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business sector; portfolio; Sharpe  representative from each cluster is selected from each cluster
ratio; robust estimation, portfolio ;g Sharpe ratio to construct a portfolio and then optimized
performance using robust FCMD and S-estimation. Calculation Sharpe ratio
showed that this method works efficiently on large number of
data while also robust against outlier in comparison to k-mean
clustering. Implementation of this method on stocks listed on the
Indonesia Stock Exchange, which included in the LQ-45
indexed for the period of August 2017 to July 2018 showed that
portfolio performance obtained using clustering base on
business sector of stocks combine with robust FMCD estimation
is outperformed the other possible combination of the methods.

1. INTRODUCTION

Markowitz (1952) proposed a portfolio model using the mean and variance of asset
returns to express the trade-off between return and risk of portfolio. Hence the Markowitz
portfolio model is also called the Mean-Variance (MV) portfolio model. This model is an
optimization problem with two opposing goals. This means that the expected return from the
portfolio results needs to be maximized, on the other hand, the portfolio risk represented by
the variance of returns from assets needs to be minimized.

Various studies have been conducted to solve and develop the Markowitz portfolio
model. All of this is done to adapt the existing model to financial market conditions and the
demands of capital market practitioners. One of the researches focuses in portfolio selection
is the optimal portfolio selection time efficiency. This is understandable because the greater
the number of securities involved in portfolio selection, the more likely portfolios can be
formed. The number of securities involved in portfolio selection can be overcome by
grouping the securities data using cluster analysis. Securities that have similar characteristics
are grouped into the same cluster.

In recent years, many studies on portfolio selection have used cluster analysis,
including (Guan & Jiang, 2007), Tola et al. (2008), Chen & Huang (2009), Nanda et al.
(2010), and Long et al. (2014). Based on the results reported by those studies, the optimal
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portfolio was obtained using the MV Markowitz portfolio model. The main problem of MV
Markowitz portfolio model is that the mean vectors and the covariance matrix must be
estimated from highly volatile data. Parameter estimation can be done using a variety of
estimation technique, which will inevitably contain estimation errors. As a very important
input in the formation of the MV model portfolio, the estimation error will significantly
affect the results of the optimal portfolio formation. Best & Grauer (1991), Chopra & Ziemba
(1993), and Ceria & Stubbs (2006) have conducted several studies related to estimation
errors and their relationship to optimal portfolio formation. Based on these studies, it is
concluded that although the MV model is supported by a strong theory and has ease of
computation, the MV model shows several weaknesses. One of the weaknesses is that the
optimal portfolio produced by this model is not well diversified and tends to be concentrated
in a small proportion of assets (Fabozzi et al., 2007). In addition, the MV model is also
sensitive to the changes of input parameters, namely the mean vector and the covariance
matrix.

To overcome the weaknesses previously discussed, several researchers have built a
robust portfolio, which is a portfolio that can reduce the error in estimating the mean vector
and covariance matrix in the MV model portfolio. One of the standard approaches in forming
the optimal robust portfolio is through the robust estimation approach. Several studies on
optimal portfolio formation using robust estimates have been carried out by Lauprete (2001),
Vaz-de Melo & Camara (2005), Welsch & Zhou (2007), DeMiguel & Nogales (2009),
Supandi (2017), and Gubu et al. (2020). The difference between these studies lies in the
robust estimation used in portfolio optimization. All the results of these studies indicate that
the performance of the portfolio formed using robust estimation is better than the
performance of the classic MV portfolio if there are outliers. However, the literature
considers the combination of cluster analysis and robust estimation methods in the formation
of an optimal portfolio is still limited. In addition, stock clustering as an initial analysis in
portfolio formation uses cluster analysis that is well known in the literature.

As a new contribution in this paper, stock clustering is carried out based on business
sector of stock. The stock representation of each cluster then combined with a robust
estimation to form an optimal portfolio. For the mean vector and covariance matrix, it is
estimated using the robust Fast Minimum Covariance Determinant (FMCD) estimation and
the robust S estimation, because these two estimators have high breakdown points (Supandi,
2017).

