslev (1986) illustrates that today’s 

conditional variance is not only based on the past returns but also on the past variances. One 

of the popular and commonly used GARCH type models in practice is GARCH(1,1) model. 

Hansen & Lunde (2005) compared 330 ARCH type models and found no empirical evidence 

that GARCH(1,1) models outperformed the others. The GARCH(1,1) model of Bollerslev 

(1986) is expressed as follows 

𝑅𝑡 = 𝜀𝑡, where 𝜀𝑡~𝑁(0, 𝜎𝑡
2) (1) 

𝜎𝑡
2 = 𝜔 + 𝛼𝑅𝑡−1

2 + 𝛽𝜎𝑡−1
2 , (2) 

where N represents Normal distribution and 𝑅𝑡 represents return for asset at time t. The above 

model has requirements for parameters: 𝜔, 𝛼, 𝛽 > 0 for ensuring positivity of conditional 

variance and 𝛼 +  𝛽 < 1 to ensure the process stationarity. In most financial case studies, 

return is defined as difference in the natural logarithm of asset values. It is based on the 

assumption that asset value follows geometric Brownian motion. 

3.2 Skew Normal Distribution 

According to Azzalini (2011), for random variable X which has Normal Probability 

Density Function (abbreviated as PDF) 𝑓(𝑥) and Normal Cumulative Density Function 

(abbreviated as CDF) 𝐹(𝑥), the SN distribution function for X can be expressed as 𝑔(𝑥|𝜆) =
2 𝑓(𝑥)𝐹(𝜆𝑥), where 𝜆 ∈ ℝ represents skewness parameter. If 𝑋~𝑁(0, 𝜎2), then PDF and 

CDF for Normal distribution are respectively 

𝑓(𝑥) =
1

√2𝜋𝜎2
𝑒

(−
𝑥2

2𝜎2)
 (3) 

𝐹(𝑥) =
1

2
(1 + 𝐸𝑟𝑓 (

𝑥

√2𝜎2
)) (4) 

where Erf represents error function as follows: 

𝐸𝑟𝑓(𝑦) =
2

√𝜋
∫ 𝑒−𝑧2

𝑑𝑧
𝑦

0

.  

Therefore, the PDF for the SN distribution can be expressed as follows: 

𝑆𝑁(𝜆) = 𝑔(𝑥|𝜆) =
1

√2𝜋𝜎2
𝑒

(−
𝑥2

2𝜎2)
(1 + 𝐸𝑟𝑓 (

𝜆𝑥

√2𝜎2
)) (5) 

where 𝜎 > 0. The distribution is going to lose its symmetrical property at 𝜆 ≠ 0, in which it 

is going to be left-skewed (negative skewness) if 𝜆 < 0, and right-skewed (positive 

skewness) if 𝜆 > 0. 

3.3 Skew Student-t Distribution 

In contrast to SN distribution which only accommodates skewness, there is a 

distribution that allows skewness as well as kurtosis, namely ST distribution, proposed by 

Fernandez & Steel (1998). The PDF for random variable X following ST distribution with a 

mean of 0 and a variance of 𝜎2 is expressed as follows: 

𝑆𝑇(𝛾, 𝜈) = 𝑓(𝑥|𝛾, 𝜈) (6) 
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=
2Γ (

𝑣 + 1
2 )

(𝛾 + 𝛾−1)Γ (
𝑣
2) √𝜋(𝑣 − 2)𝜎2

(1 +
𝑥2

(𝑣 − 2)𝜎2
(𝛾21(𝑥≤0) + 𝛾−21(𝑥>0)))

−
𝑣+1

2

 

where 𝛾 > 0 represents skewness parameter and 𝑣 > 2 represents degrees of freedom that 

controls the distribution’s tail thickness. The distribution is going to lose its symmetrical 

property when 𝛾 ≠ 1. In other words, when 𝛾 = 1, the ST distribution is reduced to Student-

t distribution as introduced by Bollerslev (1987). In particular, the distribution is going to be 

left-skewed if 𝛾 ∈ (0,1) and right-skewed if 𝛾 > 1. 

