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Abstract: NARNN is a type of ANN model consisting of 

a limited number of parameters and widely used for 

various applications. This study aims to determine the 

appropriate NARNN model, for the selection of input 

variables of nonlinear autoregressive neural network 

model for time series data forecasting, using the stepwise 

method. Furthermore, the study determines the optimal 

number of neurons in the hidden layer, using a trial and 

error method for some architecture. The NARNN model is 

combined in three parts, namely the learning method, the 

activation function, and the ensemble operator, to get the 

best single model. Its application in this study was 

conducted on real data, such as the interest rate of Bank 

Indonesia. The comparison results of MASE, RMSE, and 

MAPE values with ARIMA and Exponential Smoothing 

models shows that the NARNN is the best model used to 

effectively improve forecasting accuracy. 

 

1. INTRODUCTION  

Time series data forecasting is carried out by studying existing patterns using 

numerical values and estimating future values based on these patterns (Abraham & Ledolter, 

2005). Its forecasting process can be classified into linear and nonlinear methods. The 

popular linear forecasting methods include the Auto-Regressive Integrated Moving Average 

(ARIMA) and Exponential Smoothing models. Although this linear model successfully 

analyzes linear time series data, it is not good at modeling nonlinear data (Samarasinghe, 

2007). Generally, forecasting nonlinear time series provides the requirements for the needed 

specification. According to Zhang (2003), the difficulty in determining the nonlinear 

function makes this model less useful in modeling nonlinear time series data. Artificial 

Neural Network (ANN) was introduced as an alternative model to overcome the nonlinear 

functions used in time series data forecasting. ANN can take a universal approach and does 

not need processed data knowledge (Walczak, 2001). Previous studies show that ANN with 

Nonlinear Auto-Regressive Neural Network (NARNN) has good performance for nonlinear 

data models. Similarly, several studies have shown exemplary performance in long-term 

forecasting, of monthly and quarterly time-series data replaced with general statistical 

methods, such as linear regression (Warner & Misra, 1996). 
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The use of NARNN model to determine time series data forecasting can be carried 

out using the univariate model, which utilizes past predicted data. This model contains a 

limited number of parameters in its application. Therefore, this study aims to determine the 

appropriate NARNN model, for the selection of input variables of the nonlinear 

autoregressive neural network model for time series data forecasting, using the stepwise 

method. Initial input variables are taken from the time series data frequency, which was 

selected using the stepwise method. The optimal number of neurons in the hidden layer is 

selected over several architectures, using the trial and error method. This study is an 

innovation from the research carried out by Suhartono, Subanar, & Guritno (2006) and Crone 

& Kourentzes (2010), which introduced the procedure for forming the NARNN model 

applied to forecasting time series data. In this study, the NARNN model is combined in three 

parts, namely the learning method, the activation function, and the ensemble operator, to 

obtain the best single model.  

There are five learning methods used to calculate the NARNN model, namely 

backpropagation, resilient backpropagation with weight backtracking, resilient 

backpropagation without weight backtracking, globally convergent algorithm with smallest 

absolute gradient, and globally convergent algorithm with smallest learning rate. The 

detailed descriptions of each learning method can be seen from the research carried out by 

Riedmiller & Braun (1993), and Anastasiadis, Magoulas, & Vrahatis (2005). Two activation 

functions are used, namely logistic and tangent hyperbolic. Furthermore, three ensemble 

operators are used including mean, median, and mode with a detailed description of each 

ensemble operator indicated in Kourentzes, Barrow, & Crone (2014). 

The application of the NARNN model in this study was carried out on real data, such 

as the interest rate of Bank Indonesia. The fully manual specification is carried out using the 

R program of the mlp function of the nnfor package with a detailed description in Kourentzes 

(2019). The measurement of forecasting accuracy is carried out using Mean Absolute Scaled 

Error (MASE), Root Mean Squared Error (RMSE), and Mean Absolute Percent Error 

(MAPE) values. The values of MASE, RMSE, and MAPE are taken due to their ability to 

measure the time series data forecasting studies accurately. Finally, the comparison of 

MASE, RMSE, and MAPE values was carried out with the ARIMA and Exponential 

Smoothing models. 

  

2. LITERATURE REVIEW 

2.1. NARNN Model  

The Artificial Neural Network (ANN) model is generally the most widely used in 

engineering or engineering applications. It is a Nonlinear Auto-Regressive Neural Network 

(NARNN) model, which is also known as the Multi-Layer Perceptron (MLP) or Feed-

Forward Neural Network (FFNN). Typically, applications for time series data modeling are 

based on the NARNN architecture, with regression modeling, time series, and signal 

processing among the ANN applications usually based on the NARNN architecture. 