2. LITERATURE REVIEW
2.1. Mean-Variance Portfolio

Markowitz's portfolio theory is based on the mean and variance approach, where the
mean is a measure of the expected rate of return and variance is a measure of the level of
risk (Markowitz, 1952). Therefore, Markowitz's portfolio theory is also called the Mean-
Variance (MV) portfolio model. This model emphasizes efforts to maximize expected
returns and minimize risks to form an optimum portfolio. According to Supandi (2017), the
mean-variance portfolio can be formulated as the following optimization problem:

maxw'y — 14 w'Iw )
w 2

we=1 (2
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where w represents the portfolio weight, u is the mean vector, X is the covariance matrix, e
is the column matrix where all elements are 1 and y > 0 is the risk aversion parameter, that
is the relative measure of risk avoidance.

The optimization problem in Equations (1) and (2) can be solved using the Lagrange
method (Winston & Goldberg, 2004). First, form the Lagrange function:

! 1 ! !
szu—Ewaw+A(we—1) (3)

Based on the Kuhn-Tucker theorem (Winston & Goldberg, 2004), the necessary
conditions to find the optimal value of Equation (3) are:

L_0ad Z=0 (4)

aw a

From Equations (3) and (4) we have
w=§(u+le) ande'w=1 5)

From Equation (5) it is obtained
A=yt le) - (e'z7le) e’z 1n (6)
Substitution of Equation (6) to Equation (5) gives:

1
w= " E -z 1le(e’'zle) T Hu+ 7 le(e'ze) ! (7

Equation (7) shows that the optimal portfolio weight (w) depends on input g and X.
2.2. Sharpe Ratio

After the clusters are formed, an assessment of the performance of each stock in each
cluster is carried out using the Sharpe ratio (SR). Sharpe ratio or Sharpe index is a
measurement of excess return (or risk premium) per unit risk in assets (Sharpe, 1994). Sharpe
ratio is used to characterize how well the return on assets compensates investors for the risk
taken. Furthermore, Sharpe (1994) states that SR is calculated by comparing the difference
between stock return (R) and return risk-free rate (Ry) with the standard deviation of stock

return (o) or it can be written as follows:
R—R
! ®
o

In general, it can be said that the greater the Sharpe ratio of a stock, the better the
stock's performance.

SR =

2.3. Optimum Portfolio Selection Using Robust Estimation

The classic MV portfolio becomes ineffective when faced the conditions of return
data that do not meet the assumptions of a multivariate normal distribution, because classical
estimates of mean and variance are not robust and are strongly influenced by observations
that deviate (outliers), (Maronna et al., 2006). Robust statistics are concerned with
establishing stable statistical procedures when there are parts of the data that do not fit the
assumed distribution or there are deviations from the model.

In this study, the weight of the selected stocks to form the optimum portfolio is
determined using the robust FMCD estimation method and the robust S estimation method.
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The following will briefly present the FMCD robust estimation method procedure and the
robust S estimation method.

2.3.1 Robust FMCD Estimation Method

Minimum Covariance Determinant (MCD) estimation aims to find robust estimation
based on h observations from total observations (n), where the covariance matrix has the
smallest determinant. The MCD estimation is a pair of fi € R? and Z, which is a symmetrical
positive definite matrix of dimensions p x p from a sample subspace of size h, where

(n+p+1) <h<n

1 h
ﬁ=ﬁzlri ©

where r; is stock return of i-th stock,i =1, ..., h
The estimation of covariance matrix can be obtained by solving the following equation:

h
1
5 = E;m — - ) (10)

The calculation of MCD can become complicated as the data dimensions get bigger,
this is because this method has to examine all possible subsets h of a number of n data.
Therefore, Rousseeuw & Van Driessen (1999)found a faster calculation algorithm for
calculating MCD called Fast MCD (FMCD). The FMCD method is based on the C-Step
theorem which is explained below.

Theorem 1 (Rousseeuw & Van Driessen, 1999) If H, is the set of size h taken from data of
size n, the sample statistics are:

at=1N
pt=y z ri (11)
i€EHq1
2= - B - Y
= (- A (12)

i€H,
If |Z*| >0 than distance d; = (r; A%, Z*). Next, specify H, is subset consist of the
observation with the smallest distance d;, namely {d, (i)|i € H,} = {(d;)4, ..., (d1)} Where
(dy); < (dy), < -+ < (dy), is a sequential distance. Based on H,, calculate fi? and 22
using equations (11) and (12), so that

22| < |2 (13)
Equation (13) will be the same if it = @i and 2* = 22,
C-Step theorem is done repeatedly until | £,.¢,,| = 0 or | e | = | Zoral-
2.3.2 Robust S Estimation Method

This estimation was first introduced by Rousseeuw & Yohai (1984) which was later
developed again by Lopuhaa (1989) and Davies (1987).
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Definition 2.1 (Davies, 1987) Given {r;, i = 1,...,,n} is data set in R” and P, is set of
symmetric matrices positive definite with size pxp. S estimation for measure of location fi €
RP and dispersion Z(R) € P, is a pair of z and 2 (R) that minimized | Z| with condition

1 n
= pllr - w27y — W12 = by (14)
i=1

where p is loss function and b, is constant. This constant must be determined precisely
because this value affects the result of estimation. If the data distribution is unknown then
we choose b, = E{p||r|[}.

