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Abstract: In recent years there have been numerous studies on 

portfolio selection using cluster analysis in conjunction with 

Markowitz model which used mean vectors and covariance 

matrix that are estimated from a highly volatile data. This study 

presents a more robust way of portfolio selection where stocks 

are grouped into clusters based on business sector of stocks. A 

representative from each cluster is selected from each cluster 

using Sharpe ratio to construct a portfolio and then optimized 

using robust FCMD and S-estimation. Calculation Sharpe ratio 

showed that this method works efficiently on large number of 

data while also robust against outlier in comparison to k-mean 

clustering. Implementation of this method on stocks listed on the 

Indonesia Stock Exchange, which included in the LQ-45 

indexed for the period of August 2017 to July 2018 showed that 

portfolio performance obtained using clustering base on 

business sector of stocks combine with robust FMCD estimation 

is outperformed the other possible combination of the methods.   

 

1. INTRODUCTION  

Markowitz (1952) proposed a portfolio model using the mean and variance of asset 

returns to express the trade-off between return and risk of portfolio. Hence the Markowitz 

portfolio model is also called the Mean-Variance (MV) portfolio model. This model is an 

optimization problem with two opposing goals. This means that the expected return from the 

portfolio results needs to be maximized, on the other hand, the portfolio risk represented by 

the variance of returns from assets needs to be minimized.  

Various studies have been conducted to solve and develop the Markowitz portfolio 

model. All of this is done to adapt the existing model to financial market conditions and the 

demands of capital market practitioners. One of the researches focuses in portfolio selection 

is the optimal portfolio selection time efficiency. This is understandable because the greater 

the number of securities involved in portfolio selection, the more likely portfolios can be 

formed. The number of securities involved in portfolio selection can be overcome by 

grouping the securities data using cluster analysis. Securities that have similar characteristics 

are grouped into the same cluster.  

In recent years, many studies on portfolio selection have used cluster analysis, 

including (Guan & Jiang, 2007), Tola et al. (2008), Chen & Huang (2009), Nanda et al. 

(2010), and Long et al. (2014). Based on the results reported by those studies, the optimal 
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portfolio was obtained using the MV Markowitz portfolio model. The main problem of MV 

Markowitz portfolio model is that the mean vectors and the covariance matrix must be 

estimated from highly volatile data. Parameter estimation can be done using a variety of 

estimation technique, which will inevitably contain estimation errors. As a very important 

input in the formation of the MV model portfolio, the estimation error will significantly 

affect the results of the optimal portfolio formation. Best & Grauer (1991), Chopra & Ziemba 

(1993), and Ceria & Stubbs (2006) have conducted several studies related to estimation 

errors and their relationship to optimal portfolio formation. Based on these studies, it is 

concluded that although the MV model is supported by a strong theory and has ease of 

computation, the MV model shows several weaknesses.  One of the weaknesses is that the 

optimal portfolio produced by this model is not well diversified and tends to be concentrated 

in a small proportion of assets (Fabozzi et al., 2007). In addition, the MV model is also 

sensitive to the changes of input parameters, namely the mean vector and the covariance 

matrix.  

To overcome the weaknesses previously discussed, several researchers have built a 

robust portfolio, which is a portfolio that can reduce the error in estimating the mean vector 

and covariance matrix in the MV model portfolio. One of the standard approaches in forming 

the optimal robust portfolio is through the robust estimation approach. Several studies on 

optimal portfolio formation using robust estimates have been carried out by Lauprete (2001), 

Vaz-de Melo & Camara (2005), Welsch & Zhou (2007), DeMiguel & Nogales (2009), 

Supandi (2017), and Gubu et al. (2020). The difference between these studies lies in the 

robust estimation used in portfolio optimization. All the results of these studies indicate that 

the performance of the portfolio formed using robust estimation is better than the 

performance of the classic MV portfolio if there are outliers. However, the literature 

considers the combination of cluster analysis and robust estimation methods in the formation 

of an optimal portfolio is still limited. In addition, stock clustering as an initial analysis in 

portfolio formation uses cluster analysis that is well known in the literature. 

