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Abstract: Risk-averse investors will seek out stock investments 

with the minimum risk. One step that can be taken is to develop 

a model of stock prices and predict their fluctuations in the 

coming months. Significant studies on the modeling of stock 

movements have used the ARCH/GARCH method, but this 

method requires some assumptions. This paper will discuss the 

performance of stock modeling using Support Vector 

Regression. The performance is measured using the root mean 

square error value in two stock clusters based on its volatility 

value, e.g., stocks with large volatility and stocks with small 

volatility. This case study makes use of daily closing price data 

from 10 LQ-45 index shares from October 12, 2018 to October 

11, 2019. In conclusion, SVR's performance on stocks with high 

volatility produces RMSE, which is considerably higher than 

SVR's performance on stocks with low volatility. 

 

1. INTRODUCTION 

Investors conduct investment activities in the form of financial assets or real assets. 

Financial assets such as stocks are employed as investment objects in this study. Before 

making investing decisions, investors must carefully analyze the funds to be invested in and 

the stocks to be chosen. An investor expects maximum profit with minimal risk. However, 

in its implementation, the profits are always directly proportional to the risks. Investors who 

are risk-averse will look for the types of stock investments with minimum risk. As a result, 

the first step is to create a model that predicts stock prices in the future. 

However, in practice, stock price movements are extremely volatile. As a result, not 

all stocks can be modeled and predicted with a low error rate. Intuitively, it can be understood 

that stocks with stable movements will be easier to model and produce lower errors than 

stocks with volatile movements. The indicator that reflects fluctuations in stock movements 

is volatility. Therefore, investors need to sort and choose the stocks that can be predicted 

with low errors based on their volatility values so that future investment risks can be 

predicted and minimized. 

Various studies on modeling or predicting market movements have used the 

ARCH/GARCH approach, which needs several assumptions. However, along with the 

development of statistical science, various new methods are currently being formulated 

which are commonly referred to as Machine Learning, where one of the methods is Support 

Vector Regression. The selection of this method is based on the fact that the modeling 
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concept is quite simple and has a relatively high performance. The concept of this method is 

to choose the best hyperplane that can cover all the information from the data. 

The calculation of the Support Vector Regression method depends on the distribution 

of the data or, in this case, the volatility of the stock price. Therefore, in this study, the 

researchers are interested in adding cluster elements based on stock volatility in order to 

determine the performance of the method on stocks in each cluster.  

Other papers or journals used to support stock price modeling using Support Vector 

Regression in this undergraduate thesis include Basak et al. (2007), Bini and Mathew (2015), 

Choudhury et al. (2013), Henrique et al. (2018), Maharesi (2013), Mishra and Padhy (2019), 

and Saputra et al. (2019).  

 

2. LITERATURE REVIEW  

2.1. K-Means Clustering Algorithm 

The K-Means algorithm is one of the partitional algorithms. K-Means is based on 

determining the initial number of groups by defining the initial centroid value. The term K-

Means comes from the formation of K clusters with the new centroid value being the mean 

of the data in each cluster. The K-Means algorithm uses an iterative process to obtain a 

cluster database. The centroid value chosen to be the initial center will be calculated using 

the Euclidean Distance formula, which is to find the closest distance between the centroid 

point and the data/object. Data that has the shortest or closest distance to the centroid will 

create a cluster. 

The K-Means algorithm is as follows: 

1. Determine K as the number of clusters to be formed 

2. Randomly determine the initial K Centroid (cluster center point) 

3. Calculate the distance of each object to each centroid of each cluster. To calculate the 

distance between the object and the centroid, the Euclidian Distance formula between two 

objects can be used 

 
𝑑(𝑥, 𝑦) = ∑ (𝑥𝑖 − 𝑦𝑖)2

𝑛

𝑖=1
; 𝑖 = 1, 2, 3, … , 𝑛  

where 𝑥𝑖 is 𝑖𝑡ℎ value of object 𝑥, 𝑦𝑖 is 𝑖𝑡ℎ value of object 𝑦, and 𝑛 is number of objects 