3.4 Log-likelihood Function for GARCH Models 

For parametric statistical inference objective, the model parameter estimations are 

based on the likelihood functions formed from probability distributions depending on a fixed 

set of parameters. For computation problems, it is preferable to use natural logarithm of 

likelihood (in short, log-likelihood) and that does not change the objective, meaning that 

maximizing the log-likelihood function also maximizes the likelihood function. This method 

helps numerically increase the computer’s numerical accuracy by calculating the number of 

probability logarithms rather than multiplying small value probabilities (Solomon, 2015). 

𝐑 = {𝑅𝑡}𝑡=1
𝑇  represents return series and 𝜎1

2, 𝜎2
2, …, 𝜎𝑇

2 represents conditional 

variance series associated with returns. When return error 𝜀𝑡 follows SN distribution, the log-

likelihood function for returns with conditional variance following the GARCH(1,1) models, 

is expressed as follows: 

𝐿(R|𝜃1) = −
𝑇

2
log(2𝜋) 

− ∑ [log(𝜎𝑡) −
𝑅𝑡

2

2𝜎𝑡
2 + log (1 + 𝐸𝑟𝑓 (

𝜆𝑅𝑡

√2𝜎𝑡
2

))]
𝑇

𝑡=1
 

(7) 

where 𝜃1 = (𝜔, 𝛼, 𝛽, 𝜆). Meanwhile, the return series with error 𝜀𝑡 following ST distribution 

and its conditional variance following the GARCH(1,1) models has a log-likelihood function 

expressed as follows: 

𝐿(R|𝜃2) = 𝑇 [log(2) + log(𝛾 + 𝛾−1) + log Γ (
𝑣 + 1

2
) − log Γ (

𝑣

2
)

−
1

2
log(𝜋(𝑣 − 2))] 

− ∑ [log(𝜎𝑡) −
𝑣 + 1

2
log (1 +

𝑅𝑡
2

(𝑣 − 2)𝜎𝑡
2 𝑠)]

𝑇

𝑡=1
 

(8) 

  

where 𝜃2 = (𝜔, 𝛼, 𝛽, 𝛾, 𝜈) and s uses the value of 𝛾2 if 𝑅𝑡 ≤ 0 and 𝛾−2 if 𝑅𝑡 > 0. 

3.5 Estimation Method 

There are various methods for estimating the GARCH model parameters. This study 

focuses on two estimation methods, namely GRG Non-Linear’s Excel’s Solver and ARWM 

methods. GRG Non-Linear method was first introduced by Abadie & Carpenter (1969) to 

solve non-linear optimization problems. The basic idea of this method is to transform 

constraint inequality into an equality form by adding a non-negative slack variable. The 

optimization procedure of the GRG Non-Linear method can be seen in more detail in Abadie 
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& Carpenter (1969) and Lasdon et al. (1974) since this study directly employed this method 

in Excel’s Solver to observe its practicality for financial practitioners. Meanwhile, Powell & 

Batt (2008) explained the basic principles of the GRG Non-Linear method in Excel’s Solver 

as follows. Solving an optimization problem begins with the initial values of the model 

parameters. These values are going to change little by little so that the values of the objective 

function become optimal. It means that the values of the objective function are expected to 

gradually “increase” if the objective is to maximize, and “decrease” if the objective is to 

minimize. 

This study follows the same steps as in Nugroho et al. (2018) to estimate the 

parameters of the considered models using the GRG Non-Linear’s Excel’s Solver method. 

The objective of the optimization problem is to maximize the log-likelihood function in 

Equation (7) and (8) with their constraints following the model parameter requirements. 

Unfortunately, Excel’s Solver does not provide strict conditions for inequality sign so the 

parameter estimations may not fulfill the requirements. Therefore, this study investigates 

whether Excel Solver is able to estimate the models using the GRG Non-Linear method 

without breaking the constraints. 

