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Abstract: Stochastic frontier analysis (SFA) is the favorite 

method for measuring technical efficiency. SFA decomposes 

the error term into noise and inefficiency components. The noise 

component is generally assumed to have a normal distribution, 

while the inefficiency component is assumed to have half 

normal distribution. However, in the presence of outliers, the 

normality assumption of noise is not sufficient and can produce 

implausible technical efficiency scores. This paper aims to 

explore the use of Student’s t distribution for handling outliers 

in technical efficiency measurement. The model was applied in 

paddy rice production in East Java. Output variable was the 

quantity of production, while the input variables were land, seed, 

fertilizer, labor and capital. To link the output and inputs, Cobb-

Douglas or Translog production functions was chosen using 

likelihood ratio test, where the parameters were estimated using 

maximum simulated likelihood. Furthermore, the technical 

efficiency scores were calculated using Jondrow method. The 

results showed that Student’s t distribution for noise can reduce 

the outliers in technical efficiency scores. Student’s t 

distribution revised the extremely high technical efficiency 

scores downward and the extremely low technical efficiency 

scores upward. The performance of model was improved after 

the outliers were handled, indicated by smaller AIC value. 

 

1. INTRODUCTION 

Several methods have been proposed to measure technical efficiency of production 

units. The methods can be categorized into parametric and nonparametric approaches. 

Parametric approaches employ specific production function such as Cobb-Douglas or 

transcendental logarithmic (Translog) production functions, while nonparametric 

approaches do not use specific production function (Fusco, 2017). Free Disposal Hull (FDH) 

and Data Envelopment Analysis (DEA) are the examples of nonparametric approaches. 

Septianto and Widiharih (2010) employed DEA to analyze efficiency of rural bank in 

Semarang city. While the Deterministic Frontier Analysis (DFA) and Stochastic Frontier 

Analysis (SFA) are the examples of parametric approaches.  

Stochastic frontier model is the frequently preferred method for measuring technical 

efficiency, especially in agricultural studies (see Heriqbaldi et al., 2015; Mariyono, 2018; 
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Siagian and Soetjipto, 2020; Sholikah and Kadarmanto, 2020). The primary characteristics 

of stochastic frontier model is that its error is partitioned into random shock (noise) and 

inefficiency components (Wheat, 2017). The noise component is generally assumed to have 

a normal distribution, while the inefficiency component could be exponential, half normal, 

truncated normal or gamma distributions (Wheat et al., 2019). 

The normality assumption of noise is not a problem if the outlier does not exist. If 

the outliers are present, Wheat et al. (2019) showed that the standard stochastic frontier 

model can produce exaggrerated and implausible spreads of technical efficiency scores. 

Production frontier in stochastic frontier model consists of deterministic and stochastic parts. 

The deterministic part is determined by specified production function, while the stochastic 

part is determined by noise. The deviance of each production units to the production frontier 

is recorded as technical inefficiency. Therefore, the technical efficiency scores depend on 

the value of noise as well as the specification of production function. If the noise has outlier 

problems, the resulted technical efficiency scores could be affected. 

This paper aims to utilize Student’s t distribution for handling outlier problems in 

standard stochastic frontier model. Student’s t distribution is one of the heavy-tailed 

distribution, so that the chance to cover extreme values is greater than the normal 

distribution. Wheat et al. (2019) had proposed the use of Student’s t distribution to solve the 

outlier issues in England highways maintenance costs. However, this approach has not been 

widely explored in Indonesia, especially in agricultural studies. Zulkarnain and Indahwati 

(2021) showed that there were outlier issues in rice farming activities and employed Cauchy 

distribution to handle it. This study uses the same data with Zulkarnain and Indahwati (2021), 

but with different approaches. This study employs Student’s t distribution for noise 

component to handle outlier issues. Moreover, this study uses likelihood ratio test to choose 

the best functional form: Cobb-Douglas or Translog production functions. The inefficiency 

component is assumed to have half normal distribution, so that the model is called Student’s 

t – Half Normal model. The performance of Student’s t – Half Normal model is compared 

to standard stochastic frontier model (Normal – Half Normal model) using Akaike 

Information Criterion (AIC). 