As a new contribution in this paper, stock clustering is carried out based on business 

sector of stock. The stock representation of each cluster then combined with a robust 

estimation to form an optimal portfolio. For the mean vector and covariance matrix, it is 

estimated using the robust Fast Minimum Covariance Determinant (FMCD) estimation and 

the robust S estimation, because these two estimators have high breakdown points (Supandi, 

2017).  

 

2. LITERATURE REVIEW 

2.1. Mean-Variance Portfolio 

Markowitz's portfolio theory is based on the mean and variance approach, where the 

mean is a measure of the expected rate of return and variance is a measure of the level of 

risk (Markowitz, 1952). Therefore, Markowitz's portfolio theory is also called the Mean-

Variance (MV) portfolio model. This model emphasizes efforts to maximize expected 

returns and minimize risks to form an optimum portfolio. According to Supandi (2017), the 

mean-variance portfolio can be formulated as the following optimization problem: 

𝐦𝐚𝐱
𝒘

𝒘′𝝁 −
𝜸

𝟐
𝒘′𝚺𝒘 (1) 

𝒘′𝒆 = 𝟏 (2) 
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where w represents the portfolio weight, 𝝁 is the mean vector, 𝚺 is the covariance matrix, e 

is the column matrix where all elements are 1 and 𝛾 ≥ 0 is the risk aversion parameter, that 

is the relative measure of risk avoidance. 

The optimization problem in Equations (1) and (2) can be solved using the Lagrange 

method (Winston & Goldberg, 2004). First, form the Lagrange function: 

𝑳 = 𝒘′𝝁 −
𝟏

𝟐
𝜸𝒘′𝚺𝒘 + 𝝀(𝒘′𝒆 − 𝟏) (3) 

Based on the Kuhn-Tucker theorem (Winston & Goldberg, 2004), the necessary 

conditions to find the optimal value of Equation (3) are: 

𝝏𝑳

𝝏𝒘
= 𝟎   and    

𝝏𝑳

𝝏𝝀
= 𝟎     (4) 

From Equations (3) and (4) we have  

𝒘 =
𝚺−𝟏

𝜸
(𝝁 + 𝝀𝒆) and 𝒆′𝒘 = 𝟏   (5) 

From Equation (5) it is obtained 

𝝀 = 𝜸(𝒆′𝚺−𝟏𝒆)−𝟏 − (𝒆′𝚺−𝟏𝒆)−𝟏𝒆′𝚺−𝟏𝝁 (6) 

Substitution of Equation (6) to Equation (5) gives: 

𝒘 =  
𝟏

𝜸
(𝚺−𝟏 − 𝚺−𝟏𝒆(𝒆′𝚺−𝟏𝒆)−𝟏𝒆′𝚺−𝟏)𝝁 + 𝚺−𝟏𝒆(𝒆′𝚺−𝟏𝒆)−𝟏 (7) 

Equation (7) shows that the optimal portfolio weight (w) depends on input 𝝁 and 𝚺.  

2.2. Sharpe Ratio  

After the clusters are formed, an assessment of the performance of each stock in each 

cluster is carried out using the Sharpe ratio (SR). Sharpe ratio or Sharpe index is a 

measurement of excess return (or risk premium) per unit risk in assets (Sharpe, 1994). Sharpe 

ratio is used to characterize how well the return on assets compensates investors for the risk 

taken. Furthermore, Sharpe (1994) states that SR is calculated by comparing the difference 

between stock return (R) and return risk-free rate (𝑅𝑓) with the standard deviation of stock 

return (𝜎) or it can be written as follows: 

𝑺𝑹 =
𝑹 − 𝑹𝒇

𝝈
 (8) 

In general, it can be said that the greater the Sharpe ratio of a stock, the better the 

stock's performance. 

2.3. Optimum Portfolio Selection Using Robust Estimation    

The classic MV portfolio becomes ineffective when faced the conditions of return 

data that do not meet the assumptions of a multivariate normal distribution, because classical 

estimates of mean and variance are not robust and are strongly influenced by observations 

that deviate (outliers), (Maronna et al., 2006). Robust statistics are concerned with 

establishing stable statistical procedures when there are parts of the data that do not fit the 

assumed distribution or there are deviations from the model. 