Furthermore, the estimation accuracy of the GRG Non-Linear’s Excel’s Solver 

method is evaluated by comparing them with the estimations produced by the ARWM 

method implemented in MATLAB. Choi & Lam (2017) noted that the two estimation 

methods give extremely similar results when the difference was relatively close to zero. In 

this case, the estimation results from the ARWM method were assumed to be the true values 

because this was proven to be statistically efficient by Nugroho (2018) and Nugroho et al. 

(2017) in empirical applications. The ARWM method was proposed by Atchade & Rosenthal 

(2005) to improve the performance of RWM method by handling proposal values 

automatically. This method is employed in the MCMC algorithm which is known to be 

extremely effective in handling log-likelihood function with many parameters and complex 

forms. A brief history of the MCMC algorithm can be read in Robert & Casella (2011). 

To estimate parameter 𝜃, the ARWM method follows these steps (see Salim et al., 

2016): 

(i) Parameter 𝜃𝑛 and step size 𝑠𝑛 are given. 

(ii) Generating proposal 𝜃∗ = 𝜃𝑛 + 𝜂𝑛, where 𝜂𝑛~𝑁(0, 𝑠𝑛). 

(iii) Calculating Metropolis ratio: 

𝑟(𝜃𝑛, 𝜃∗) = 𝐿(𝜃∗| ∙) + 𝑝(𝜃∗) − 𝐿(𝜃𝑛| ∙) − 𝑝(𝜃𝑛),  

where p(x) is the log-prior of x. 

(iv) Generating 𝑥~𝑈(0,1). If 𝑥 < exp{𝑟(𝜃𝑛, 𝜃∗)}, then 𝜃∗ is accepted. 

(v) Updating step size: 𝑠 ∈  [𝑠min, 𝑠max] and then calculating: 

𝑠∗ = max {𝑠min, 𝑠𝑛 +

𝑚(𝜃∗)
𝑛 + 1 − 𝜏̅

(𝑛 + 1)0.6
},  

where 𝑚(𝜃∗) represents frequency of proposal acceptance 𝜃∗. If 𝑠∗ > 𝑠max, then 𝑠max is 

accepted, otherwise 𝑠∗ is accepted. This study sets 

𝑠min = 10−5, 𝑠max = 10, 𝜏̅ = 0.44,  

where 𝜏̅ is chosen so that the acceptance rate is closer to 0.44 (Roberts & Rosenthal (2009)). 

 The ARWM method is employed in the first step of the MCMC algorithm to estimate 

each model parameter. In summary, for GARCH(1,1) models with SN distribution, the first 

step of the MCMC scheme has the following stages: 

1. (𝛼, 𝛽, 𝜆) is known, generating parameter 𝜔 using the ARWM method. 
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2. (𝜔, 𝛽, 𝜆) is known, generating parameter 𝛼 using the ARWM method. 

3. (𝜔, 𝛼, 𝜆) is known, generating parameter 𝛽 using the ARWM method. 

4. (𝜔, 𝛼, 𝛽) is known, generating parameter 𝜆 using the ARWM method. 

Similar stages are also carried out for the parameter estimation cases of GARCH(1,1) 

models with ST distribution. The above process is started by setting the initial parameter 

values: 𝛼0 = 0.2, 𝛽0 = 0,7, 𝜆0 = 1, 𝜈0 = 1, and 𝛾0 = 1. Meanwhile, for the prior 

distribution of each parameter, Normal distribution with a mean of 0 and a variance of 10 is 

used. The first step of the MCMC algorithm is carried out for 6000 iterations, where the first 

1000 iterations are discarded as “burn-in” period. Using the remaining 5000 estimations, the 

second step of the MCMC is to calculate the posterior mean, standard deviation, and 95% 

HPD (highest posterior density) interval. In this step, the HPD interval is estimated by using 

Chen–Shao’s approach in Le et al. (2020). The HPD interval is known as the shortest interval 

among all Bayesian confidence intervals. 