In statistical modeling, NARNN can be viewed as a flexible class of nonlinear 

functions. Generally, this model works by accepting a vector of input 𝑥 and then calculating 

a response or output �̂�(𝑥) by processing (propagating) 𝑥 through interrelated process 

elements arranged in layers. The input data, 𝑥, sequentially flows from one layer to the next 

with the inputs nonlinearly transformed into layers by processing elements in each layer. 

Finally, the output values of �̂�, which can be scalar or vector, are computed at the output 
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layer (Suhartono et al., 2006). The output values of �̂� are calculated as follows in Equation 

1. 

�̂�(𝑘) = 𝑓𝑜[∑[𝑤𝑗
𝑜𝑓𝑗

ℎ (∑𝑤𝑗𝑖
ℎ𝑥𝑖(𝑘) + 𝑏𝑗

ℎ

𝑝

𝑖=1

) + 𝑏𝑜]

𝑞

𝑗=1

] 
(1) 

with 

𝑥𝑖(𝑘)  : input variable as much as 𝑝, (𝑖 = 1, 2, … , 𝑝) 

�̂�(𝑘)  : estimated value of the output variable  

𝑘  : input-output data pair index (𝑥𝑖(𝑘), �̂�(𝑘)), 𝑘 = 1, 2, … , 𝑛 

𝑤𝑗𝑖
ℎ   : weight of the 𝑖-th input to the 𝑗-th neuron in the hidden layer, (𝑗 =

1, 2, … , 𝑞) 

𝑏𝑗
ℎ  : bias in 𝑗-th neuron in hidden layer, (𝑗 = 1, 2, … , 𝑞) 

𝑓
𝑗
ℎ  : activation function in 𝑗-th neuron in hidden layer  

𝑤𝑗
𝑜  : weight of the 𝑗-th neuron in the hidden layer leading to the neuron in the 

output layer 

𝑏𝑜  : bias in the neurons in the output layer 

𝑓𝑜  : activation function on neurons in the output layer. 

The nonlinear form of �̂� function occurs through the activation function 𝑓
𝑗
ℎ and 𝑓𝑜 in the 

hidden and output layer, using a logistic or tangent hyperbolic function. 

Several notations are used to clarify the NARNN input-output process. The 

superscripts ℎ and 𝑜 are used as an index representing the hidden and output layers. It also 

used 𝑣𝑗
ℎ to express a vector of values after the sum of the inputs and weights (bias is included) 

in the hidden layer in the 𝑗-th neuron, namely  

𝑣𝑗
ℎ = ∑𝑤𝑗𝑖

ℎ𝑥𝑖 + 𝑏𝑗
ℎ

𝑝

𝑖=1

 

(2) 

or for the 𝑘-th data obtained   

𝑣𝑗(𝑘)
ℎ = ∑ 𝑤𝑗𝑖

ℎ𝑥𝑖(𝑘) + 𝑏𝑗
ℎ

𝑝

𝑖=1

 

(3) 

The output in the hidden layer, which is processed in the 𝑗-th neuron, is 

𝑎𝑗
ℎ = 𝑓𝑗

ℎ(𝑣𝑗
ℎ) (4) 

or for the 𝑘-th data obtained 

𝑎𝑗(𝑘)
ℎ = 𝑓𝑗

ℎ(𝑣𝑗(𝑘)
ℎ ) = 𝑓𝑗

ℎ(∑𝑤𝑗𝑖
ℎ𝑥𝑖(𝑘) + 𝑏𝑗

ℎ

𝑝

𝑖=1

) 

(5) 

Similarly, several notations that state the sum of the inputs and weights in the output 

layer are  
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𝑣𝑜 = ∑𝑤𝑗
𝑜𝑎𝑗

ℎ + 𝑏𝑜

𝑞

𝑗=1

 

(6) 

or for the 𝑘-th data obtained 

𝑣(𝑘)
𝑜 = ∑𝑤𝑗

𝑜𝑎𝑗(𝑘)
ℎ + 𝑏𝑜

𝑞

𝑗=1

 

(7) 

The output at the output layer is 

�̂�(𝑘) = 𝑎(𝑘)
𝑜 = 𝑓𝑜(𝑣(𝑘)

𝑜 ) (8) 