4. Allocate each object into a cluster where the distance of the object to the centroid is the 

closest distance compared to the distance of the object to the centroid of other clusters. If 

an object is found within the same distance from 2 or more centroids, then the K Centroid 

is re-determined as in step 2  

5. Perform an iteration, then determine the position of the new centroid using the equation 

 
𝑣𝑘 =  

∑ 𝑥𝑖𝑘
𝑛𝑘
𝑖=1

𝑛𝑘
; 𝑖 = 1, 2, 3, … , 𝑛𝑘  

where 𝑣𝑘 is centroid of the 𝑘𝑡ℎ cluster, 𝑥𝑖𝑘 is 𝑖𝑡ℎ value of object of the 𝑘𝑡ℎ cluster, and 

𝑛𝑘 is number of objects that are members of 𝑘𝑡ℎ cluster 

Repeat step (3) to step (5) until the new centroid position is consistently the same as 

the previous centroid position. 

2.2. Simple Moving Average 

Moving average is one of the methods used to forecast data that contains a trend. 

This method is done by taking a group of values, examining the average, and then using the 

average as a forecast for the next period. This method is called a moving average because 
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every time new observation data is available, the average number is calculated and used for 

future use. 

The Properties of the Simple Moving Average (Subagyo, 1986) are as follows: 

1. To create a forecast value requires historical data over a certain period of time. If there is 

data for 𝑛 periods, it can make forecasts for the 𝑛 + 1 period.  

2. The longer the moving average, the smoother the moving average will be. 

However, this approach has drawbacks in addition to its benefits, including 

(Subagyo, 1986): 

1. Requirement of historical data  

This method requires sufficient historical data. For forecasts with 3 months moving 

average, historical data for the last 3 months is required.  

2. All data are equally weighted  

According to this method all data are equally weighted. The formula of the Simple 

Moving Average is as follows: 

 
𝑆𝑡+1 =

𝑋𝑡 + 𝑋𝑡−1 + ⋯ + 𝑋𝑡−𝑛+1

𝑛
   

where 𝑆𝑡+1 is forecasting for 𝑡 + 1 period, 𝑋𝑡 is data in 𝑡 period, 𝑛 is moving average 

timeframe 

2.3. Karush Kuhn-Tucker Condition 

The Karush Kuhn-Tucker model can be used to solve a linear or non-linear function. 

In this method, the completed program has inequality constraints. The Karush Kuhn-Tucker 

method is a development of the solution of a non-linear model constrained by equations by 

seeking for stationary points, or places with the potential to be optimal points. 

There are several Karush Khun-Tucker requirements for constrained optimization 

problems. Karush and Khun-Tucker formulated the requirement. The following is a theorem 

that explains the Karush Kuhn-Tucker conditions for the maximum and minimum problems.  

Theorem 1 (Winston, 2003) If 𝑓(𝑋) and 𝑔1(𝑋) are a maximizing pattern problem. If 

𝑋 =  (𝑥1, 𝑥2 , … , 𝑥𝑛) is an optimal solution for 𝑓(𝑋) and 𝑔𝑖(𝑋), then 𝑋 =  (𝑥1, 𝑥2, … , 𝑥𝑛) 

is a non-linear function and there are multipliers 𝜆1, 𝜆2,….,𝜆𝑚 and slack variables 𝑠1, 𝑠2,….,𝑠𝑛 

so that it satisfies 

 
1.  

𝜕𝑓

𝜕𝑥𝑗
− ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥𝑗

𝑚

𝑖=1

+ 𝑠𝑗 = 0; 𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝑛  

 2.  𝜆𝑖[𝑏𝑖 − 𝑔𝑖(𝑋)] = 0; 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 𝑚  

 
3.  (

𝜕𝑓

𝜕𝑥𝑗
− ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥𝑗

𝑚

𝑖=1
) 𝑥𝑗 = 0; 𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝑛  

 4.  𝜆𝑖 ≥ 0; 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 𝑚  

 5.  𝑠𝑗 ≥ 0; 𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝑛  

Theorem 2  (Winston, 2003) If 𝑓(𝑋) and 𝑔1(𝑋) are a problem with a minimization 

pattern. If 𝑋 =  (𝑥1, 𝑥2, … , 𝑥𝑛) is an optimal solution for 𝑓(𝑋) and 𝑔𝑖(𝑋), then 𝑋 =
 (𝑥1, 𝑥2, … , 𝑥𝑛) is a non-linear function and there are multipliers 𝜆1, 𝜆2,….,𝜆𝑚 and surplus 

variables 𝑒1, 𝑒2,….,𝑒𝑛 so that it satisfies 
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1.  