 

4. RESULT AND DISCUSSION 

4.1 Data Description 

To investigate the ability of GRG Non-Linear’s Excel’s Solver method as well as to 

evaluate the performances of the studied models, this study uses stock index data of FTSE100 

and IBEX35. FTSE100 stock index is a stock index of the top 100 companies listed on the 

London Stock Market. This market is the fourth largest stock market in the world and the 

largest one in Europe so it typically reflects the financial situation in Europe. Meanwhile, 

IBEX35 is an index managed by the Sociedad de Bolsas and consists of the 35 most liquid 

Spanish securities traded on the Madrid Stock Market. Return data of both indices were 

downloaded from the Oxford-Man Institute of Quantitative Finance (see web 

https://realized.oxford-man.ox.ac.uk) which is available to public for free. This study 

observes the daily return data from January 2000 to December 2017. There are 4503 data for 

FTSE100 and 4532 data for IBEX35. Table 1 presents a summary of the statistical description 

and normality test for the two indices’ returns. 

The statistical description table shows that the average of the two returns is close to 

0, so it is appropriate to model returns with an average equal to 0. The skewness values for 

the two returns are not equal to 0, meaning that the return distributions are not symmetrical. 

Meanwhile, the kurtosis values for both returns are greater than 3, meaning that the return 

distribution tails are thicker than Normal distribution tail. Thus, the two statistical values 

indicate that the returns for both observation data are not Normally distributed. This is 

confirmed using the Jarque–Bera (JB) normality test which rejects the Normal distribution 

for both returns, with the JB statistics being greater than the critical value.  

Table 1. Statistics for Returns of the FTSE100 and IBEX35 indices 

FTSE100  IBEX35 
Mean –0.0354  Mean –0.0504 

Standard Deviation 0.9296  Standard Deviation 1.2554 

Kurtosis 7.04  Kurtosis 8.48 

Skewness –0.1459  Skewness –0.0359 

Minimum –5.76  Minimum –7.59 

Maximum 7.04  Maximum 13.04 

Stat. of JB 3869.6  Stat. of JB 5667.7 

Critical Value of JB 5.99  Critical Value of JB 5.98 
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4.2 Result on FTSE100 and IBEX 

The estimation results of GRG Non-Linear’s Excel’s Solver and ARWM methods in 

Matlab for GARCH(1,1) models with the return errors following SN and ST distributions, 

are respectively reported in Tables 2 and 3, along with GARCH(1,1) models with the return 

errors following Normal and Student-t distributions as comparison. First, the estimation 

results of the two methods are compared. The superscript “*” indicates that the values are 

significant in terms of the 95% HPD interval. It is observed that each data case shows 

estimation values (both parameters and log-likelihood) that are relatively close to each other, 

produced by the two estimation methods when the same model is applied. This indicates the 

good numerical accuracy of the GRG Non-Linear’s Excel’s Solver method. Moreover, the 

results also show that none of the estimation deviates from the model constraints even though 

Excel’s Solver does not provide strict conditions for inequality. This means that the result of 

𝜔, 𝛼, 𝛽 > 0 or 𝛼 + 𝛽 = 1, as in Nugroho, Kurniawati, et al. (2019) and Nugroho, Susanto, et 

al. (2019), is not obtained. Therefore, it can be said that GRG Non-Linear’s Excel’s Solver 

method is reliable for estimating GARCH(1,1) models with SN and ST distributions, even 

though both have complex likelihood functions. 