The S estimator can be obtained by solving the following equation:

1 n
E; u(d)(ri—p)=0 (15)
1 n
;Z pu(d) (e — Wy - 1) = v(d)E = 0 (16)

where d; = (r;—w'E7'(r; — ), ¥(d,) = g—g, u(dy) =y(dy)/d;, while v(d;) =
Y(dd; — p(d;) + b.
Calculation of S estimation is done iteratively using equations (15) and (16). According to
Hardin (2000), the algorithm for S estimation is:
1. Determine the initial estimation of mean vector and covariance matrix, fi, and Z,
. Calculate d; = (r; — i)'25 1 (r; — fip)
Determine k, so that w =b

2

3 0
4. Calculate d, = %

5

6

ine i = 2¥@ri s _ PLY(@)ri=mri—p’
Determine i = S 0(@) and X = S 9@

Repeat steps 2-3 until i dan Z convergent

3. METHODOLOGY
3.1. Data

There are several data used in this research, namely:

Data of stocks included in the LQ-45 group for the period August 2017 - January 2018.

2. Data grouping of stocks on Indonesia Stock Exchange based on the business sector of
stocks by the Indonesia Stock Exchange.

3. Data of daily closing prices for LQ-45 stocks for the period of August 2017 to January
2018 which was later expanded to July 2018 obtained from www.yahoo.finance.com.

=

3.2. Procedures

This research was conducted with the following procedures:
1. LQ-45 stocks are grouped into several clusters based on business sector of stock.
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2. Calculate the return and risk of historical stock data in each cluster. From the calculation
of return and risk, the performance of each stock in each cluster can be determined using
the Sharpe ratio.

3. Select stocks that represent each cluster to build the optimum portfolio. Stocks that are
chosen as a representation of a cluster are stocks with the highest Sharpe ratio.

4. Determine the weight of each stock to build a portfolio using the robust FMCD
estimation method, the robust S estimation method and the classic MV method.

5. To see the advantages of the proposed method, the performance of the portfolios formed
is then compared with the performance of the portfolios formed using the familiar
clustering method, namely the k-means clustering method as used by Rifa et al. (2020).
The number of clusters formed by the k-mean method were 9 and 4 clusters. The choice
of 9 clusters corresponds to the number of clusters based on the sector business of stock,
while the choice of 4 clusters is the optimum number of clusters for the data used.

4.  RESULTS AND DISCUSSION
4.1. Clustering Results

In this study, the stock clustering was carried out based on the business sector of the
stock. Based on the grouping criteria issued by the Indonesia Stock Exchange, LQ-45 stocks
are grouped into nine clusters. As a comparison, clustering is also carried out using the k-
means method. The number of clusters formed by the k-mean method were 9 and 4 clusters.

After the clusters are formed, the next step is to calculate the Sharpe ratio of each
stock in each cluster. In calculation of Sharpe ratio, the return risk-free rate used is the Bank
Indonesia rate at the time of data collection, namely 5.25% per year. Based on the Sharpe
ratio calculation for each stock in each cluster, stocks are obtained which represent each
cluster to build the optimum portfolio for two clustering methods presented in Table 1.

Table 1. Stocks Representation of Clusters

Clustering Method

Cluster Based on Business Sector k-mean (9 cluster) k-mean (4 cluster)

Representation Sharpe Ratio  Representation  Sharpe Ratio  Representation  Sharpe Ratio

