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Abstract: Currently the emergence of the novel coronavirus 

(Sars-Cov-2), which causes the COVID-19 pandemic and has 

become a serious health problem because of the high risk causes 

of death. Therefore, fast and appropriate action is needed to 

reduce the spread of the COVID-19 pandemic. One of the way 

is to build a prediction model so that it can be a reference in 

taking steps to overcome them. Because of the nature of 

transmission of this disease which is so fast and massive cause 

extreme data fluctuations and between objects whose 

observational distances are far enough correlated with each 

other (long memory). The result of this determination is the best 

ARFIMA model obtained to predict additional of recovering 

cases of COVID-19 is (1,0,489.0) with an SMAPE value of 

12,44%, while the case of death is (1.0.429.0) with SMAPE 

value of 13,52%. This shows that the ARFIMA model can 

accommodate well the long memory effect, resulting in a small 

bias. Also in estimating model parameters, it is also simpler. For 

cases of recovery and death, the number is increasing even 

though the case of death is still very high compared to cases of 

recovery. 

 

1. INTRODUCTION 

The novel coronavirus (Sars-Cov-2) which causes the COVID-19 pandemic has 

become a global health problem. Even the World Health Organization (WHO) has set it to 

be a global pandemic because of the fast and massive nature of transmission, as well as the 

health impacts it causes, such as pneumonia, multi-organ failure, and even a high risk causes 

of death (WHO, 2020; Sifriyani & Rosadi, 2020). Due to the fast and massive nature of 

transmission, data on the spread of the COVID-19 pandemic, both the addition of cases of 

recovery and death fluctuate in extreme ways and between objects whose observation 

distances are quite far correlated (long memory effect). Therefore, a quick and precise action 

is needed to minimize the number of patients exposed (Shi et al., 2020; Chen et al., 2020) 

Building a predictive model requires information from previous events, but often the 

information from these events are extremely fluctuating and random. Like data on the cases 

of the spread of the COVID-19 pandemic which is currently sweeping the world, including 

Indonesia, it also fluctuates in extreme, random ways and has a long memory effect. There 

are many methods in statistics that can be used to build a predictive model, ranging from 

parametric and nonparametric statistical methods such as regression methods to time series 
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based methods, Autoregressive Integrated Moving Average (ARIMA). However, there are 

limitations to the formation of a prediction model for the COVID-19 pandemic case through 

the regression approach or ARIMA, which is unable to build a model with high accuracy 

due to the nature of the data that fluctuates in extreme, random and has a long memory effect. 

In addition, this method must also fulfill the assumptions that have been determined in the 

analysis so that it is not well used in the interpretation of the parameters and the confidence 

interval of the model being built. Therefore, the prediction model with the Autoregressive 

Fractional Integrated Moving Average (ARFIMA) approach is used to accommodate this so 

that a robust and accurate prediction model is obtained. 

  

2. LITERATURE REVIEW  

2.1. Long Memory Model Identification 

Long memory effects can be identified using several estimation methods, including 

Geweke and Porter Hudak (GPH), Nonlinear Least Square (NLS), Exact Maximum 

Likelihood (EML) and Modified Profile Likelihood (MPL) (Doornik & Ooms, 1999). 

However, in this study the GPH Estimator is used because the parameter d can be estimated 

without identifying the order p and q first (Geweke & Porter‐Hudak, 1983). 
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2.2. ARFIMA Model  

Time series method is one of the most popular prediction methods in statistics. This 

is because the method is simple but able to solve complex problems, if the case under study 

is influenced by the time (Zheng & Zhong, 2011). Besides that, the prediction model built is 

also accurate. In the case prediction of the transmission of COVID-19, which is require a 

model that can accommodate extreme fluctuations due to the nature of transmission and 

effects (long memory). From several previous studies, the ARFIMA model build predictive 

values with better accuracy than other models because it has flexibility, robustness and able 

to accommodate long memory effects, including (Kartikasari, 2020) show that the ARFIMA 

model show better result than the LSTAR and FILSTAR models. Aye et al., (2014) examines 

the effect of long memory daily stock returns from Brazil, Russia, India, China, and South 