Therefore, the relationship between the input 𝑥𝑖(𝑘), 𝑖 = 1, 2, … , 𝑝 and 𝑘 = 1, 2, … , 𝑛, with the 

output �̂�(𝑘) is 

�̂�(𝑘) = 𝑓𝑜[∑𝑤𝑗
𝑜𝑓𝑗

ℎ(𝑣𝑗(𝑘)
ℎ ) + 𝑏𝑜

𝑞

𝑗=1

] 
 

= 𝑓𝑜[∑𝑤𝑗
𝑜𝑓𝑗

ℎ(∑𝑤𝑗𝑖
ℎ𝑥𝑖(𝑘) + 𝑏𝑗

ℎ

𝑝

𝑖=1

) + 𝑏𝑜

𝑞

𝑗=1

] 
 

= 𝐹(𝑥1(𝑘), 𝑥2(𝑘), … , 𝑥𝑝(𝑘)) (9) 

The overall mapping that occurred in NARNN can then be written in the following form 

[
 
 
 
�̂�(1)

�̂�(2)

⋮
�̂�(𝑛)]

 
 
 

=

[
 
 
 
𝐹(𝑥1(1), 𝑥2(1), … , 𝑥𝑝(1))

𝐹(𝑥1(2), 𝑥2(2), … , 𝑥𝑝(2))

⋮
𝐹(𝑥1(𝑛), 𝑥2(𝑛), … , 𝑥𝑝(𝑛))]

 
 
 

 

(10) 

2.2. Stepwise Method   

Before using the stepwise method, the first step is to determine the lag of the data 

based on the number of frequencies. When the data frequency is 𝑚, then successive lag 𝑚 

from lag one is used, for example, 1:4 and 1:12 for quarterly and monthly data lag, 

respectively. The optimal lag (variable) is then selected using the stepwise method, which 

selects the variable based on the most considerable partial correlation included in the model. 

Variables that are already in the model can be removed again, however, when one of them 

is entered into the model, then the other does not need to be included again because the effect 

is represented by the variables that have been included. Therefore, there is no 

multicollinearity in the resulting model (Sembiring, 1995).  

2.3. Learning Method 

The learning method consists of two methods, namely, supervised and unsupervised. 

Its main objective is to regulate the weights that exist in NARNN to ensure the final weight 

is obtained according to the trained data pattern (Yeung, Cloete, Shi, & Ng, 1998). In the 

supervised learning process, one input given to a neuron in the input layer runs along the 

NARNN to the neuron in the output with the results matched with the target. An error tends 

to appear when there is a difference, with learning conducted when the value is significant. 

Meanwhile, in the unsupervised learning process, and weight values are arranged in a 
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specific interval depending on the input. Unsupervised learning aims to group similar units 

in a specific area. This study makes use of five supervised learning methods, namely 

backpropagation, resilient backpropagation with weight backtracking, resilient 

backpropagation without weight backtracking, globally convergent algorithm with smallest 

absolute gradient, and globally convergent algorithm with smallest learning rate. 

Descriptions and implementation details for each learning method are shown in Riedmiller 

& Braun (1993), and Anastasiadis et al. (2005) research. 

2.4. Activation Function 

The activation function is used to determine the output of a neuron as well as to 

activate or deactivate the neurons used in the network. Some of the activation functions often 

used in NARNN are linear, logistic, and tangent hyperbolic functions. Linear functions have 

an output value equal to their input. Meanwhile, logistic functions have values between 0 to 

1, and tangent hyperbolic is often used as activation functions when the desired output value 

ranges from -1 to 1 (Fausett, 1994). This study uses a hidden layer with the logistic or tangent 

hyperbolic activation function and an output layer with the linear activation function. 

2.5. Ensemble Operator 

Many experiments have shown that the generalization results of NARNN are not 

unique (singular), therefore, the solution is unstable. This is because a small change in the 

parameter leads to a massive change in the forecasting output. Furthermore, several 

structures with different connection weights give different generalization results. Therefore, 

the limitation in choosing the best model from a single NARNN becomes a problem because 

the approach is introduced by assuming that the discarded model has the potential as a 

candidate model. Furthermore, combining several NARNN can help overcome the 

weaknesses in choosing a single model. This merger of several NARNN is known as the 

NARNN ensemble, which uses mean, median and mode operators for forecasting. This study 

combined 20 networks with different connection weights using mean, median, and mode 

operators. Kourentzes et al. (2014) research contain descriptions and detailed 

implementation of each ensemble operator.  