 

2. LITERATURE REVIEW 

2.1. Production Function 

Process of production describes the transformation of inputs (capital, labor, energy, 

material) into output. Production function is the description of this production processes in 

a mathematical form. In other words, production function represents a quantitative 

relationship between a bundle of inputs and the maximum possible output (Rasmussen, 

2013; Ray and Kumbhakar, 2015). There are two kinds of theoretical production functions 

that are frequently used in literatures, namely Cobb-Douglas (CD) production function and 

transcendental logarithmic (Translog) production function. Specification of these production 

functions are as follows: 

Cobb-Douglas (CD) production function: 

ln 𝑌𝑖 = 𝛽0 +∑𝛽𝑗 ln 𝑋𝑖𝑗

𝑃

𝑗=1

 (1) 

Transcendental Logarithmic (Translog) production function: 

ln 𝑌𝑖 = 𝛽0 +∑𝛽𝑗 ln 𝑋𝑖𝑗

𝑃

𝑗=1

+∑𝛿𝑗(ln𝑋𝑖𝑗)
2

𝑃

𝑗=1

+∑∑𝜏𝑗𝑘 (ln 𝑋𝑖𝑗)(ln𝑋𝑖𝑘)

𝑃

𝑘>𝑗

𝑃

𝑗=1

 (2) 
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where 𝑌𝑖 is the output of ith production unit, 𝑋𝑖𝑗 is the jth input of ith production unit, 𝛽𝑗 is 

the linear component parameter, 𝛿𝑗 is the quadratic component parameter, 𝜏𝑗𝑘 is the 

interaction component parameter and 𝑃 is the number of production inputs. 

Translog production function is the extension of Cobb-Douglas production function 

by incorporating quadratic and interaction components of inputs. Thus, Translog production 

function is better than Cobb-Douglas production function if the quadratic and interaction 

components are statistically significant. Conversely, Cobb-Douglas production function is 

better than Translog production function if the quadratic and interaction components are 

equal zero. Likelihood ratio test can be used to determine the best production function (Liu 

et al., 2019): 

𝐿𝑅 = 2(𝑙𝑇𝑅 − 𝑙𝐶𝐷) ~ 𝜒𝑘
2 (3) 

where 𝐿𝑅 is the log-likelihood ratio statistics that has a chi-square distribution, 𝑙𝑇𝑅 is the 

maximum log-likelihood value of the Translog production function, 𝑙𝐶𝐷 is the maximum log-

likelihood value of the Cobb-Douglas production function, 𝑘 is the number of quadratic and 

interaction components of inputs. If 𝐿𝑅 > 𝜒𝛼;𝑘
2  then Translog production function is better 

than Cobb-Douglas production function. If 𝐿𝑅 < 𝜒𝛼;𝑘
2  then Cobb-Douglas production 

function is better than Translog production function. 

2.2. The Concept of Technical Efficiency 

 

Figure 1. Technical Efficiency Illustration 

Technical efficiency can be measured based on input-oriented or output-oriented 

basis. Input-oriented measures how much inputs can be proportionally cut down without 

altering the level of output, while output-oriented measures how much output can be 

increased for the given inputs (O'Donnell, 2018). Figure 1 illustrates the concept of technical 

efficiency. Suppose A, B and C are three production units with single output (y) and single 

input (x), where f(x) is the production frontier. B and C are fully efficient as they are exactly 

in production frontier, while A is inefficient. According to input-oriented measure, the 

technical inefficiency of A is CA/OA (or technical efficiency of A is OC/OA). According to 

output-oriented measure, the technical inefficiency of A is AB/IB (or technical efficiency of 

A is IA/IB). 

  

2.3. Stochastic Frontier Analysis (SFA) 

Stochastic frontier model can be expressed as follow (Fusco, 2017): 

ln(𝑦𝑖) = ln[𝑓(𝑥𝑖; 𝛽)] + 𝑣𝑖 − 𝑢𝑖    ; 𝑖 = 1,2, … , 𝑛 (4) 
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where 𝑦𝑖 is the output of ith production unit, 𝒙𝑖 is the inputs vector of ith production unit, 𝜷 

is the vector of parameters, ln[𝑓(𝑥𝑖; 𝜷)] is the specified production function, 𝑣𝑖 is the noise 

component, 𝑢𝑖 is the inefficiency component, 𝑣𝑖 and 𝑢𝑖 are independent. 