1 SSMS -0.04139 UNTR 0.02962 BBCA 0.05713

2 INCO 0.09116 ANTM 0.05068 INCO 0.09116

3 BRPT 0.01222 UNVR -0.03521 ICBP 0.00958

4 SRIL -0.00583 LPPF -0.03123 GGRM 0.00941

5 HMSP 0.02424 ADRO 0.01236

6 MYRX 0.00862 GGRM 0.00941

7 PGAS -0.01165 BBCA 0.05713

8 BBCA 0.05713 INCO 0.09116

9 UNTR 0.02962 ICBP 0.00958

Using clustering based on the business sector of stock, cluster 1 consists of 3 stocks
and SSMS stock has the best performance compared to other stocks in the cluster which are
marked by the highest Sharpe ratio value in the cluster, which is -0.04139. So that SSMS
stock is chosen as a representation of cluster 1. Furthermore, in cluster 2 which consists of 5
stock and INCO stock with Sharpe ratio of 0.09116 is a representation of cluster 2. And so
on, the stock BRPT, SRIL, HMSP, MYRX, PGAS, BBCA and UNTR are respectively
representation of clusters 3, 4,5, 6, 7, 8, and 9.
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Using the k-mean clustering method with 9 clusters, in cluster 1 there is only 1 stock,
namely UNTR, so that UNTR stock become a representation of cluster 1, then in cluster 2
there are 11 stocks and ANTM stock is the stocks with the highest Sharpe ratio in the cluster.
In the same way, the stock UNVR, LPPF, ADRO, GGRM, BBCA, INCO and ICBP are
representations of clusters 3, 4, 5, 6, 7, 8, and 9. While the clustering using the optimal k-
mean (4 clusters) is obtained BBCA, INCO, ICBP and GGRM stock as a representation of
clusters 1, 2, 3, and 4.

4.2. Comparison of the Performance of Portfolios

In this study, the optimum portfolio is determined using the MV portfolio model with
robust FMCD estimation (MVgpcp), the MV portfolio model with robust estimation S (MVs)
and the classic MV portfolio model (MV,;,4ic)- The first step is to determine the portfolio
weights of the three models for various risk aversion values y using the CovMcd and
CovSest functions on R packages (Wirtz et al., 2009). As a comparison, the optimum
portfolio is also determined using the k-mean clustering method (using the kmeans function
in R packages) with 9 and 4 clusters. The stocks used are stocks which represent each cluster
as presented in Table 1. The portfolio weights are presented in Table 2, Table 3, and Table
4.

Table 2. Portfolio Weight with Clustering Based on Business Sector of Stock

Model y SSMS INCO BRPT SRIL HMSP MYRX PGAS BBCA UNTR

05 -7.18415 632096  -103784 -217993 106934 011039  -177714 617780 -0.49941
1 -3.46418 319607  -0.48011 -1.02109 055483 007446  -0.89853 326714  -0.22858

2 -160420 163363  -0.20125 -0.44166 029758 005650  -0.45023 181181  -0.09317

MVijqssic 5 ~ 048820 069616  -0.03393 -0.09401 014322 004572  -0.19565 093861  -0.01192
10 -0.11621 038367 002184 002188 009177  0.04212  -010779  0.64754  0.01517

15 000779 027951 004043 006050  0.07462  0.04093  -0.07850 055052  0.02420

20 006979 022743 004973 007982  0.06605  0.04033  -0.06385  0.50201  0.02871

05 -9.00513 572357 125498 1109480 4.13869  -6.34818  -16.39009 643109  4.10026

1 427551 286477 065309 561774 207552  -315460  -8.18224 335304 204730

2 -191071 143536 035214 287920 104303  -155780  -4.07831 181537  1.02082

MVeyep 5 049182 057772 047157 123608  0.42498  -0.50973  -161505  0.89223  0.40493
10 -00188 029184  0.11138 068838 021866  -0.28037  -0.79517  0.58451  0.19963

15 013880 019655 009132 050581  0.14989  -017302  -0.52157 048194  0.13120

20 021762 014890  0.08129 041452 _ 0.1551  -0.12069  -0.38478  0.43065 _ 0.09698

05 -330986 692331 110496 170397 340532  -9.70056  -8.32274 682135 237426

1 -147976 346773 058224 091513 171654  -4.81706  -4.13067 356525  1.18961

2 056471 173994 032088 052070 087215 -237532  -2.04813 193720 059728

MV 5  -001568 070326 06407 028405 036551  -0.91027  -0.79321  0.96037  0.24189
10 016733 035771 01180 020517 019664  -0.42192  -0.37490  0.63476  0.12342

15 022833 024252 009437 017887 04034  -0.25914  -0.23547 052623  0.08393

20 025883 018493 008566  0.16573  0.11220  -017774 _ -0.16575 _ 047196 _ 0.06419

Table 3. Portfolio Weight with Clustering k-mean (9 Cluster)