In this study, the weight of the selected stocks to form the optimum portfolio is 

determined using the robust FMCD estimation method and the robust S estimation method. 
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The following will briefly present the FMCD robust estimation method procedure and the 

robust S estimation method. 

2.3.1 Robust FMCD Estimation Method  

Minimum Covariance Determinant (MCD) estimation aims to find robust estimation 

based on h observations from total observations (n), where the covariance matrix has the 

smallest determinant. The MCD estimation is a pair of �̂� ∈ ℝ𝑝 and �̂�, which is a symmetrical 

positive definite matrix of dimensions 𝑝 × 𝑝 from a sample subspace of size h, where 
(𝑛+𝑝+1)

2
≤ ℎ ≤ 𝑛,  

�̂� =
𝟏

𝒉
∑ 𝒓𝒊

𝒉

𝒊=𝟏

 (9) 

where 𝒓𝒊 is stock return of 𝑖-th stock, 𝑖 = 1, … , ℎ 

The estimation of covariance matrix can be obtained by solving the following equation: 

�̂� =
𝟏

𝒉
∑(𝒓𝒊 − �̂�)(𝒓𝒊 − �̂�)′

𝒉

𝒊=𝟏

 (10) 

The calculation of MCD can become complicated as the data dimensions get bigger, 

this is because this method has to examine all possible subsets h of a number of n data. 

Therefore, Rousseeuw & Van Driessen (1999)found a faster calculation algorithm for 

calculating MCD called Fast MCD (FMCD). The FMCD method is based on the C-Step 

theorem which is explained below. 

Theorem 1 (Rousseeuw & Van Driessen, 1999) If 𝐻1 is the set of size h taken from data of 

size n, the sample statistics are: 

�̂�𝟏 =
𝟏

𝒉
∑ 𝒓𝒊

𝒊∈𝑯𝟏

 (11) 

�̂�𝟏 =
𝟏

𝒉
∑ (𝒓𝒊 − �̂�𝟏)(𝒓𝒊 − �̂�𝟏)

𝒊∈𝑯𝟏

′ (12) 

If |�̂�1| > 0 than distance 𝑑𝑖 = (𝒓𝑖; �̂�1, �̂�1). Next, specify 𝐻2 is subset consist of the 

observation with the smallest distance 𝑑𝑖, namely {𝑑1(𝑖)|𝑖 ∈ 𝐻2} = {(𝑑1)1, … , (𝑑1)ℎ} where 

(𝑑1)1 ≤ (𝑑1)2 ≤ ⋯ ≤ (𝑑1)𝑛 is a sequential distance. Based on 𝐻2, calculate �̂�2 and �̂�2 

using equations (11) and (12), so that   

|�̂�𝟐| ≤ |�̂�𝟏| (13) 

Equation (13) will be the same if  �̂�1 = �̂�2 and �̂�1 = �̂�2.  

C-Step theorem is done repeatedly until | �̂�𝑛𝑒𝑤| = 0 or | �̂�𝑛𝑒𝑤| = | �̂�𝑜𝑙𝑑|. 

2.3.2 Robust S Estimation Method    

This estimation was first introduced by Rousseeuw & Yohai (1984) which was later 

developed again by Lopuhaa (1989) and Davies (1987).   
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Definition 2.1 (Davies, 1987) Given {𝒓𝒊, 𝑖 = 1, … , 𝑛} is data set in ℝ𝑝 and 𝑃𝑝 is set of 

symmetric matrices positive definite with size 𝑝𝑥𝑝. S estimation for measure of location �̂� ∈
ℝ𝑝 and dispersion �̂�(𝑅) ∈ 𝑃𝑝 is a pair of �̂� and �̂�(𝑅) that minimized |𝜮| with condition  

𝟏

𝒏
∑ 𝝆[(𝒓𝒊 − 𝝁)′𝜮−𝟏(𝒓𝒊 − 𝝁)]𝟏/𝟐

𝒏

𝒊=𝟏

= 𝒃𝟎 (14) 

where 𝜌 is loss function and 𝑏0 is constant. This constant must be determined precisely 

because this value affects the result of estimation. If the data distribution is unknown then 

we choose 𝑏0 = 𝐸{𝜌‖𝑟‖}. 