If Normal – Half Normal model is used, that is if 𝑣𝑖 is normally distributed and 𝑢𝑖 
has half normal distribution, then the density function of 𝑣𝑖 and 𝑢𝑖 are as follows: 

𝑓𝑣(𝑣) =
1

√2𝜋𝜎𝑣
𝑒𝑥𝑝 {−

𝑣2

2𝜎𝑣2
}  ; −∞ < 𝑣 < ∞, 𝜎𝑣

2 > 0 (5) 

𝑓𝑢(𝑢) =
2

√2𝜋𝜎𝑢
𝑒𝑥𝑝 {−

𝑢2

2𝜎𝑢
2
}  ; 𝑢 > 0, 𝜎𝑢

2 > 0  

Since 𝑣𝑖 and 𝑢𝑖 are independent, the joint density of 𝑣𝑖 and 𝑢𝑖 is as follow: 

𝑓𝑢,𝑣(𝑢, 𝑣) = 𝑓𝑣(𝑣). 𝑓𝑢(𝑢) =
1

𝜋𝜎𝑢𝜎𝑣
𝑒𝑥𝑝 {−

𝑢2

2𝜎𝑢2
−
𝑣2

2𝜎𝑣2
} (6) 

The composed error 𝜀𝑖 can be expressed as 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖, thus the equation (6) can be 

written as:  

𝑓𝑢,𝜀(𝑢, 𝜀) =
1

𝜋𝜎𝑢𝜎𝑣
𝑒𝑥𝑝 {−

𝑢2

2𝜎𝑢2
−
(𝜀 + 𝑢)2

2𝜎𝑣2
} (7) 

Marginal density function for 𝜀 can be derived by integrating equation (7) with 

respect to 𝑢. Fusco (2017) showed that the marginal density of 𝜀 is as follow: 

𝑓𝜀(𝜀) = ∫ 𝑓𝑢,𝜀(𝑢, 𝜀)

∞

0

 𝑑𝑢 =
2

√2𝜋𝜎
[1 − Φ(

𝜀𝜆

𝜎
)] 𝑒𝑥𝑝 {−

𝜀2

2𝜎2
}  (8) 

where 𝜎 = √𝜎𝑢2 + 𝜎𝑣2, 𝜆 = 𝜎𝑢/𝜎𝑣 and Φ(. ) is the cumulative distribution function of the 

standard normal distribution. The likelihood (𝐿) and log-likelihood functions (𝑙) are further 

constructed as follows: 

𝐿 =∏𝑓𝜀(𝜀𝑖)

𝑛

𝑖=1

= (
2

√2𝜋𝜎
)
𝑛

∏[1 −Φ(
𝜀𝑖𝜆

𝜎
)]

𝑛

𝑖=1

𝑒𝑥𝑝 {−
1

2𝜎2
∑𝜀𝑖

2

𝑛

𝑖=1

} (9) 

𝑙 = ln(𝐿) =∑{
1

2
𝑙𝑛 (

2

𝜋
) − 𝑙𝑛(𝜎) + 𝑙𝑛 [Φ(−

𝜆𝜀𝑖
𝜎
)] −

𝜀𝑖
2

2𝜎2
}

𝑛

𝑖=1

 (10) 

where 𝐿 is the likelihood function, 𝑙 is the log-likelihood function, 𝑛 is the number of data, 

𝜀𝑖 = ln(𝑦𝑖) − ln[𝑓(𝑥𝑖; 𝜷)], 𝜎 = √𝜎𝑢2 + 𝜎𝑣2, 𝜆 = 𝜎𝑢/𝜎𝑣 and Φ(. ) is the cumulative 

distribution function of the standard normal distribution. 

The parameters 𝜷, 𝜆 and 𝜎 are estimated by maximizing likelihood or log-likelihood 

functions in equation (9) or (10). Solution of equation (9) or (10) can be produced using 

iteration methods such as Newton-Raphson or Fisher scoring. After the parameter estimates 

are derived, the technical efficiency scores can be calculated. Jondrow et al. (1982) defined 

the technical efficiency scores for each production units (𝑇𝐸𝑖) as: 

𝑇𝐸𝑖 = 𝑒𝑥𝑝[−𝐸(𝑢𝑖|𝜀𝑖)]  ; 𝑖 = 1,2, … , 𝑛 (11) 
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According to equation (11), the conditional density function 𝑢|𝜀 is required to derive 

technical efficiency scores. If we denote 𝜎∗ = 𝜎𝑢𝜎𝑣/𝜎, 𝜇∗ = −𝜀𝜎𝑢
2/𝜎2, 𝜆 = 𝜎𝑢/𝜎𝑣 and 𝜎2 =