Model y UNTR ANTM UNVR LPPF ADRO GGRM BBCA [INCO ICBP

05 035038 069091  -11.72962 -320853 -116961  0.65009  B8.25952 6.60250 054535
1 021030 035707 576372 -158951 -059901 036861 428176 333585  0.39866

2 014026  0.19015 -2.78077 -078001 -031372 022337 229288 170253  0.32531

MVgjgssic 5 009824 009000 -0.99100 -029430 -0.14254 013623 109955 072253  0.28130
10 008423  0.05661 -0.39441 -0.13240 -0.08548 010718 070177 039587  0.26663

15 007956  0.04548 -0.19555 -0.07843  -0.06646 009750 056918  0.28698  0.26174

20 007722 0.03992 -0.09611 -0.05145  -0.05695  0.09266 050288  0.23253  0.25930

05 1233172 -10.89482 657445 653360 507325 504100  4.66632 3068058 -8.85689

1 617115  -5.41833 344028 325310 251785  -2.49957 248513 186089 -4.30431

2 300087  -2.68009 187320 -161286 124016  -122885 139453 095105 -2.02802

MVpyep 5 124270 -1.03714 093295 -0.62871 047354  -0.46642 074017 040515 -0.66224
10 062664  -0.48949 061954 -0.30066 021800  -0.21228 052205 022318 -0.20698

15 042129  -0.30694 051506 -0.19131 013282  -0.12756 044934 016253 -0.05523

20 031861 _ -0.21567 046283 -0.13663 009023  -0.08521 __ 0.41299  0.13220 _ 0.02065
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05  4.61673 -3.69464 -3.83908  -2.89185 2.65530  -2.31557 7.17107 456815 -5.27012

1 2.32529 -1.82747 -1.76909  -1.43322 1.32556 -1.12770 3.72289 230413 -2.52039
2 1.17956 -0.89388 -0.73409  -0.70391 0.66069 -0.53376 1.99880  1.17212 -1.14553
MVS 5 0.49213 -0.33373 -0.11309  -0.26632 0.26177 -0.17740 0.96434  0.49291 -0.32061
10 0.26299 -0.14701 0.09391 -0.12046 0.12879 -0.05861 0.61952  0.26651 -0.04564
15 0.18660 -0.08477 0.16291 -0.07184 0.08447 -0.01902 0.50458  0.19104  0.04602
20 0.14841 -0.05365 0.19741  -0.04753 0.06230 0.00078 0.44711  0.15331  0.09185

Table 4. Portfolio Weight with Clustering k-mean (4 Cluster)

Model y  BBCA INCO ICBP GGRM
05 292203 500731 -457171  -2.35762
1 166200 256234 -2.11519  -1.10915
2 103199  1.33985 -0.88693  -0.48491
MVggssic 5 ~ 0.65398  0.60636 -0.14997  -0.11037
10 052798 036187 0.09568  0.01448
15 048598  0.28037 0.17756  0.05609
20 046498  0.23962  0.21851  0.07690
05 091641  6.70728 -4.74234  -1.88135
1 073525 336042 -2.21482  -0.88085
2 064467  1.68700 -0.95106  -0.38060
MVeyep 5 059032 0.68294 -0.19280  -0.08046
10 057220 034825 0.05995  0.01959
15 056616  0.23669  0.14420  0.05294
20 056314  0.18091  0.18633  0.06962
05 4.03509 4.11326 -4.40308  -2.74527
1 227367 208270 -2.05765  -1.29872
2 139296  1.06742 -0.88494  -0.57544
MV, 5 086454 045825 -0.18131  -0.14148
10  0.68839 025520 0.05323  0.00318
15 062968  0.18751 0.13141  0.05139
20 0.60032  0.5367 0.17050  0.07550

From Table 2 it can be seen that stocks with negative returns, namely SSMS and
PGAS stocks, have a negative weight (short selling) for almost all risk aversion values y in
the three portfolio models. On the other hand, stocks with large returns, namely INCO,
HMSP and BBCA stocks always have positive weights on the three portfolio models. From
Table 2 it can also be seen that the greater the value of y, the smaller the weight of the stock
with a positive return, conversely, for stocks with a negative return, the stock weight will get
bigger along with the increase value of y. The same thing also occurs in Table 3, in this case
UNVR and LPPF have negative returns and BBCA and INCO stocks have large returns.

Based on the portfolio weightings, as well as the mean vectors and covariance
matrices, the Sharpe ratio was calculated for the three portfolio models, as presented in Table
5, Table 6, and Table 7.