Africa, also explain the efficacy of the ARFIMA model. (Baillie & Morana, 2012) examines 

simple adaptive modification of the basic ARFIMA model using the flexible Fourier form 

which is enable for a variety of interceptions 

In the long memory case the stationary process causes the autocorrelation function 

to slow down slowly. This causes overdifferencing to have an unexpected impact on 

parameter estimation and prediction (Bhardwaj & Swanson, 2006). In the prediction there is 

a condition that the process is stationary and convergent at the average value. Thus, the 

prediction of long memory processes should converge to the average value of the process, 

even though it will converge slowly. 

The ARFIMA model is a time series model that generalize and simplify parameter 

estimates in the ARIMA model with the value of the differencing 0 <d <1 (Chuang & Wei, 

1991). The ARFIMA model for the Y_t time series is given by:  

∅𝑝(𝐵)(1 − 𝐵)𝑑𝑌𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 (2) 
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with ∅𝑝(𝐵) = ∑ −∅𝑖𝐵
𝑖𝑝

𝑖=0 , 𝜃(𝐵) = ∑ −∅𝑗𝐵𝑗𝑞
𝑗=0   and  ∅0 = 𝜃0 = −1. In addition, 𝐵𝑘 is a 

backshift operator or lag of 𝑌𝑡 then 𝐵𝑘𝑌𝑡 = 𝑌𝑡−𝑘 

From the Equation (2), we can see that in the case of long memory being modeled 

using the ARIMA model, many parameters will be estimated so that it does not adhere to the 

parsimony principle. However, the ARFIMA model provides simpler parameter estimates. 

More in-depth research on parameter estimation of the ARFIMA model was carried out by  

Dueker & Startz (1998), Reisen & Abraham (2001), Lopes, et al. (2004), Mayoral (2003) 

and for the fractional parameter d have been proposed in the literature of Hassler (1993), 

Lobato & Robinson (1996), Hurvich & Deo, (1999), TAQQU et al., (1995), Velasco, (1999).  

In general, the estimator d can be categorized into parametric methods as proposed by Fox 

& Taqqu (1991), Sowell (1992) and the semi-parametric methods Geweke & Porter‐Hudak 

(1983), Robinson (1995) With parametric methods, the focus is on using Maximum 

Likelihood (MLE) Estimates. The MLE technique is used because the estimation method 

has several advantages over other estimation techniques, all the information contained in the 

data is used. In addition, this method is able to generate information from a large sample 

under common conditions. So that the results of the resulting prediction model are robust. 

2.3.  Best Model Selection 

The selection of the best ARFIMA model is seen based on the symmetric mean 

absolute percentage error (SMAPE), which is presented in the formula: 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑
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[
1

2
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𝑛
𝑖=1  for out sample data, where:  

𝑌𝑡 : actual data 

�̂�𝑡 : forecast data 

𝑛 : observation size 

2.4. Diagnostic Assumption Test 

There are two diagnostic assumption tests in the ARFIMA model, the white noise test 

using the L-Jung Box test and normal distribution using the Kolmogorov Smirnov test, 

presented in the following formula. 
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Kolmogorov Smirnov Test : ( ) ( )xFxSSupD 0−=  

 

3. METHODOLOGY OF RESEARCH 

3.1. Data Source and Variable 

The Data and variable used are daily data for the additional of recovered and death 

cases cause of the COVID-19 in Indonesia. The data comes from the "Daily Technical 

Report" issued by the Ministry of Health of the Republic of Indonesia (https://covid19.go.id) 

(https://covid19.kemkes.go.id/). The data was taken from March 2, 2020 to June 14, 2020. 