𝜕𝑓

𝜕𝑥𝑗
− ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥𝑗

𝑚

𝑖=1

− 𝑒𝑗 = 0; 𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝑛  

 2.  𝜆𝑖[𝑏𝑖 − 𝑔𝑖(𝑋)] = 0; 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 𝑚  

 
3.  (

𝜕𝑓

𝜕𝑥𝑗
− ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕𝑥𝑗

𝑚

𝑖=1
) 𝑥𝑗 = 0; 𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝑛  

 4.  𝜆𝑖 ≥ 0; 𝑓𝑜𝑟 𝑖 = 1, 2, 3, … , 𝑚  

 5.  𝑒𝑗 ≥ 0; 𝑓𝑜𝑟 𝑗 = 1, 2, 3, … , 𝑛  

In general, the condition of complementary slackness in quadratic programming can 

be expressed in property 1 as follows: 

Property 1 (Winston, 2003) Complementary slackness in quadratic programming  

1. 𝑒𝑗 and 𝑠𝑗 in the Kuhn-Tucker condition and 𝑥𝑗 neither can be positive. 

2. Surplus variable (excess) or slack for the 𝑖𝑡ℎ value of constraint and 𝜆𝑖 neither can be 

positive. 

2.4. Support Vector Regression 

Support Vector Regression (SVR) is an extension of the Support Vector Machine. 

While the Support Vector Machine aims to classify input data, the Support Vector 

Regression is a method that seeks to solve the regression problem.  

2.4.1. Support Vector Regression Model 

This SVR model is able to overcome overfitting because it uses the principle of 

Structural Risk Minimization (SRM) to estimate a regression function by minimizing the 

upper limit of the generalization error resulting in a superior performance (Smola and 

Schölkopf, 2004). The function of the SVR is as follows: 

 𝑦 = 𝑓(𝑥) = 𝒘𝑇𝒙 + 𝒃  
(1) 

where 𝑦 is the output data matrix, 𝒙 is the input data matrix, 𝒘 is the weight matrix, and 𝒃 

is the bias matrix.  

SVR is presently becoming the subject of numerous studies that have been 

developed. Until now, many types of SVR have been produced, one of which is 𝜀-SVR. 

2.4.2. 𝜺-SVR 

𝜺-SVR was introduced by Vapnik, who added the concept of 𝜺-insensitive loss 

function. This concept is represented by 𝜀 notation, which reflects the magnitude of the 

deviation from the actual target of 𝑦𝑖 value for all training data. The value of 𝜀 is the limit of 

the range of 𝑦𝑖 values that can be estimated by the function. Visually, 𝜀-SVR will form a 

tube with a radius equal to the value of ε. A perfect regression equation can be obtained if 

𝜀 = 0 because the analysis includes all data without having to use a support vector. Figure 1 

will explain the visualization of 𝜀-SVR where the dotted line shows the supporting 

hyperplane, the straight line shows the main hyperplane, and the red dots that intersect with 

the dotted line are support vectors. 
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Figure 1. 𝜀-SVR Visualization 

Given as many as 𝑁 training data sets (𝑥𝑖 , 𝑦𝑖) with 𝑖 =  1,2, . . . , 𝑁 where 𝑥 ∈ ℝ is a 

vector in the input space and 𝑦𝑖 ∈ ℝ is the output value based on corresponding 𝑥𝑖, the primal 

form of SVR with a precision of 𝜀 is as follows: 

 
min
w,b

1

2
‖𝒘‖2 

 
(2) 

condition 

 𝑦𝑖 − (𝒘𝑇𝑥𝑖 + 𝑏) ≤ 𝜀   

 (𝒘𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 𝑖 = 1,2, … , 𝑁  

Minimizing ||𝒘|| will make the function as thin as possible, so as to control the 

capacity of the function. In the case of this regression, it is assumed that all pairs of points 