 

3. METHODOLOGY  

This study aims to select the optimal input variable from the NARNN model using 

the stepwise method for forecasting the interest rate data of Bank Indonesia. Primary data 

were obtained from the monthly interest rate data of Bank Indonesia from July 2005 to 

August 2016, which consists of 134 observations, while secondary data were obtained from 

www.bi.go.id. In this NARNN model application, data is divided into two parts, namely, 

training and testing data. The first and last data consisting of 129 and 5 observations, was 

used as training, and testing data, with a frequency of 12, therefore 12 consecutive lags 

starting from lag one are used as input variables. The optimal input variable is then selected 

using the stepwise method, while the optimal number of neurons in the hidden layer is 

selected using trial and error. Furthermore, the NARNN model is combined into three parts, 

namely the learning method, the activation function, and the ensemble operator, to get the 

best single model. Finally, the values of Mean Absolute Scaled Error (MASE), Root Mean 

Squared Error (RMSE) and Mean Absolute Percent Error (MAPE) are compared in testing 

data forecasting with ARIMA and Exponential Smoothing models.  

4. RESULTS 
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In this case study, the optimal input variable (lag) in the interest rate data of Bank 

Indonesia is lag-1, lag-6, and lag-12. Furthermore, the optimal neuron in the hidden layer is 

determined using neurons 1:10 as a training model. The best training model is selected based 

on the smallest MASE, RMSE, and MAPE values from the several models built. Based on 

trial and error, the optimal number of neurons in the hidden layer is 5 with MASE of 

0.331768, RMSE of 0.053238, and MAPE of 0.005223. The complete results of the training 

model used to determine the number of neurons in the hidden layer are shown in Table 1, 

therefore, the NARNN model that is formed is an architecture with three neurons in the input 

layer and five in the hidden layer.  

Furthermore, the NARNN model is combined in three parts, namely the learning 

method, the activation function, and the ensemble operator, to get the best single model. The 

five learning methods used to calculate the NARNN model are backpropagation (backprop), 

resilient backpropagation with weight backtracking (rprop+), resilient backpropagation 

without weight backtracking (rprop-), globally convergent algorithm with the smallest 

absolute gradient (sag), and globally convergent algorithm with smallest learning rate (slr). 

There are two activation functions, namely the logistic and tangent hyperbolic (tanh), with 

three ensemble operators, consisting of mean, median, and mode. Each ensemble operator is 

compared using empirically different learning methods and activation functions. There are 

thirty models of forecasting results from the formation of the NARNN model based on 

learning methods, activation functions, and ensemble operators. The model function is 

determined with the smallest MASE, RMSE, and MAPE values in training data forecasting. 

The complete results of the modeling are shown in Table 2. 

 

Table 1. Value of MASE, RMSE, and MAPE Based on Hidden Layer Neurons 

Number of 

neurons 
MASE RMSE MAPE 

1 ** 

2 ** 

3 ** 

4 ** 

5 ** 

6 ** 

7 ** 

8 ** 

9 ** 

10 ** 

0.819916 

0.689173 

0.548739 

0.598546 

0.331768 

0.608426 

0.457622 

0.350492 

0.541127 

0.587925 

0.113456 

0.100596 

0.085728 

0.096921 

0.053238 

0.094700 

0.079324 

0.055376 

0.086116 

0.091228 

0.012099 

0.010413 

0.008187 

0.009121 

0.005223 

0.009252 

0.007061 

0.005367 

0.008223 

0.008950 

Note: ** is training using the learning method of resilient backpropagation with weight 

backtracking, the activation function of logistic, and without the ensemble operator 

(individual NARNN) 

Based on the results of model formation in Table 2, empirically, it can be seen that 

the NARNN model uses the learning method of resilient backpropagation with weight 

backtracking. The activation function of hyperbolic tangent and the ensemble operator of 

median gives the smallest errors in the MASE, RMSE and MAPE values of 0.404058, 

0.070705 and 0.006296. Furthermore, the learning method of resilient backpropagation with 

weight backtracking shows that the learning steps is significantly reduced and effective. The 

convergence time and resilience are the most promising compared to other learning methods. 

Similarly, the activation function of a hyperbolic tangent makes the overall model results 

better and consistent. Meanwhile, the ensemble operators of mean, median, and mode show 
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that the difference is not significant. In this case study, the median ensemble operator 

provides the smallest error in forecasting accuracy. 