The data is divided into two parts, in-sample data and out-sample data. March 2, 2020 to 

June 4, 2020 is used as the in-sample data, while the out-sample data is from June 5, 2020 

to June 14, 2020. The data that has been collected will be analyzed using R software 

(Venables et al., 2021;  Torres-Reyna, 2013). 

https://covid19.go.id/
https://covid19.kemkes.go.id/
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3.2. Analysis Step 

The analysis steps of the ARFIMA model are as follows: 

1. Descriptive Statistics 

Descriptive statistics stage is examining how the feature / characteristics of the COVID-

19 data, including the additional of recovered cases and those who died from March 2, 

2020 to June 4, 2020. 

2. Long Memory Testing 

This stage is carried out to defect the presence or absence of a long memory effect on the 

data using of the GPH Estimator method. If the value of d obtained from the GPH 

Estimator method is between 0 to 1, then there is a Long Memory effecr of the data. 

3. ARFIMA Model Formation 

a. Stationary data in variants. 

b. Select one or more ARFIMA models according to the ACF and PACF plots. 

c. Estimating the parameters of the ARFIMA model obtained. 

d. Choose the best ARFIMA model based on SMAPE. 

e. Test the assumption requirement of the residual and handling the data if the residual 

assumptions are violated. 

4. Predict the next 12 periods, then calculate the SMAPE value from the forecast data. 

 

4. RESULTS AND DISCUSSION 

The results from the data processing in cases of recovery and death due to COVID-

19 are presented as follows. 

1. Descriptive Statistics 

Table 1. The Additional of Recovered Cases of COVID-19 

Variable Week     Mean Minimum Maximum Range 

The Additional of 

Recovered Cases 

1 0 0 0 0 

2 1.143 0 6 6 

3 1.714 0 4 4 

4 6.100 0 13 13 

5 17.57 9 28 19 

6 31.71 4 73 69 

7 59.40 20 102 82 

8 75.60 40 137 97 

9 122.70 64 243 179 

10 162.40 91 231 140 

11 188.60 108 285 177 

12 247.00 72 523 451 

13 396.00 298 486 188 

Based on table 1 above, from week 1 to week 3, the additional of recovered cases of 

COVID-19 have not shown a significant increase. However, in week 4 to week 13 there was 

a significant increase. This shows that there were an extreme fluctuation in the data for the 

additional of recovered cases. We can see in week 12 where there was the highest weekly 

increase in cases which there were 523 cases recovered and in week 13 there were a 

minimum of 298 cases recovered in a day. This does not mean that there will be progress in 

dealing with this pandemic problem because the minimum value and resistance have actually 
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decreased. The steps to anticipate the implementation of health protocols have not been 

effective, this is reflected in the inability to increase the minimum value and range for 

additional cases of recovery. 

Table 2. The Additional of Death Cases of COVID-19 

Variable Week Mean Minimum Maximum Range 

 

 

 

 

 

 

The Additional of 

Death Cases  

 

 

 

 

 

1 0 0 0 0 

2 0.714 0 3 3 

3 4.710 0 14 14 

4 9.800 1 20 19 

5 12.14 7 21 14 

6 34.00 19 60 41 

7 22.43 8 47 39 

8 19.56 8 42 34 

9 19.71 8 35 27 

10 16.14 13 21 8 

11 33.57 13 59 46 

12 33.50 19 55 36 

13 27.00 22 35 13 

Table 2 shows that from week 1 to week 6 the incidence of death cases show an 

extreme increase. Similar to the additional of recovered cases, the data on the additional of 

death cases also fluctuate in an extreme manner from day to day. We can see that at the 

beginning of this case it was identified on March 2, 2020, that the highest death cases 

occurred in week 6, or the second month with an average of 34 cases and a minimum of 19 

people per day. Even on April 14, 2020 this week there were also 60 cases of death in a day, 

this is the highest case. At the end of the 3rd month or 9th week there was a decline, although 

not too significant, the number of positive confirmed cases increased. This phenomenon is 

due to the fact that in the 2nd month the handling of this pademic has not been fully 

implemented, there is no enforcement of health protocol rules such as PSBB, physical 

distancing, social distancing and so on and this is also the early days of the pandemic entering 

Indonesia. Meanwhile, at the end of week 13, social restrictions began to be loosened and 

coincided with the entry of Ramadan and Eid al-Fitr, where the culture of the Indonesian 

people held homecoming so that community mobilization was getting higher, therefore there 

was an increase in cases. 