(𝑥𝑖, 𝑦𝑖) are within the range 𝑓 ± 𝜀 (feasible). In an unfeasible situation where there are 

several points that might be out of range 𝑓 ± 𝜀, it is necessary to add 𝜉, 𝜉∗ slack variable into 

equation (2) to overcome the problem of infeasible constraints in the optimization problem 

as shown in Figure 1 at the points colored Red. Furthermore, the optimization problem in 

equation (2) can be formulated as follows (Cortes & Vapnik, 1995): 

 

min
w,b,ξ𝑖,ξ𝑖

∗

1

2
‖𝒘‖2 + 𝐶 ∑(ξ𝑖 + ξ𝑖

∗)

𝑁

𝑖=1

  
(3) 

condition 

 𝑦𝑖 − (𝒘𝑇𝑥𝑖 + 𝑏) ≤ 𝜀 + ξ𝑖   

 (𝒘𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 ≤ 𝜀 + ξ𝑖
∗   

 ξ𝑖 , ξ𝑖
∗ ≥ 0 𝑖 = 1,2, … , 𝑁  

The constant 𝐶 > 0 determines the bargaining value between the thinness of the 

function 𝑓 and the maximum deviation limit greater than 𝜀 that can still be tolerated. That 

means that any deviation with a value greater than 𝜀 will be penalized by 𝐶.  

In SVR, 𝜀 is equivalent to the accuracy of the approximation effort to the value of 

the training data. A small value of ε allows a high level of accuracy for the approximation 

function and a high value for the slack variable .ξ𝑖 , ξ𝑖
∗. On the other hand, a high value for ε 

indicates a small accuracy of the approximation function. According to equation (3), a low 

variable value and a high slack value will make empirical errors and have a considerable 

influence on the ||𝒘|| regularization factor. In SVR, the support vector is the training data 

that lies on and outside of the ±𝜀 limit of the decision function. This causes the number of 
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support vectors to decrease as the value of 𝜀 increases. This relationship characterizes the 

role of 𝜀 function, which is denoted by |𝜉|𝜀 with the following details: 

 
|ξ|𝜀 = {

0,                   ξ ≤ ε           
|ξ| − 𝜀, otherwise 

  
 

Before converting into dual form, first consider for the Lagrange form of the primal 

form of SVR in equation (3), namely: 

 
𝐿(𝒘, 𝑏, 𝜉𝑖, 𝜉𝑖

∗) =
1

2
𝒘𝑇𝒘 + 𝐶 ∑ (ξ𝑖 + ξ𝑖

∗)
𝑁

𝑖=1
− ∑ (𝜂𝑖ξ𝑖 + 𝜂𝑖

∗ξ𝑖
∗)

𝑁

𝑖=1
 

(4) 

 
− ∑ 𝛼𝑖(𝜀 +  𝜉𝑖 − 𝑦𝑖 + (𝒘𝑇𝑥𝑖) + 𝑏)

𝑁

𝑖=1
− ∑ 𝛼𝑖

∗(𝜀 + 𝜉𝑖
∗ + 𝑦𝑖 − (𝒘𝑇𝑥𝑖) − 𝑏)

𝑁

𝑖=1
 

where the non-negative variable of 𝛼𝑖, 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ is a Lagrange multiplier. The Lagrange 

equation (4) must satisfy the limiting equation of 

 𝛼𝑖 , 𝛼𝑖
∗, 𝜂𝑖 , 𝜂𝑖

∗ ≥ 0  
 

Furthermore, the partial reduction of the Lagrange function to 𝑤, 𝑏, ξ𝑖 , ξ𝑖
∗
 values are 

as follows: 

Condition 1: 

 𝜕𝐿(𝒘, 𝑏, 𝜉𝑖, 𝜉𝑖
∗)

𝜕𝒘
= 0   

 

𝑤 − ∑(𝛼𝑖𝑥𝑖)

𝑁

𝑖=1

+ ∑(𝛼𝑖
∗𝑥𝑖)

𝑁

𝑖=1

= 0   

 
𝑤 = ∑ (𝛼𝑖 − 𝛼𝑖

∗)
𝑁

𝑖=1
𝑥𝑖     (5) 

Condition 2: 

 𝜕𝐿(𝒘, 𝑏, 𝜉𝑖, 𝜉𝑖
∗)

𝜕𝑏
= 0   

 