Finally, three forecasting models are used for comparison, namely, the ARIMA, 

Exponential Smoothing, and NARNN. The best model is determined by using the cross-

validation method, which gives the smallest error in forecasting data testing. Comparisons 

were made using the MASE, RMSE, and MAPE values in each model. The complete results 

of comparing the accuracy of the three forecasting models are shown in Table 3. The best 

model obtained in the testing data is the NARNN model with a MASE, RMSE and MAPE 

of 0.513163, 0.084999, and 0.007875, respectively. From Table 3, it can be concluded that 

the NARNN model using the learning method of resilient backpropagation with weight 

backtracking, the activation function of hyperbolic tangent and the ensemble operator of the 

median is the best model. 

 

Table 2. Summary of the Results of the Formation of the NARNN Model 

Combination Accuracy Measure 

Learning 

Method 

Activation 

Function 

Ensemble 

Operator 
MASE RMSE MAPE 

backprop 

rprop+ 

rprop- 

sag 

slr 

backprop 

rprop+ 

rprop- 

sag 

slr 

backprop 

rprop+ 

rprop- 

sag 

slr 

backprop 

rprop+ 

rprop- 

sag 

slr 

backprop 

rprop+ 

rprop- 

sag 

slr 

backprop 

rprop+ 

rprop- 

sag 

slr 

logistic 

logistic 

logistic 

logistic 

logistic 

tanh 

tanh 

tanh 

tanh 

tanh 

logistic 

logistic 

logistic 

logistic 

logistic 

tanh 

tanh 

tanh 

tanh 

tanh 

logistic 

logistic 

logistic 

logistic 

logistic 

tanh 

tanh 

tanh 

tanh 

tanh 

mean 

mean 

mean 

mean 

mean 

mean 

mean 

mean 

mean 

mean 

median 

median 

median 

median 

median 

median 

median 

median 

median 

median 

mode 

mode 

mode 

mode 

mode 

mode 

mode 

mode 

mode 

mode 

0.700823 

0.472535 

0.484726 

0.525671 

0.499525 

0.636371 

0.444651 

0.433606 

0.496871 

0.441291 

0.705963 

0.487490 

0.524638 

0.486105 

0.505134 

0.635339 

0.404058 

0.440080 

0.452027 

0.460600 

0.677271 

0.511154 

0.475049 

0.568988 

0.528960 

0.635551 

0.431016 

0.450797 

0.517586 

0.550592 

0.102030 

0.078817 

0.079372 

0.083282 

0.081900 

0.096726 

0.073125 

0.072987 

0.084458 

0.078794 

0.103704 

0.081316 

0.087260 

0.080839 

0.084623 

0.095196 

0.070705 

0.077191 

0.078396 

0.072756 

0.102008 

0.088301 

0.081216 

0.090844 

0.087294 

0.098845 

0.078721 

0.080183 

0.086009 

0.089785 

0.010452 

0.007274 

0.007405 

0.008028 

0.007684 

0.009606 

0.006854 

0.006696 

0.007592 

0.006899 

0.010460 

0.007490 

0.008044 

0.007452 

0.007774 

0.009556 

0.006296 

0.006833 

0.007034 

0.007009 

0.010077 

0.007853 

0.007315 

0.008551 

0.008117 

0.009585 

0.006721 

0.007006 

0.008029 

0.008420 

 

 

Table 3. Summary of Comparison Results 
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Forecasting Method MASE RMSE MAPE 

ARIMA 

Exponential Smoothing 

NARNN 

0.778748 

0.758449 

0.513163 

0.167984 

0.172114 

0.084999 

0.013166 

0.012466 

0.007875 

 

5. CONCLUSION 

In conclusion, the optimal selection of input variables using the stepwise method in 

the NARNN model can provide good accuracy. Furthermore, combining the NARNN model 

using the learning method of resilient backpropagation with weight backtracking, the 

activation function of hyperbolic tangent and the median ensemble operator also provides 

the best results. The learning method of resilient backpropagation with weight backtracking, 

different activation functions and ensemble operators are the most effective. Meanwhile, the 

hyperbolic tangent is the most consistent activation function, while the median is the best 

ensemble operator in combining these two parameters. This study also shows that the 

forecasting accuracy of the NARNN model is significantly different from the ARIMA and 

Exponential Smoothing results introduced by Hyndman & Khandakar (2008). Further 

research on forecasting time series data using the NARNN model can be focused on finding 

the best number of neurons in the hidden layer that tends to produce unstable forecasts.  
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