The S estimator can be obtained by solving the following equation: 

𝟏

𝒏
∑ 𝒖(𝒅𝒊)(𝒓𝒊 − 𝝁)

𝒏

𝒊=𝟏

= 𝟎 (15) 

𝟏

𝒏
∑ 𝒑𝒖(𝒅𝒊)(𝒓𝒊 − 𝝁)(𝒓𝒊 − 𝝁)′ − 𝒗(𝒅𝒊)𝚺

𝒏

𝒊=𝟏

= 𝟎 (16) 

where 𝑑𝑖 = (𝒓𝑖 − 𝝁)′𝚺−1(𝒓𝑖 − 𝝁), 𝜓(𝑑𝑖) =
𝜕𝜌

𝜕𝑑
, 𝑢(𝑑𝑖) = 𝜓(𝑑𝑖)/𝑑𝑖, while 𝑣(𝑑𝑖) =

𝜓(𝑑𝑖)𝑑𝑖 − 𝜌(𝑑𝑖) + 𝑏0.  

Calculation of S estimation is done iteratively using equations (15) and (16). According to 

Hardin (2000), the algorithm for S estimation is: 

1. Determine the initial estimation of mean vector and covariance matrix, �̂�0 and �̂�0  

2. Calculate 𝑑𝑖 = (𝒓𝑖 − �̂�0)′�̂�0
−1(𝒓𝑖 − �̂�0)  

3. Determine 𝑘0 so that 
∑ ρ(𝑑𝑖/𝑘0)

𝑛
= 𝑏0  

4. Calculate 𝑑�̃� =
𝑑𝑖

𝑘0
  

5. Determine  �̂� =
∑ 𝜓(𝑑�̃�)𝑟𝑖

∑ 𝜓(𝑑�̃�)
  and   �̂� =

𝑝 ∑ 𝜓(𝑑�̃�)(𝑟𝑖−𝜇)(𝑟𝑖−𝜇)′

∑ 𝜓(𝑑�̃�)
  

6. Repeat steps 2-3 until �̂� dan �̂� convergent  

 
 

3. METHODOLOGY   

3.1. Data   

There are several data used in this research, namely:  

1. Data of stocks included in the LQ-45 group for the period August 2017 - January 2018.  

2. Data grouping of stocks on Indonesia Stock Exchange based on the business sector of 

stocks by the Indonesia Stock Exchange.  

3. Data of daily closing prices for LQ-45 stocks for the period of August 2017 to January 

2018 which was later expanded to July 2018 obtained from www.yahoo.finance.com.   
 

3.2.  Procedures 

This research was conducted with the following procedures: 

1. LQ-45 stocks are grouped into several clusters based on business sector of stock.  

http://www.yahoo.finance.com/
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2. Calculate the return and risk of historical stock data in each cluster. From the calculation 

of return and risk, the performance of each stock in each cluster can be determined using 

the Sharpe ratio.  

3. Select stocks that represent each cluster to build the optimum portfolio. Stocks that are 

chosen as a representation of a cluster are stocks with the highest Sharpe ratio.  

4. Determine the weight of each stock to build a portfolio using the robust FMCD 

estimation method, the robust S estimation method and the classic MV method.  

5. To see the advantages of the proposed method, the performance of the portfolios formed 

is then compared with the performance of the portfolios formed using the familiar 

clustering method, namely the k-means clustering method as used by  Rifa et al. (2020). 

The number of clusters formed by the k-mean method were 9 and 4 clusters. The choice 

of 9 clusters corresponds to the number of clusters based on the sector business of stock, 

while the choice of 4 clusters is the optimum number of clusters for the data used. 

 

4. RESULTS AND DISCUSSION  

4.1. Clustering Results 

In this study, the stock clustering was carried out based on the business sector of the 

stock. Based on the grouping criteria issued by the Indonesia Stock Exchange, LQ-45 stocks 

are grouped into nine clusters. As a comparison, clustering is also carried out using the k-

means method. The number of clusters formed by the k-mean method were 9 and 4 clusters. 