− ∑ 𝛼𝑖

𝑁

𝑖=1

+ ∑ 𝛼𝑖
∗

𝑁

𝑖=1

= 0   

 
∑ (𝛼𝑖 − 𝛼𝑖

∗)
𝑁

𝑖=1
= 0     (6) 

Condition 3: 

 𝜕𝐿(𝒘, 𝑏, 𝜉𝑖, 𝜉𝑖
∗)

𝜕𝜉𝑖
= 0   

 

𝐶 − ∑ 𝑛𝑖

𝑁

𝑖=1

− ∑ 𝛼𝑖

𝑁

𝑖=1

= 0   

 
𝐶 = ∑ (𝛼𝑖 + 𝑛𝑖)

𝑁

𝑖=1
  (7) 
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Condition 4: 

 𝜕𝐿(𝒘, 𝑏, 𝜉𝑖, 𝜉𝑖
∗)

𝜕𝜉𝑖
∗ = 0   

 

𝐶 − ∑ 𝑛𝑖
∗

𝑁

𝑖=1

− ∑ 𝛼𝑖
∗

𝑁

𝑖=1

= 0   

 
𝐶 = ∑ (𝛼𝑖

∗ + 𝑛𝑖
∗) 

𝑁

𝑖=1
  (8) 

By eliminating equations (7) and (8), then substituting into equation (6), equation (9) 

is obtained as follows: 

 
∑ (𝜂𝑖 − 𝜂𝑖

∗) = 0
𝑁

𝑖=1
  

(9) 

By inserting equations (5), (6), (7) and (9) into the Lagrange function in equation (4), 

it will be obtained 

 
𝐿(𝒘, 𝑏, 𝑎) =  −

1

2
[∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)
𝑁

𝑗=1
(𝛼𝑗 − 𝛼𝑗

∗)𝑥𝑖𝑥𝑗

𝑁

𝑖=1
]  

 
−𝜀 ∑ (𝛼𝑖 + 𝛼𝑖

∗)
𝑁

𝑖=1
+ ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)
𝑁

𝑖=1
 (10) 

Furthermore, the Lagrange equation (10) produces a dual equation for the optimization 

problem of 𝜀-SVR as follows: 

 
max
𝛼,𝛼∗

−
1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)
𝑁

𝑗=1
(𝛼𝑗 − 𝛼𝑗

∗)(𝑥𝑖, 𝑥𝑗)
𝑁

𝑖=1
− 𝜀 ∑ (𝛼𝑖 + 𝛼𝑖

∗)
𝑁

𝑖=1
  

 
+ ∑ 𝑦𝑖(𝛼𝑖 − 𝛼𝑖

∗)
𝑁

𝑖=1
  

condition 

 
∑ (𝛼𝑖 − 𝛼𝑖

∗)
𝑁

𝑖=1
= 0   

 0 ≤ 𝛼𝑖,𝛼𝑖
∗ ≤ 𝐶 𝑖 = 1,2, … , 𝑁  

where 𝐶 is defined as a penalty, (𝑥𝑖, 𝑥𝑗) is dot-product where 𝐶 is defined as  

(𝑥𝑖 , 𝑥𝑗) =  (𝑥𝑖) ⋅ (𝑥𝑗). Furthermore, equation (5) obtained a new form of 𝑤 = ∑ (𝛼𝑖 −𝑁
𝑖=1

𝛼𝑖
∗) 𝑥𝑖 which can be included in equation (1) and formulated as follows: 

 
𝑓(𝑥) = (∑ (𝛼𝑖 − 𝛼𝑖

∗)
𝑁

𝑖=1
𝑥𝑖) 𝑥 + 𝑏  

(11) 

Equation (11) can be called the Support Vector expansion, which is a weight matrix 

of 𝒘 described by a linear combination of training samples. The complexity of the regression 

function does not depend on the dimensions of the input data, but entirely on the number of 

support vectors associated with the Lagrange multiplier value of 𝛼𝑖 , 𝛼𝑖
∗. 