𝜎𝑢
2 + 𝜎𝑣

2 then the conditional density function 𝑢|𝜀 is derived as follows:  

𝑓(𝑢|𝜀 ) =
𝑓𝑢,𝜀(𝑢, 𝜀)

𝑓𝜀(𝜀)
=

1
𝜋𝜎𝑢𝜎𝑣

𝑒𝑥𝑝 {−
𝑢2

2𝜎𝑢2
−
(𝜀 + 𝑢)2

2𝜎𝑣2
}

2

√2𝜋𝜎
[1 − Φ(

𝜀𝜆
𝜎 )] 𝑒𝑥𝑝 {−

𝜀2

2𝜎2
}
  

=
1

√2𝜋 (
𝜎𝑢𝜎𝑣
𝜎 )

1

[1 − Φ(
𝜀𝜆
𝜎
)]
𝑒𝑥𝑝 {−

𝑢2

2𝜎𝑢2
−
(𝜀 + 𝑢)2

2𝜎𝑣2
+
𝜀2

2𝜎2
}  

=
1

√2𝜋𝜎∗

1

[1 − Φ(−
𝜇∗
𝜎∗
)]
𝑒𝑥𝑝 {−(

(𝜎𝑢
2 + 𝜎𝑣

2)𝑢2

2𝜎𝑢2𝜎𝑣2
) −

𝜀𝑢

𝜎𝑣2
− (

(𝜎2 − 𝜎𝑣
2)𝜀2

2𝜎𝑣2𝜎2
)} 

=
1

√2𝜋𝜎∗

1

[1 − Φ(−
𝜇∗
𝜎∗
)]
𝑒𝑥𝑝 {−(

𝜎2𝑢2

2𝜎𝑢2𝜎𝑣2
) −

𝜀𝑢

𝜎𝑣2
− (

𝜎𝑢
2𝜀2

2𝜎𝑣2𝜎2
)} (12) 

=
1

[1 −Φ(−
𝜇∗
𝜎∗
)]

1

√2𝜋𝜎∗
𝑒𝑥𝑝 {−

1

2𝜎∗2
(𝑢 − 𝜇∗)

2}  

=
𝜙 (
𝑢 − 𝜇∗
𝜎∗

)

Φ(∞) − Φ(−
𝜇∗
𝜎∗
)
  ; 𝑢 > 0  

where 𝜙(. ) and Φ(. ) denote the probability density function and cumulative distribution 

function of standard normal distribution, respectively.  

Density function 𝑓(𝑢|𝜀 ) in equation (12) is the form of truncated normal distribution 

with parameters 𝜇 = 𝜇∗, 𝜎 = 𝜎∗, 𝛼 = −𝜇∗/𝜎∗ and 𝛽 = ∞. Expected value of a truncated 

normal random variable is 𝜇 +
𝜙(𝛼)−𝜙(𝛽)

Φ(𝛽)−Φ(𝛼)
𝜎. Thus, the expected value of 𝑢|𝜀 is given by: 

𝐸(𝑢|𝜀 ) = 𝜇∗ +
𝜙(−𝜇∗/𝜎∗) − 𝜙(∞)

Φ(∞) − Φ(−𝜇∗/𝜎∗)
𝜎∗ = 𝜇∗ +

𝜙(−𝜇∗/𝜎∗) − 0

1 − Φ(−𝜇∗/𝜎∗)
𝜎∗ (13) 

= 𝜇∗ +
𝜙(−𝜇∗/𝜎∗)

Φ(𝜇∗/𝜎∗)
𝜎∗  

Finally, technical efficiency scores in equation (11) can be expressed as: 

𝑇𝐸𝑖 = 𝑒𝑥𝑝[−𝐸(𝑢𝑖|𝜀𝑖)] = 𝑒𝑥𝑝 {−𝜇∗𝑖 − 𝜎∗ [
𝜙(−𝜇∗𝑖/𝜎∗)

Φ(𝜇∗𝑖/𝜎∗)
]} ; 𝑖 = 1,2, … , 𝑛 (14) 

where 𝜇∗𝑖 = −𝜀𝑖𝜎𝑢
2/𝜎2, 𝜎∗ = 𝜎𝑢𝜎𝑣/𝜎, 𝜙(. ) is the density function of standard normal 

distribution and Φ(. ) is the cumulative distribution function of standard normal distribution. 