After the clusters are formed, the next step is to calculate the Sharpe ratio of each 

stock  in each cluster. In calculation of Sharpe ratio, the return risk-free rate used is the Bank 

Indonesia rate at the time of data collection, namely 5.25% per year. Based on the Sharpe 

ratio calculation for each stock in each cluster, stocks are obtained which represent each 

cluster to build the optimum portfolio for two clustering methods presented in Table 1. 

Table 1. Stocks Representation of Clusters 

 

Cluster 

Clustering Method   

Based on Business Sector   k-mean (9 cluster)  k-mean (4 cluster) 

Representation Sharpe Ratio Representation  Sharpe Ratio Representation  Sharpe Ratio 

1 SSMS -0.04139 UNTR 0.02962 BBCA 0.05713 

2 INCO 0.09116 ANTM 0.05068 INCO 0.09116 

3 BRPT 0.01222 UNVR -0.03521 ICBP 0.00958 

4 SRIL  -0.00583 LPPF -0.03123 GGRM 0.00941 

5 HMSP 0.02424 ADRO 0.01236   

6 MYRX 0.00862 GGRM 0.00941   

7 PGAS -0.01165 BBCA 0.05713   

8 BBCA 0.05713 INCO 0.09116   

9 UNTR 0.02962 ICBP 0.00958   

Using clustering based on the business sector of stock, cluster 1 consists of 3 stocks 

and SSMS stock has the best performance compared to other stocks in the cluster which are 

marked by the highest Sharpe ratio value in the cluster, which is -0.04139. So that SSMS 

stock is chosen as a representation of cluster 1. Furthermore, in cluster 2 which consists of 5 

stock and INCO stock with Sharpe ratio of 0.09116 is a representation of cluster 2. And so 

on, the stock BRPT, SRIL, HMSP, MYRX, PGAS, BBCA and UNTR are respectively 

representation of clusters 3, 4,5, 6, 7, 8, and 9. 
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Using the k-mean clustering method with 9 clusters, in cluster 1 there is only 1 stock, 

namely UNTR, so that UNTR stock become a representation of cluster 1, then in cluster 2 

there are 11 stocks and ANTM stock is the stocks with the highest Sharpe ratio in the cluster. 

In the same way, the stock UNVR, LPPF, ADRO, GGRM, BBCA, INCO and ICBP are 

representations of clusters 3, 4, 5, 6, 7, 8, and 9. While the clustering using the optimal k-

mean (4 clusters) is obtained BBCA, INCO, ICBP and GGRM stock as a representation of 

clusters 1, 2, 3, and 4. 

4.2. Comparison of the Performance of Portfolios  

In this study, the optimum portfolio is determined using the MV portfolio model with 

robust FMCD estimation (𝑀𝑉𝐹𝑀𝐶𝐷), the MV portfolio model with robust estimation S (𝑀𝑉𝑆) 

and the classic MV portfolio model (𝑀𝑉𝑐𝑙𝑎𝑠𝑠𝑖𝑐). The first step is to determine the portfolio 

weights of the three models for various risk aversion values 𝛾 using the CovMcd and 

CovSest functions on R packages (Würtz et al., 2009). As a comparison, the optimum 

portfolio is also determined using the k-mean clustering method (using the kmeans function 

in R packages) with 9 and 4 clusters. The stocks used are stocks which represent each cluster 

as presented in Table 1. The portfolio weights are presented in Table 2, Table 3, and Table 

4. 

Table 2. Portfolio Weight with Clustering Based on Business Sector of Stock  

Model 𝛾 SSMS INCO BRPT SRIL HMSP MYRX PGAS BBCA UNTR 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐  