Table 5. Return, Risk, and Sharpe ratio of Portfolio
Using Clustering Based on Business Sector of Stocks

Return Risk Sharpe Ratio

r MVClassic MVFMCD MVS MVClassic MVFMCD MVS MVClassic MVFMCD MVS

0.02581  0.09309 0.06616 0.05073  0.18663  0.13281  0.11395 0.21516 0.18116
0.01315  0.04645 0.03297 0.01274 0.04668  0.03324  0.11520  0.21430  0.18007
0.00682  0.02312 0.01638 0.00324 0.01169 0.00834  0.11714  0.21249 0.17771
0.00302  0.00913 0.00642 0.00059 0.00190 0.00137 0.11880  0.20633  0.16930
0.00175  0.00446 0.00310 0.00021  0.00050  0.00038 0.11223  0.19398 0.15201
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15 0.00133 0.00291 0.00199 0.00014  0.00024 0.00019 0.10210 0.17977  0.13287
20 0.00112  0.00213 0.00144 0.00011  0.00015 0.00013  0.09283  0.16463  0.11403

Table 6. Return, Risk and Sharpe Ratio of Portfolio
Using Clustering k-means (9 Cluster)

Return Risk Sharpe Ratio

MVClassic MVFMCD MVS MVClassic MVFMCD MVS MVClassic MVFMCD MVS

0.03208  0.06095 0.02281 0.06319 0.12325 0.04565  0.12702  0.17320  0.10608
0.01630  0.03015 0.01141 0.01586  0.03085  0.01146  0.12826  0.17084  0.10526
0.00841  0.01475 0.00571 0.00403 0.00775 0.00291  0.13021  0.16589  0.10319
0.00368  0.00551 0.00230 0.00072  0.00129  0.00052  0.13199  0.14969  0.09428
0.00210  0.00243 0.00116 0.00024 0.00036  0.00018  0.12545  0.12027 0.07564
0.00157  0.00141 0.00078 0.00016  0.00019  0.00012 0.11472  0.09131  0.05877
20 0.00131  0.00089 0.00059 0.00012  0.00013  0.00009  0.10451  0.06537  0.04573

= ol =
o onN kT

Table 7. Return, Risk and Sharpe Ratio of Portfolio
Using Clustering k-means (4 Cluster)

Return Risk Sharpe Ratio

v MVClassic MVFMCD MVS MVClassic MVFMCD MVS MVClassic MVFMCD MVS

0.5 0.01347 0.01729 0.00884 0.02545 0.03561 0.01798 0.08355  0.09083 0.06484
1 0.00713 0.00840 0.00436 0.00644  0.00895  0.00454  0.08714 0.08725 0.06253
2 0.00396  0.00395 0.00212 0.00168 0.00228  0.00118 0.09318 0.07974 0.05740
5 0.00206 0.00129 0.00077 0.00035 0.00041 0.00024 0.10261  0.05608  0.04048
10 0.00143  0.00040 0.00033 0.00016  0.00015 0.00011 0.10174  0.02080  0.01756
15 0.00122  0.00010 0.00018 0.00012 0.00010 0.00004  0.09630 -0.00438 0.00369
20 0.00111  -0.00005 0.00010 0.00011  0.00008 0.00008 0.09148 -0.02127 -0.00472

Measuring portfolio performance not only be seen from the return, but also must pay
attention to the risks that will be borne by investors. There are several measurements that
can be used to measure portfolio performance, one of which is Sharpe ratio. Table 5, Table
6, and Table 7 show the portfolio return, risk and Share ratio of portfolio formed using
clustering based on business sector of stock and k-mean combined with the classic MV
portfolio model, MVgy,-p model and MV model. From Table 5, Table 6 and Table 7, in
general it can be seen that the portfolio performance formed by combining clustering results
based on the stock business sector with robust FMCD estimation outperforms other portfolio
performance for all risk aversion values. These results are in line with the results of research
conducted by Gubu et al. (2020).

CONCLUSION

This paper discusses how to group stocks into clusters based on business sector of
stock and then uses robust estimates to obtain an optimum portfolio. This can reduce a lot of
time in stock selection because stocks from the same sector can be easily grouped into one
cluster. The best performing stocks from each cluster are then selected to represent the cluster
to form a portfolio. To see the advantages of the proposed method, a portfolio formation is
also carried out using k-means clustering. The results showed that the portfolio performance
formed by combining clustering results based on the business sector of stock with FMCD
robust estimation outperformed the portfolio performance with other combinations.
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