The value of 𝑏 can be found using the Karush Kuhn-Tucker condition stating that at 

the optimal solution value, the dot product of the dual variable, and the constraint function 

will cancel each other. If written briefly, the equation notation will be adjusted with the 

notation listed in the Karush Kuhn-Tucker condition as follows: 
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𝑓(ξ, ξ∗) =
1

2
‖𝒘‖2 + 𝐶 ∑(ξ𝑖 + ξ𝑖

∗)

𝑁

𝑖=1

   

 

𝑓(ξ, ξ∗) =
1

2
‖𝒘‖2 + 𝐶 ∑(ξ𝑖 + ξ𝑖

∗)

𝑁

𝑖=1

   

 𝑔1(ξ, ξ∗) = 𝑦𝑖 − (𝒘𝑇𝑥𝑖 + 𝑏) − ξ𝑖   

 𝑏1 = 𝜀   

 𝑔2(ξ, ξ∗) = (𝒘𝑇𝑥𝑖 + 𝑏) − 𝑦𝑖 − ξ𝑖
∗   

 𝑏2 = 𝜀   

 λ1 = 𝛼𝑖 
  

 λ2 = 𝛼𝑖
∗   

This is due to the fact that the slack variable of s𝑗 from the Karush Khun–Tucker 

condition is not a general component that has been defined in the optimization problem. The 

value of s𝑗 will appear according to the existing optimization problem while still following 

Property 1. In the case of Support Vector Regression optimization, the variable will be 

defined as s𝑖. Furthermore, from the conditions of  
𝜕𝑓

𝜕ξ𝑖
− ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕ξ𝑖

𝑚
𝑖=1 + 𝑠𝑗 = 0 obtained 

 𝐶 − 𝛼𝑖 + s𝑖 = 0 ↔ 𝐶 − 𝛼𝑖 = −s𝑖 
(12a) 

 𝐶 − 𝛼𝑖
∗ + s𝑖 = 0 ↔ 𝐶 − 𝛼𝑖

∗ = −s𝑖 (12b) 

then from the condition of 𝜆𝑖[𝑏𝑖 − 𝑔𝑖(ξ, ξ∗)] = 0 obtained 

 𝛼𝑖(𝜀 − 𝑦𝑖 + (𝒘𝑇𝑥𝑖) + 𝑏 +  ξ𝑖) = 0 (13a) 

 𝛼𝑖
∗(𝜀 + 𝑦𝑖 − (𝒘𝑇𝑥𝑖) − 𝑏 + ξ𝑖

∗) = 0 (13b) 

and from the condition of (
𝜕𝑓

𝜕ξ𝑖
− ∑ 𝜆𝑖

𝜕𝑔𝑖

𝜕ξ𝑖

𝑚
𝑖=1 ) ξ𝑖 = 0 

 (𝐶 − 𝛼𝑖)ξ𝑖 = 0 (14a) 

 (𝐶 − 𝛼𝑖
∗)ξ𝑖

∗ = 0  (14b) 

From the conditions (12a), (12b), (14a), (14b) and Property 1, the value of s𝑖 will be 

zero when ξ𝑖 , ξ𝑖
∗
 is positive or in other words when the data is outside the boundary. On the 

other hand, s𝑖 will be positive when ξ𝑖 , ξ𝑖
∗
 is zero or in other words when the data is inside 

the boundary.  

Furthermore, a Support Vector forming w, namely training data with a value 

of 𝛼𝑖 , 𝛼𝑖
∗ > 0. Then the Support Vector can be found when: 

i. 𝜀 +  ξ𝑖
∗ + 𝑦𝑖 − (𝒘𝑇𝑥𝑖) − 𝑏 = 0 or the training data is located at the upper boundary or 

above the upper boundary. 

ii. 𝜀 +  ξ𝑖 − 𝑦𝑖 + (𝒘𝑇𝑥𝑖) + 𝑏 = 0 or the training data is located at the lower boundary or 

below the lower boundary. 