Table 2. The Estimation Results on The GARCH(1,1) Model with Normal (N) and SN 

Distributions Adopting the FTSE100 and IBEX35 Data 

Data Distribution 𝜔 𝛼 𝛽 𝜆 𝛼 + 𝛽 L 

GRG Non Linear’s Solver’s Excel 

FTSE100 
N 0.0063 0.0965 0.8982 - 0.9947 –5104.62 

SN 0.0062 0.0969 0.8979 –0.064 0.9948 –5098.88 

IBEX35 
N 0.0129 0.0915 0.9040 - 0.9955 –6776.41 

SN 0.0130 0.0915 0.9039 –0.046 0.9954 –6773.08 

ARWM 

FTSE100 
N 0.0074 0.1038 0.8898 - 0.9936 –5106.17 

SN 0.0068 0.1008 0.8934 –0.065* 0.9942 –5100.84 

IBEX35 
N 0.0148 0.0966 0.8979 - 0.9945 –6777.67 

SN 0.0142 0.0942 0.9005 –0.049* 0.9947 –6774.19 

 

Table 3. The Estimation Results on the GARCH(1,1) Model With Student-T (T) and ST 

Distributions Adopting the FTSE100 and IBEX35 Data. 

Data Distribution 𝜔 𝛼 𝛽 𝜈 𝛾 𝛼 + 𝛽 L 

GRG Non Linear’s Solver’s Excel 

FTSE100 
T 0.0053 0.0914 0.9047 9.42 - 0.9961 –5061.67 

ST 0.0053 0.0916 0.9037 10.42 0.958 0.9953 –5051.40 

IBEX35 
T 0.0080 0.0701 0.9270 7.53 - 0.9971 –6695.12 

ST 0.0084 0.0702 0.9260 7.81 0.969 0.9962 –6689.69 

ARWM 

FTSE100 
T 0.0059 0.0938 0.9012 9.91 - 0.9950 –5063.56 

ST 0.0065 0.0993 0.8945 11.12 0.957* 0.9938 –5053.69 

IBEX35 
T 0.0098 0.0749 0.9207 7.83 - 0.9956 –6696.74 

ST 0.0087 0.0678 0.9277 8.03 0.968* 0.9955 –6691.79 

The second concern lies on the estimation results for skewness parameter when SN 

distribution is applied. This study obtains that the estimate of 𝜆 is around –0.064 for the 

FTSE100 data and –0.046 for the IBEX35 data. These values indicate that the distributions 
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of the two returns are left-skewed, meaning that most returns of the FTSE100 and IBEX35 

data are negative. This confirms the pre-analysis shown in Table 1. However, Excel’s Solver 

does not provide information on whether the estimations are significant or not, meaning 

whether the values actually deviate from 0 or not. This is one of the weaknesses of Excel’s 

Solver. Furthermore, the significance of parameter 𝜆 is obtained from the MCMC results by 

estimating the 95% HPD interval, namely 𝜆  [–0.083,–0.012] for the adoption of the 

FTSE100 data, and 𝜆  [–0.100,–0.027] for the adoption of the IBEX35 data. These results 

conclude that skewness parameter needs to be included in the models. 

Third, the application of ST distribution results in a value of skewness parameter 

between 0 and 1. It means that the return distributions are going to be left-skewed, and it is 

the same when SN distribution is applied. From the MCMC results, 95% HPD interval also 

indicates that the skewness values are significant, namely 𝛾  [0.940, 0.974] for the adoption 

of the FTSE100 data and 𝛾  [0.950, 0.986] for the adoption of the IBEX35 data. Meanwhile, 

the values of the degrees of freedom are around 11 for the FTSE100 data and 8 for the 

IBEX35 data. This indicates that the distributions of both returns have thicker tails than 

Normal distribution, which confirms the pre-analysis in Table 1 based on the kurtosis values. 

In particular, the results also confirm that the distribution tail of the IBEX35 return is thicker 

than the FTSE100 return, indicated by their kurtosis values. It means that the larger the 

kurtosis value, the thicker the distribution tail (which is indicated by smaller degree of 

freedom). Therefore, these results proved the importance of including skewness parameter as 

well as kurtosis. Thus, these empirical results provide evidence of support on the use of ST 

distribution for return errors. 