2.4. Student’s t – Half Normal Model 

If noise component (𝑣𝑖) is assumed to have a non-standardized Student’s t 

distribution – which includes a scale parameter 𝜎𝑣 – and inefficiency component (𝑢𝑖) has 

half normal distribution (Student’s t – Half Normal model), then the density function of 𝑣𝑖 
and 𝑢𝑖 are as follows (Wheat et al., 2019): 
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𝑓𝑣(𝑣) =
Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

[1 +
1

𝑎
(
𝑣

𝜎𝑣
)
2

]

−
𝑎+1
2

 ; −∞ < 𝑣 < ∞, 𝜎𝑣 > 0, 𝑎 > 0 

𝑓𝑢(𝑢) =
2

√2𝜋𝜎𝑢
𝑒𝑥𝑝 {−

𝑢2

2𝜎𝑢2
}  ; 𝑢 > 0, 𝜎𝑢

2 > 0 

(15) 

where 𝑎 is the shape parameter that specifies the degree of kurtosis of the Student’s t 

distribution, 𝜎𝑣 is the scale parameter and Γ(. ) is the gamma function. Since 𝑣𝑖 and 𝑢𝑖 are 

independent, the joint density of 𝑣𝑖 and 𝑢𝑖 is given by: 

𝑓𝑢,𝑣(𝑢, 𝑣) =
Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

[1 +
1

𝑎
(
𝑣

𝜎𝑣
)
2

]

−
𝑎+1
2 2

√2𝜋𝜎𝑢
𝑒𝑥𝑝 {−

𝑢2

2𝜎𝑢2
} (16) 

The composed error 𝜀𝑖 can be expressed as 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖, thus the equation (16) can 

be written as:  

𝑓𝑢,𝜀(𝑢, 𝜀) =
Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

[1 +
1

𝑎
(
𝜀 + 𝑢

𝜎𝑣
)
2

]

−
𝑎+1
2 2

√2𝜋𝜎𝑢
𝑒𝑥𝑝 {−

𝑢2

2𝜎𝑢2
} (17) 

Marginal density function for 𝜀 can be derived by integrating equation (17) with 

respect to 𝑢: 

𝑓𝜀(𝜀) = ∫
Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

[1 +
1

𝑎
(
𝜀 + 𝑢

𝜎𝑣
)
2

]

−
𝑎+1
2 2

√2𝜋𝜎𝑢
𝑒𝑥𝑝 {−

𝑢2

2𝜎𝑢2
}

∞

0

 𝑑𝑢 (18) 

Equation (18) is not a closed form, so that the solution could not be derived directly. 

As an alternative, the solution of Equation (18) could be approximated using simulation 

method (see Train, 2009). Using 𝑓𝑣(𝑣) and 𝑓𝑢(𝑢) in Equation (15), the Equation (18) can be 

expressed as follow: 

𝑓𝜀(𝜀) = ∫ 𝑓𝑣(𝜀 + 𝑢)

∞

0

𝑓𝑢(𝑢) 𝑑𝑢 = 𝐸𝑢[𝑓𝑣(𝜀 + 𝑢)] (19) 

Thus, 𝑓𝜀(𝜀) is the expected value of 𝑓𝑣(𝜀 + 𝑢) with respect to 𝑢, where 𝑢 ≥ 0 is a half 

normal random variable, 𝑢~𝑁+(0, 𝜎𝑢
2). If we generate a half normal random variable (𝑢𝑞) 

repeatedly, we can approximate the expected value in equation (19) as an average of 

simulation data as follow: 

𝑓𝜀(𝜀)̂ =
1

𝑄
∑𝑓𝑣(𝜀 + 𝑢𝑞)

𝑄

𝑞=1

 ; −∞ < 𝜀 < ∞, 𝑢𝑞 > 0 (20) 

where 𝑄 is the number of simulations and 𝑢𝑞 is generated from a half normal distribution, 

𝑢𝑞~𝑁
+(0, 𝜎𝑢

2). By replacing 𝑓𝑣(𝜀 + 𝑢𝑞) with density function of 𝑓𝑣(𝑣) in equation (15), the 

equation (20) can be expressed as: 
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𝑓𝜀(𝜀)̂ =
1