Furthermore, the value of b can be determined by considering (13a), (13b), (14a) and 

(14b) when: 

i. 𝛼𝑖 , 𝛼𝑖
∗ = 𝐶 for ξ𝑖, ξ𝑖

∗ ≠ 0 or ith value of data is out of limit 𝑓(𝑥) ± 𝜀. 

ii. ξ𝑖 , ξ𝑖
∗ = 0 for 0 ≤ 𝛼𝑖,𝛼𝑖

∗ ≤ 𝐶 or ith value of data is within the limit 𝑓(𝑥) ± 𝜀. 
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In order to produce a precise value of f(x) on the data, the calculation of the value of 

b can be done using condition (ii) or in other words involving data that is within the limit, 

𝑓(𝑥) ± 𝜀 namely when the value of ξ𝑖 , ξ𝑖
∗ = 0 and 0 < 𝛼𝑖,𝛼𝑖

∗ ≤ 𝐶. Therefore, the value of b 

can be written as 

 𝑏 = 𝑦𝑖 − (𝒘𝑇𝑥𝑖) − 𝜀;    𝑓𝑜𝑟 𝛼𝑖 ∈ (0, 𝐶) (15a) 

 𝑏 = 𝑦𝑖 − (𝒘𝑇𝑥𝑖) + 𝜀;    𝑓𝑜𝑟 𝛼𝑖
∗ ∈ (0, 𝐶)  (15b) 

 

3. RESEARCH METHODS  

This paper discusses the application of Support Vector Regression optimization with 

K-means cluster analysis to the stock data variance of 10 stocks. To evaluate the performance 

of Support Vector Regression in each cluster based on the variance value, each cluster was 

constructed based on the variance value of the stock data.  

3.1. Data Description 

The objects in this study were stocks. Secondary data in the form of daily stock price 

data was employed. The closing price of the stock was utilized, which is the price that 

displays right before the market closes. The stocks employed in this study were ten equities 

from the list of LQ-45 stock groups. Furthermore, the stocks chosen had the biggest 

capitalization in each area. The observation period lasted 261 days, from October 11, 2018 

to October 11, 2019. This period represents the total number of active trading days in the 

stock for one year. 

3.2.  Research Method 

The method employed in this case study was a process of comparing the performance 

of Support Vector Regression in a cluster constructed using K-means Clustering based on 

the variance value of stock data. The reference for the performance comparison, in this case, 

is the root mean square error generated by the Support Vector Regression model.  

Considering stock close price data is a univariate time series, additional data is 

required as input for Support Vector Regression modeling. The input data used for the 

formation of the model was ith value of lag of the data with i being the value of the best order 

simple moving average when used to model the data for each stock using the simple moving 

average method. Because the input data is lag of the actual data, there will be as many as i 

last data that do not have input data so that data needs to be removed from the dataset.  

Furthermore, the modeling was done by splitting the data into training data and 

testing data with a ratio of 80:20. The training data set included 208 data points for each 

stock's first close price from October 12, 2018, to July 31, 2019, whereas the test data set 

included 52 closing price data points from August 1, 2019 to October 11, 2019. The model 

that was formed based on the training data was measured for its performance by using the 

model to predict the test data and calculating the root mean square error value.  

Table 1. Data Description 

Data Daily stock price 

Source www.finance.yahoo.com 

Period October 11, 2018 – October 11, 2019 

Criteria LQ-45 

Observation frequency 261 days 

 

http://www.finance.yahoo.com/
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Table 2. Stock List 

No Stock Code Stock Name 

1 ASII.JK Astra International Tbk. 

2 BBNI.JK Bank Negara Indonesia (Persero) Tbk. 

3 EXCL.JK XL Axiata Tbk. 

4 TPIA.JK Chandra Asri Petrochemical Tbk. 

5 SMGR.JK Semen Indonesia (Persero) Tbk. 

6 WIKA.JK Wijaya Karya (Persero) Tbk. 

7 BMRI.JK Bank Mandiri (Persero) Tbk. 

8 ICBP.JK Indofood CBP Sukses Makmur Tbk. 

9 ADHI.JK Adhi Karya (Persero) Tbk. 

10 BBRI.JK Bank Rakyat Indonesia (Persero) 

 

4. RESULTS AND DISCUSSION 

4.1. Cluster formation based on variance 

The Support Vector Regression approach searches for a hyperplane with the smallest 

thickness as a model equation, where the thickness is affected by the data distribution. 

Therefore, two clusters were formed using K-means Clustering based on the variance value 

of each stock. The two clusters formed displayed stock categories with high and small 

deviations. Table 3 and 4 represent the variance value and the results of the clustering. 