2. Long Memory Detection 

In this step, long memory detection with GPH estimator is first carried out for the 

additional data of Covid-19 cases, both recovered and death cases. On the basis that if the 

value of d is obtained between 0 and 1, it indicates that there is a long memory effect, whereas 

if the value of d is less than 0 or more than 1, there is no long memory effect. The following 

are the results of the d value obtained from the GPH estimator method. 

Table 3. d Value with the GPH Estimator Method 

Variable d Value 

The Additional of Recovered Cases 0.7189 

The Additional of Death Cases 0.5231 

Based on table 3, the estimation results of the d parameter in the data for the 

additional of recovered cases of COVID-19 is 0.7189, while the results of the d parameter 

estimation in the data for the additional of death cases of COVID-19 is 0.5231. This prove 
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that the data has a long memory effect. From long memory detection, data of the additional 

cases of recovery and death of Covid-19 must be modeled using the ARFIMA model. 

3. ARFIMA Model Formation 

a. Stationary data in Variance 

Before forming the ARFIMA model, the first thing to do is check whether the 

data is stationary in variants or not by estimating the rounded value or λ using the Box-

Cox method. If the value of λ = 1 means that the data is stationary in variants. It should 

be noted that in the formation of the ARFIMA model the data only needs to be stationary 

in variants, while the mean does not need to fulfill the stationarity assumption. 

 

 

 

Figure 1. Box Cox of The Additional 

of Recovered Cases Data 

Figure 2. Box Cox of The Additional of 

Death Cases Data 

Based on Figure 1 and Figure 2 shows the data pattern is not stationary in 

variants. This can be seen x from the value of λ = 0, therefore it is necessary to transform 

using the Box-Cox method. Box-Cox with a single parameterized transformation class, 

λ which is raised to the data, where λ is the expected parameter. The basis for selecting 

the transformation model is that if the observational data Y1, Y2, Y3, ... Yn are not 

stationary in variants with a value of λ = 0 then the observational data will be transformed 

using natural logarithms (Ln) and if the value λ = 0 then use root transformation. The 

results of the Ln transformation are as follows. 

 

  

 

Figure 3. Transformation of Ln using 

Box-Cox Method for The Additional of 

Recovered Cases 

Figure 4. Transformation of Ln using 

Box-Cox Method for The Additional of 

Death Cases 
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In Figure 3 and Figure 4 shows the value of λ = 1 for the additional of recovered 

cases while for the additional of death cases the value of λ = 0.50. From these results it 

can be concluded that in the data, the additional of recovered cases is stationary in 

variants, but for the additional of death cases, it is not stationary. Because the data has 

been transformed using Ln needs to be transformed again using root transformation to 

stationary the data for the additional of death cases. After the transformation, the root 

data on death cases shows the following results.  

 

Figure 5. Root Transformation using Box-Cox Methods 

for The Additional of Death Cases 

In Figure 5, it can be seen that the value of λ = 1, then both the additional of 

recovered and death cases, have fulfilled the stationarity assumption in variants. After 

the descriptive statistics stage, long memory identification, and stationarity assumptions 

in the next analysis variant, the determination of the appropriate ARFIMA model is based 

on the ACF and PACF plots generated from the transformed data. 

b. ARFIMA Model Selection 

To select the ARFIMA model (p, d, q) it is necessary to select each value. For p 

model related parameters, Autoregressive (AR), q parameter Moving Avarage (MA) 

while for parameter d which the value between 0 to 1 is called Fractional Integrated (FI). 