𝑄

Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

∑[1 +
1

𝑎
(
𝜀 + 𝑢𝑞

𝜎𝑣
)
2

]

−
𝑎+1
2

𝑄

𝑞=1

 (21) 

Furthermore, the likelihood (𝐿) and log-likelihood (𝑙) functions can be derived as: 

𝐿 =∏𝑓𝜀(𝜀𝑖)̂

𝑛

𝑖=1

= [
1

𝑄

Γ (
𝑎 + 1
2 )

Γ (
𝑎
2)√𝜋𝑎𝜎𝑣

]

𝑛

∏[∑[1 +
1

𝑎
(
𝜀𝑖 + 𝑢𝑞

𝜎𝑣
)
2

]

− 
𝑎+1
2

𝑄

𝑞=1

]

𝑛

𝑖=1

 (22) 

𝑙 = ln(𝐿) = −𝑛 ln𝑄 + 𝑛 ln [Γ (
𝑎 + 1

2
)] −  𝑛 ln [Γ (

𝑎

2
)] −

𝑛

2
(ln 𝜋 + ln 𝑎)  

−𝑛 ln 𝜎𝑣 +∑ln [∑[1 +
1

𝑎
(
𝜀𝑖 + 𝑢𝑞

𝜎𝑣
)
2

]

−
𝑎+1
2

𝑄

𝑞=1

]

𝑛

𝑖=1

 (23) 

where 𝑛 is the number of data, 𝑄 is number of simulations, 𝑎 is the shape parameter, 𝜎𝑣 is 

the scale parameter, Γ(. ) is the gamma function, 𝑢𝑞 is generated from a half normal 

distribution 𝑢𝑞~𝑁
+(0, 𝜎𝑢

2), and 𝜀𝑖 = ln(𝑦𝑖) − ln[𝑓(𝑥𝑖; 𝛽)]. 

The parameters 𝛽, 𝑎, 𝜎𝑢 and 𝜎𝑣 are estimated by maximizing likelihood or log-

likelihood functions in equation (22) or (23). Solution of equation (22) or (23) can be 

produced using iteration methods such as Newton-Raphson or Fisher scoring.  

By following Jondrow et al. (1982) in equation (11), the formula of technical 

efficiency scores can be derived by firstly constructing 𝑓(𝑢|𝜀 ) as follow: 

𝑓(𝑢|𝜀 ) =
𝑓𝑢,𝜀(𝑢, 𝜀)

𝑓𝜀(𝜀)
=
𝑓𝑢,𝜀(𝑢, 𝜀)

𝑓𝜀(𝜀)̂
=
𝑓𝑣(𝜀 + 𝑢)𝑓𝑢(𝑢)

𝑓𝜀(𝜀)̂
  ; 𝑢 > 0 (24) 

Then, the expected value of 𝑢|𝜀 is given by: 

𝐸(𝑢|𝜀 ) = ∫ 𝑢. 𝑓(𝑢|𝜀 )

∞

0

𝑑𝑢 = ∫ 𝑢 
𝑓𝑣(𝜀 + 𝑢)𝑓𝑢(𝑢)

𝑓𝜀(𝜀)̂

∞

0

𝑑𝑢  

=
1

𝑓𝜀(𝜀)̂
𝐸𝑢[𝑢. 𝑓𝑣(𝜀 + 𝑢)] =

[
1
𝑄
∑ 𝑢𝑞 . 𝑓𝑣(𝜀 + 𝑢𝑞)
𝑄
𝑞=1 ]

𝑓𝜀(𝜀)̂
  

=

∑ 𝑢𝑞 [1 +
1
𝑎
(
𝜀 + 𝑢𝑞
𝜎𝑣

)
2

]

−
𝑎+1
2

𝑄
𝑞=1

∑ [1 +
1
𝑎
(
𝜀 + 𝑢𝑞
𝜎𝑣

)
2

]

−
𝑎+1
2

𝑄
𝑞=1

 (25) 

Finally, technical efficiency scores can be calculated as (Wheat et al., 2019): 

𝑇𝐸𝑖 = 𝑒𝑥𝑝[−𝐸(𝑢𝑖|𝜀𝑖)] = 𝑒𝑥𝑝

{
 
 

 
 

−

∑ 𝑢𝑞 [1 +
1
𝑎
(
𝜀𝑖 + 𝑢𝑞
𝜎𝑣

)
2

]