Table 3. Stock Variance 

Stock Variance  Stock Variance 

ASII.JK 395,367.87  WIKA.JK 137,281.15 

BBNI.JK 561,224.64  BMRI.JK 161,473.64 

EXCL.JK 221,077.48  ICBP.JK 953,165.25 

TPIA.JK 1,585,411.91  ADHI.JK 25,685.16 

SMGR.JK 1,503,236.70  BBRI.JK 142,798.14 

 

Table 4. Stock Clusters 

Small Variance Cluster Stock Large Variance luster Stock 

ASII.JK TPIA.JK 

BBNI.JK SMGR.JK 

EXCL.JK ICBP.JK 

WIKA.JK - 

BMRI.JK - 

ADHI.JK - 

BBRI.JK - 

 

4.2. Stock Price Modeling using SVR 

Furthermore, using the Simple Moving Average, it was found that the ten stocks in 

this case study can be modeled effectively using a lag order 1, which means yesterday’s data 

(𝑡 − 1) can be used to predict today’s data (𝑡). Therefore, the data lag 1 was used as the 

independent variable and the data at time 𝑡, which was used as the dependent variable. The 

modeling results of each stock are presented in Table 5. 
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Table 5. Support Vector Regression Model 

Stock Kernel, cost, 

gamma, epsilon 

Number of 

Support Vectors 

W b RMSE 

ASII.JK Linear,1,1, 0,1 125 0.9670126 -0.011618 126.059 

BBNI.JK Linear,10,1, 0,1 112 0.9877608 -0.008210 150.409 

EXCL.JK Linear,10,1, 0,3 20 0.9935115 -0.021029 74.428 

TPIA.JK Linear,1,1, 0,1 116 0.9595929 0.012225 210.666 

SMGR.JK Linear,1,1, 0,1 106 0.9758033 0.006688 264.748 

WIKA.JK Linear,1,1, 0,1 81 0.9855069 -0.006720 53.949 

BMRI.JK Linear,1,1, 0,1 146 0.9728070 0.011467 123.751 

ICBP.JK Linear,10,1, 0,3 27 0.9754748 0.000103 170.382 

ADHI.JK Linear,1,1, 0,1 125 0.9640289 0.004790 25.608 

BBRI.JK Linear,10,1, 0,3 8 0.9907833 -0.004442 73.100 

As an example of the interpretation of ASII.JK stock with a linear kernel, the value 

of cost = 1 and tolerance of epsilon = 0.1 was considered. As a result, 125 data that form the 

weights of w = 0.9670126 and b = -0.011618 and produce a root mean square error of 

126.059 were observed. From the model and RMSE formed in the previous sub-chapter, the 

performance of the model in each cluster was compared. For stocks belonging to clusters 

with small variances, the results obtained are tabulated in Table 6. Meanwhile, for stocks 

belonging to clusters with large variances, the results are illustrated in Table 7. 

It can be seen that the stocks belong to a cluster with small variance and large 

variance. This is in accordance with the concept of Support Vector Regression that the model 

will look for the best hyperplane composed of support vectors or data that are close to each 

other. Therefore, if the variance or data distribution is greater, the hyperplane formed will 

produce a larger error compared to a dataset that has a smaller variance or data distribution 

value. 

Table 6. Root Mean Square Error of Cluster Stocks 

Stock Cluster RMSE  Stock Cluster RMSE 

ASII.JK Small Variance 126.059  TPIA.JK Large Variance 210.666 

BBNI.JK Small Variance 150.409  SMGR.JK Large Variance 264.748 

EXCL.JK Small Variance 74.428  ICBP.JK Large Variance 170.382 

WIKA.JK Small Variance 53.949     

BMRI.JK Small Variance 123.751     

ADHI.JK Small Variance 25.608     

BBRI.JK Small Variance 73.100     

 

5. CONCLUSION 

Based on the results of this study, it can be seen that from the 10 LQ-45 stocks used 

in the case study, there are 3 stocks classified as large variance clusters and 7 stocks classified 

as small variance clusters. Furthermore, Support Vector Regression modeling can be used 

for stock modeling by using the results of the Simple Moving Average analysis of order 1 as 

the dependent variable. The results of the modeling show that stocks belonging to the large 

variance cluster have a larger RMSE than stocks belonging to the small variance cluster 

when modeled using Support Vector Regression. 
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