The choice of this model is based on the results of the ACF and PACF plots where the 

AR model is based on the cut off lag in the PACF plot, while the MA model is based on 

the cut off lag in the ACF plot. 

  

 

Figure 6. PACF Plot of Ln Transformation     

Result for The Additional of Recovered 

Figure 7. ACF Plot of Ln Transformation 

Result for The Additional of Recovered 

From Figures 6 and 7, the PACF plot indicates the model that will be used to 

predict the additional of recovered cases are AR 1 or AR 2. This is based on the PACF 

plot which is cut off (significant) at lag 2 and the ACF plot decreases slowly resulting in 

MA model 0 or not indicated. Likewise in Figures 8 and 9 the model will be used to 

predict the additional of death cases, AR 1 or AR 2 because the PACF plot is cut off 



 

Media Statistika 14(1) 2021: 44-55 51 

(significant) at the second lag and the ACF plot drops slowly resulting in the MA model 

0 or not being indicated. After knowing the model that will be used as a predictive model, 

the next step is to estimate the p and d values in the selected model,  AR (1) and AR (2), 

both for the additional recovered and death cases. 

c. Estimating parameters of the ARFIMA model 

After carrying out several experiments by including significant lags, the 

estimated model obtained and which is suitable for data on recovery and death cases are 

presented in Table 4 and Table 5. 

Table 4. Estimation of ARFIMA Model Parameters for 

The Additional of Recovered Cases 

  Estimate Std. Error z value Pr(>|z|) 

d  0,489 0,008 63,48 <2e-16 

AR (1) -0,265 0,102 -2,60 0,00934 

Table 5. Estimation of ARFIMA Model Parameters for 

The Additional of Death Cases 

  Estimate Std. Error z value Pr(>|z|) 

d  0,429 0,009 46,805 <2e-16 

AR (1) -0,235 0,099 -2,353 0,0186 

Table 4 shows that the parameter estimate for AR (1) is -0.265 with an estimated 

value of d is 0.489. The overall coefficient of these parameters is significant to the model 

because the p-value is <α, so the ARFIMA model that is formed is ARFIMA (1,0.489.0), 

so the model formed is as follows. 

𝐴1∇0,489𝑍𝑡   = 𝐴2𝑎𝑡 , with 

𝐴1= 1 + 0,265𝐵 

𝐴2= 1 ,  

(1 + 0,265𝐵)(1 − 𝐵)0,489𝑌𝑡 = 𝑎𝑡 

While table 5 shows that the parameter estimate for AR (1) is -0.235 with an 

estimated value of d amounting to 0.429. The overall coefficient of these parameters is 

significant to the model because the p-value is <α, so the ARFIMA model that is formed 

is ARFIMA (1,0.429.0, so the model formed is as follows. 

𝑨𝟏𝛁𝟎,𝟒𝟐𝟗𝒁𝒕   = 𝑨𝟐𝒂𝒕   ,with  

𝐴1= 1 + 0,235𝐵 

𝑨𝟐= 𝟏 
 

(1 + 0,235𝐵)(1 − 𝐵)0,429𝑌𝑡 = 𝑎𝑡  

d. Residual Assumption Testing 

After obtaining the best ARFIMA model parameters, the next thing to do is a 

diagnostic check by testing the residuals to see whether the residuals meet the white noise 

assumption and are normally distributed or not. The results are presented in the following 

table. 
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Table 6. Residual White Noise Test of ARFIMA Model (1,0.489,0) 

X-Squared df  P-Value 

49,78 48 0,4023 

Table 7. Residual White Noise Test of ARFIMA Model (1,0.429,0) 

X-Squared df  P-Value 

54,84 48 0,2312 

Table 8. Residual Normality Test of ARFIMA Model (1,0.489,0) 

D P-Value 

0,125 0,7235 

Table 9. Residual Normality Test of ARFIMA Model (1,0.429,0) 

D P-Value 

0,115 0,7122 

In Table 6 and Table 7, by using the L-Jung Box test statistic, the P-value is 

obtained of 0.4023 in the ARFIMA model (1.0.489.0) and 0.1927 in the ARFIMA model 