0.5 -7.18415 6.32096 -1.03784 -2.17993 1.06934 0.11039 -1.77714 6.17780 -0.49941 

1 -3.46418 3.19607 -0.48011 -1.02109 0.55483 0.07446 -0.89853 3.26714 -0.22858 

2 -1.60420 1.63363 -0.20125 -0.44166 0.29758 0.05650 -0.45923 1.81181 -0.09317 

5 -0.48820 0.69616 -0.03393 -0.09401 0.14322 0.04572 -0.19565 0.93861 -0.01192 

10 -0.11621 0.38367 0.02184 0.02188 0.09177 0.04212 -0.10779 0.64754 0.01517 

15 0.00779 0.27951 0.04043 0.06050 0.07462 0.04093 -0.07850 0.55052 0.02420 

20 0.06979 0.22743 0.04973 0.07982 0.06605 0.04033 -0.06385 0.50201 0.02871 

𝑀𝑉𝐹𝑀𝐶𝐷 

0.5 -9.00513 5.72357 1.25498 11.09480 4.13869 -6.34818 -16.39009 6.43109 4.10026 

1 -4.27551 2.86477 0.65309 5.61774 2.07552 -3.15460 -8.18224 3.35394 2.04730 

2 -1.91071 1.43536 0.35214 2.87920 1.04393 -1.55780 -4.07831 1.81537 1.02082 

5 -0.49182 0.57772 0.17157 1.23608 0.42498 -0.59973 -1.61595 0.89223 0.40493 

10 -0.01886 0.29184 0.11138 0.68838 0.21866 -0.28037 -0.79517 0.58451 0.19963 

15 0.13880 0.19655 0.09132 0.50581 0.14989 -0.17392 -0.52157 0.48194 0.13120 

20 0.21762 0.14890 0.08129 0.41452 0.11551 -0.12069 -0.38478 0.43065 0.09698 

𝑀𝑉𝑆 

0.5 -3.30986 6.92331 1.10496 1.70397 3.40532 -9.70056 -8.32274 6.82135 2.37426 

1 -1.47976 3.46773 0.58224 0.91513 1.71654 -4.81706 -4.13967 3.56525 1.18961 

2 -0.56471 1.73994 0.32088 0.52070 0.87215 -2.37532 -2.04813 1.93720 0.59728 

5 -0.01568 0.70326 0.16407 0.28405 0.36551 -0.91027 -0.79321 0.96037 0.24189 

10 0.16733 0.35771 0.11180 0.20517 0.19664 -0.42192 -0.37490 0.63476 0.12342 

15 0.22833 0.24252 0.09437 0.17887 0.14034 -0.25914 -0.23547 0.52623 0.08393 

20 0.25883 0.18493 0.08566 0.16573 0.11220 -0.17774 -0.16575 0.47196 0.06419 

 

Table 3. Portfolio Weight with Clustering k-mean (9 Cluster) 

Model 𝛾 UNTR ANTM UNVR LPPF ADRO GGRM BBCA INCO ICBP 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 

0.5 0.35038 0.69091 -11.72962 -3.20853 -1.16961 0.65909 8.25952 6.60250 0.54535 

1 0.21030 0.35707 -5.76372 -1.58951 -0.59901 0.36861 4.28176 3.33585 0.39866 

2 0.14026 0.19015 -2.78077 -0.78001 -0.31372 0.22337 2.29288 1.70253 0.32531 

5 0.09824 0.09000 -0.99100 -0.29430 -0.14254 0.13623 1.09955 0.72253 0.28130 

10 0.08423 0.05661 -0.39441 -0.13240 -0.08548 0.10718 0.70177 0.39587 0.26663 

15 0.07956 0.04548 -0.19555 -0.07843 -0.06646 0.09750 0.56918 0.28698 0.26174 

20 0.07722 0.03992 -0.09611 -0.05145 -0.05695 0.09266 0.50288 0.23253 0.25930 

𝑀𝑉𝐹𝑀𝐶𝐷 

0.5 12.33172 -10.89482 6.57445 -6.53360 5.07325 -5.04100 4.66632 3.68058 -8.85689 

1 6.17115 -5.41833 3.44028 -3.25310 2.51785 -2.49957 2.48513 1.86089 -4.30431 

2 3.09087 -2.68009 1.87320 -1.61286 1.24016 -1.22885 1.39453 0.95105 -2.02802 

5 1.24270 -1.03714 0.93295 -0.62871 0.47354 -0.46642 0.74017 0.40515 -0.66224 

10 0.62664 -0.48949 0.61954 -0.30066 0.21800 -0.21228 0.52205 0.22318 -0.20698 

15 0.42129 -0.30694 0.51506 -0.19131 0.13282 -0.12756 0.44934 0.16253 -0.05523 

20 0.31861 -0.21567 0.46283 -0.13663 0.09023 -0.08521 0.41299 0.13220 0.02065 
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𝑀𝑉𝑆 