4.3 Model Selection 

For model selection that provides the best fit, this study uses log-likelihood ratio test 

(abbreviated as LRT). The LR test is used to compare the performance of two nested models 

(one of the models that is a special case of the other one) when in-sample data are applied for 

the model estimation process. This method is not necessarily the best test, but this test has 

properties that minimize test errors (Roussas, 1997). Suppose there is a basic model of M0 

and an alternative model of M1 with log-likelihood values of 𝐿𝑀0
 and 𝐿𝑀1

, respectively, the 

statistical value for the LRT are expressed as follows (Wu & Vos, 2018): 

LRT = 2(𝐿𝑀1
− 𝐿𝑀0

) (9) 

which has an asymptotic distribution with the degree of freedom equals to the difference in 

the number of parameters between the M0 and M1 models. The asymptotic distribution of the 

test is the 𝜒2 distribution. In particular, the critical values of the 𝜒2 distribution with the 

degree of freedom of 1 at 1%, 5%, and 10% significance levels are 6.64, 3.84, and 2.71, 

respectively. The alternative model of M1 significantly provides a better fit than the M0 model 

if the LRT is greater than the critical value. 

As observed in Table 2, it can be easily calculated that the LRT statistics for the 

GARCH(1,1) models with SN distribution and the GARCH(1,1) models with Normal 

distribution are 11.48 (Solver result) and 10.66 (Matlab result), respectively, for fitting the 

FTSE100 data, as well as 6.66 (Solver result) and 6.96 (Matlab result) for fitting the IBEX35 

data. Therefore, for each data case, the LR test rejects GARCH(1,1) models with Normal 

distribution at any significance level. Thus, GARCH(1,1) models with SN distribution 

provide a better fit than GARCH(1,1) models with Normal distribution. This confirms the 

previous result stating that skewness parameter needs to be included in the models. 
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As observed in Table 3, the GARCH(1,1) models with ST distribution provides a 

better fit than the GARCH(1,1) models with Student-t distribution for each data case and all 

significance levels. This is indicated by the LRT statistical values of 20.54 (Solver result) 

and 19.74 (Matlab result) for the FTSE stocks, as well as 10.86 (Solver result) and 9.9 (Matlab 

result) for the IBEX35 stocks. These results suggest the use of distributions that 

accommodate skewness and kurtosis. This also confirms the previous results stating that there 

is a significance of skewness and kurtosis for both data. 

In general, even though the fitting performance of the models with SN and ST 

distributions cannot be compared using the LRT, the goodness of fit can still be determined. 

Since the goal is to maximize the log-likelihood, the largest value is better. Thus, based on 

Table 2 and 3, the best fitting for the FTSE100 and IBEX35 data to the GARCH(1,1) models 

are provided by the ST distribution specification, followed by the Student-t, SN, and Normal 

distributions. These results are different from Chu et al. (2017) in which GARCH(1,1) 

models with Normal distribution are better than models with SN or ST distributions when the 

models are fitted to seven cryptocurrencies. 

 

5. CONCLUSION 

This study used the GRG Non-Linear method available in Excel’s Solver and the 

ARWM method in the MCMC scheme implemented in Matlab to estimate GARCH(1,1) 

models. The models are not only based on the Normal distribution for return errors, but also 

on the Skew-Normal, Student-t, and Skew Student-t distributions fitted for the daily returns 

of the FTSE100 and IBEX35. The GRG Non-Linear’s Excel’s Solver method was found to 

produce accurate estimations and did not violate the constraints even though Excel’s Solver 

did not provide strict conditions for inequality. The fitting performance of models were 

evaluated using log-likelihood comparison test criteria. The results provided evidence that 

the model with Skew Student-t distribution specification is the best among other distributions 

considered in this study. This is due to the fact that Skew Student-t distribution can 

accommodate skewness and kurtosis that are typically found in the daily returns of financial 

assets. Therefore, the assumption that return errors have a distribution which allows both 

skewness and kurtosis, plays an important role in GARCH(1,1) models. 
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