(1,0.429.0) where the value is greater than α = 0.05. Therefore, we can conclude that in 

the residual assumption test, the ARFIMA model (1,0.489.0) for the addition of cured 

cases and the ARFIMA model (1,0.429.0) for the death of cases has fulfilled the residual 

white noise assumption. Meanwhile, for the residual normality test, the test statistic used 

is the Kolmogorov Smirnov test, where the results are presented in table 8 and table 

9.Based on the results of the residual normality assumption test using the Kolmogorov 

Smirnov test statistic, the residual results are normally distributed, because the P-value 

obtained in ARFIMA (1,0.489.0) and (1,0.429.0) models of 0, 7235 and 0.7122 where 

the value is greater than α = 0.05. After all the residual assumptions are fulfilled, the final 

step is to make predictions for additional cases of recovered and death cause of COVID-

19 using the ARFIMA model that has been obtained. 

4. Prediction 

After all the assumptions are fulfilled, both stationary and residual assumptions, the next 

step is to use the ARFIMA model selected for prediction. In this study we will predict the next 12 

periods. The prediction results are presented in the following table. 

Table 10. Forecast Result ARFIMA Model (1,0.489,0) 

Data 
The Patient  

Recovered 
Forecast 

 June 5, 2020 551 486 

June 6, 2020 464 411 

June 7,  2020 591 504 

June 8, 2020 406 333 

June 9, 2020 510 442 

June 10, 2020 715 651 

June 11, 2020 507 452 

June 12, 2020 577 524 

June 13, 2020 563 503 

June 14, 2020 755 696 

SMAPE 12,44% 
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Tabel 11. Forecast Result of ARFIMA Model (1,0.429,0)  

Date 
The Patient 

Death 
Forecast 

 June 5, 2020 49 43 

June 6, 2020 31 26 

June 7,  2020 50 45 

June 8, 2020 32 28 

June 9, 2020 40 35 

June 10, 2020 36 32 

June 11, 2020 41 37 

June 12, 2020 48 39 

June 13, 2020 43 37 

June 14, 2020 43 39 

SMAPE 13.52% 

Based on the prediction results for the next 12 periods in table 10 and table 11, it can 

be seen that the forecast results have good values of the SMAPE model of 12.44%, and 

13.52%. This means that the ARFIMA (1,0.489.0) and (1,0.429.0) models can be said to be 

accurate to be used to predict the addition of recovered and death cause of COVID-19 cases. 

The predicted data presented in tables 10 and 11 are data that have been returned to their 

original form. This is done because at the time of modeling the prediction the data must be 

transformed so that the assumption of stationarity in the variants is fulfilled. 

 

5. CONCLUSION AND SUGGESTION 

The best ARFIMA model obtained for predicting COVID-19 cases in Indonesia, both 

the additional of recovered and death cases every day is (1 + 0,265𝐵)(1 − 𝐵)0,489𝑌𝑡 = 𝑎𝑡 

with the SMAPE value 12,44% for the number of recovered cases, while the number of death 

cases (1 + 0,235𝐵)(1 − 𝐵)0,429𝑌𝑡 = 𝑎𝑡 with the SMAPE value 13,52%. This is because the 

ARFIMA model is able to accommodate the long memory effect well, resulting in a small 

bias, besides that the estimation of model parameter is also simpler. The ARFIMA model 

development in this study goes through several stages, one of which is the transformation of 

the data so that the assumption of stationarity in variant is fulfilled. Therefore, after obtaining 

the prediction results from the model built, it is necessary to return to the original data. The 

prediction results obtained for additional cases of recovery and death, The number of cases 

are increasing even though the death cases are lower than the recovered cases. The ARFIMA 

model that has been built provides an illustration of the addition of cases of recovery and 

death due to COVID-19 so that anticipatory steps can be taken and decisions that need to be 

made. 
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