0.5 4.61673 -3.69464 -3.83908 -2.89185 2.65530 -2.31557 7.17107 4.56815 -5.27012 

1 2.32529 -1.82747 -1.76909 -1.43322 1.32556 -1.12770 3.72289 2.30413 -2.52039 

2 1.17956 -0.89388 -0.73409 -0.70391 0.66069 -0.53376 1.99880 1.17212 -1.14553 

5 0.49213 -0.33373 -0.11309 -0.26632 0.26177 -0.17740 0.96434 0.49291 -0.32061 

10 0.26299 -0.14701 0.09391 -0.12046 0.12879 -0.05861 0.61952 0.26651 -0.04564 

15 0.18660 -0.08477 0.16291 -0.07184 0.08447 -0.01902 0.50458 0.19104 0.04602 

20 0.14841 -0.05365 0.19741 -0.04753 0.06230 0.00078 0.44711 0.15331 0.09185 

 

Table 4. Portfolio Weight with Clustering k-mean (4 Cluster) 

Model 𝛾 BBCA INCO ICBP GGRM 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 

0.5 2.92203 5.00731 -4.57171 -2.35762 

1 1.66200 2.56234 -2.11519 -1.10915 

2 1.03199 1.33985 -0.88693 -0.48491 

5 0.65398 0.60636 -0.14997 -0.11037 

10 0.52798 0.36187 0.09568 0.01448 

15 0.48598 0.28037 0.17756 0.05609 

20 0.46498 0.23962 0.21851 0.07690 

𝑀𝑉𝐹𝑀𝐶𝐷 

0.5 0.91641 6.70728 -4.74234 -1.88135 

1 0.73525 3.36042 -2.21482 -0.88085 

2 0.64467 1.68700 -0.95106 -0.38060 

5 0.59032 0.68294 -0.19280 -0.08046 

10 0.57220 0.34825 0.05995 0.01959 

15 0.56616 0.23669 0.14420 0.05294 

20 0.56314 0.18091 0.18633 0.06962 

𝑀𝑉𝑆 

0.5 4.03509 4.11326 -4.40308 -2.74527 

1 2.27367 2.08270 -2.05765 -1.29872 

2 1.39296 1.06742 -0.88494 -0.57544 

5 0.86454 0.45825 -0.18131 -0.14148 

10 0.68839 0.25520 0.05323 0.00318 

15 0.62968 0.18751 0.13141 0.05139 

20 0.60032 0.15367 0.17050 0.07550 

From Table 2 it can be seen that stocks with negative returns, namely SSMS and 

PGAS stocks, have a negative weight (short selling) for almost all risk aversion values 𝛾 in 

the three portfolio models. On the other hand, stocks with large returns, namely INCO, 

HMSP and BBCA stocks always have positive weights on the three portfolio models. From 

Table 2 it can also be seen that the greater the value of 𝛾, the smaller the weight of the stock 

with a positive return, conversely, for stocks with a negative return, the stock weight will get 

bigger along with the increase value of 𝛾. The same thing also occurs in Table 3, in this case 

UNVR and LPPF have negative returns and BBCA and INCO stocks have large returns. 

Based on the portfolio weightings, as well as the mean vectors and covariance 

matrices, the Sharpe ratio was calculated for the three portfolio models, as presented in Table 

5, Table 6, and Table 7.  

Table 5. Return, Risk, and Sharpe ratio of Portfolio 

Using Clustering Based on Business Sector of Stocks   

𝛾 
Return Risk Sharpe Ratio 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 
0.5 0.02581 0.09309 0.06616 0.05073 0.18663 0.13281 0.11395 0.21516 0.18116 

1 0.01315 0.04645 0.03297 0.01274 0.04668 0.03324 0.11520 0.21430 0.18007 

2 0.00682 0.02312 0.01638 0.00324 0.01169 0.00834 0.11714 0.21249 0.17771 

5 0.00302 0.00913 0.00642 0.00059 0.00190 0.00137 0.11880 0.20633 0.16930 

10 0.00175 0.00446 0.00310 0.00021 0.00050 0.00038 0.11223 0.19398 0.15201 



Media Statistika 14(1) 2021: 33-43 41 

15 0.00133 0.00291 0.00199 0.00014 0.00024 0.00019 0.10210 0.17977 0.13287 

20 0.00112 0.00213 0.00144 0.00011 0.00015 0.00013 0.09283 0.16463 0.11403 

Table 6. Return, Risk and Sharpe Ratio of Portfolio  

Using Clustering k-means (9 Cluster)   

𝛾 
Return Risk Sharpe Ratio 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 
0.5 0.03208 0.06095 0.02281 0.06319 0.12325 0.04565 0.12702 0.17320 0.10608 

1 0.01630 0.03015 0.01141 0.01586 0.03085 0.01146 0.12826 0.17084 0.10526 

2 0.00841 0.01475 0.00571 0.00403 0.00775 0.00291 0.13021 0.16589 0.10319 

5 0.00368 0.00551 0.00230 0.00072 0.00129 0.00052 0.13199 0.14969 0.09428 

10 0.00210 0.00243 0.00116 0.00024 0.00036 0.00018 0.12545 0.12027 0.07564 

15 0.00157 0.00141 0.00078 0.00016 0.00019 0.00012 0.11472 0.09131 0.05877 

20 0.00131 0.00089 0.00059 0.00012 0.00013 0.00009 0.10451 0.06537 0.04573 

Table 7. Return, Risk and Sharpe Ratio of Portfolio 

Using Clustering k-means (4 Cluster)   

𝛾 
Return Risk Sharpe Ratio 

𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 𝑀𝑉𝐶𝑙𝑎𝑠𝑠𝑖𝑐 𝑀𝑉𝐹𝑀𝐶𝐷 𝑀𝑉𝑆 
0.5 0.01347 0.01729 0.00884 0.02545 0.03561 0.01798 0.08355 0.09083 0.06484 

1 0.00713 0.00840 0.00436 0.00644 0.00895 0.00454 0.08714 0.08725 0.06253 

2 0.00396 0.00395 0.00212 0.00168 0.00228 0.00118 0.09318 0.07974 0.05740 

5 0.00206 0.00129 0.00077 0.00035 0.00041 0.00024 0.10261 0.05608 0.04048 

10 0.00143 0.00040 0.00033 0.00016 0.00015 0.00011 0.10174 0.02080 0.01756 

15 0.00122 0.00010 0.00018 0.00012 0.00010 0.00004 0.09630 -0.00438 0.00369 

20 0.00111 -0.00005 0.00010 0.00011 0.00008 0.00008 0.09148 -0.02127 -0.00472 

Measuring portfolio performance not only be seen from the return, but also must pay 

attention to the risks that will be borne by investors. There are several measurements that 

can be used to measure portfolio performance, one of which is Sharpe ratio. Table 5, Table 

6, and Table 7 show the portfolio return, risk and Share ratio of portfolio formed using 

clustering based on business sector of stock and k-mean combined with the classic MV 

portfolio model, 𝑀𝑉𝐹𝑀𝐶𝐷 model and 𝑀𝑉𝑆 model. From Table 5, Table 6 and Table 7, in 

general it can be seen that the portfolio performance formed by combining clustering results 

based on the stock business sector with robust FMCD estimation outperforms other portfolio 

performance for all risk aversion values. These results are in line with the results of research 

conducted by Gubu et al. (2020). 

 

CONCLUSION 

This paper discusses how to group stocks into clusters based on business sector of 

stock and then uses robust estimates to obtain an optimum portfolio. This can reduce a lot of 

time in stock selection because stocks from the same sector can be easily grouped into one 

cluster. The best performing stocks from each cluster are then selected to represent the cluster 

to form a portfolio. To see the advantages of the proposed method, a portfolio formation is 

also carried out using k-means clustering. The results showed that the portfolio performance 

formed by combining clustering results based on the business sector of stock with FMCD 

robust estimation outperformed the portfolio performance with other combinations. 
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