−
𝑎+1
2

𝑄
𝑞=1

∑ [1 +
1
𝑎
(
𝜀𝑖 + 𝑢𝑞
𝜎𝑣

)
2

]

−
𝑎+1
2

𝑄
𝑞=1 }

 
 

 
 

 (26) 
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where 𝑇𝐸𝑖 is technical efficiency score of ith production unit (𝑖 = 1,2, … , 𝑛), 𝑛 is the number 

of data, 𝑄 is the number of simulations, 𝑎 is the shape parameter, 𝜎𝑣 is the scale parameter, 

𝜀𝑖 = ln(𝑦𝑖) − ln[𝑓(𝒙𝑖; 𝜷)] and 𝑢𝑞 is generated from a half normal distribution 

𝑢𝑞~𝑁
+(0, 𝜎𝑢

2).  

 

3. METHODOLOGY 

3.1. Data 

Data was acquired from the 2017 Cost Structure of Rice Farming Units (SOUT), a 

survey conducted by Statistics Indonesia (BPS). The data covers about fourteen thousand 

rice farming units in East Java. Quantity of production is used as output variable, while land, 

seed, fertilizer, labor and capital are used as input variables. To link the output and input 

variables, this study uses Cobb-Douglas (CD) and Translog production functions. 

Model specification using CD: 

ln 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖 = 𝛽0 + 𝛽1 ln 𝐿𝑎𝑛𝑑𝑖 + 𝛽2 ln 𝑆𝑒𝑒𝑑𝑖 + 𝛽3 ln 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖 + 

𝛽4 ln 𝐿𝑎𝑏𝑜𝑢𝑟𝑖 + 𝛽5 ln 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖 + 𝑣𝑖 − 𝑢𝑖   ; 𝑖 = 1,2, … , 𝑛 
(27) 

Model specification using Translog: 

ln 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖 = 𝛽0 + 𝛽1 ln 𝐿𝑎𝑛𝑑𝑖 + 𝛽2 ln 𝑆𝑒𝑒𝑑𝑖 + 𝛽3 ln 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖 + 

𝛽4 ln 𝐿𝑎𝑏𝑜𝑢𝑟𝑖 + 𝛽5 ln 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖 + 𝛿1(ln 𝐿𝑎𝑛𝑑𝑖)
2 + 𝛿2(ln 𝑆𝑒𝑒𝑑𝑖)

2 + 

𝛿3(ln 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖)
2 + 𝛿4(ln 𝐿𝑎𝑏𝑜𝑢𝑟𝑖)

2 + 𝛿5(ln 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖)
2 +  

𝜏12(ln 𝐿𝑎𝑛𝑑𝑖 𝑥 ln 𝑆𝑒𝑒𝑑𝑖) + 𝜏13(ln 𝐿𝑎𝑛𝑑𝑖 𝑥 ln 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖) + 

𝜏14(ln 𝐿𝑎𝑛𝑑𝑖 𝑥 ln 𝐿𝑎𝑏𝑜𝑢𝑟𝑖) + 𝜏15(ln 𝐿𝑎𝑛𝑑𝑖 𝑥 ln𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖) + 

𝜏23(ln 𝑆𝑒𝑒𝑑𝑖 𝑥 ln𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖) + 𝜏24(ln 𝑆𝑒𝑒𝑑𝑖 𝑥 ln 𝐿𝑎𝑏𝑜𝑢𝑟𝑖) + 

𝜏25(ln 𝑆𝑒𝑒𝑑𝑖 𝑥 ln 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖) + 𝜏34(ln 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖 𝑥 ln 𝐿𝑎𝑏𝑜𝑢𝑟𝑖) + 

𝜏35(ln𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖 𝑥 ln𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖) + 𝜏45(ln 𝐿𝑎𝑏𝑜𝑢𝑟𝑖 𝑥 ln𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖) + 

𝑣𝑖 − 𝑢𝑖   ; 𝑖 = 1,2, … , 𝑛 

(28) 

where 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑖 is the production quantity of ith production unit (kg),  𝐿𝑎𝑛𝑑𝑖 is the cultivated 

area of ith production unit (m2), 𝑆𝑒𝑒𝑑𝑖 is the use of seed of ith production unit (kg), 𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟𝑖 is 

the use of fertilizer of ith production unit (kg),  𝐿𝑎𝑏𝑜𝑢𝑟𝑖 is the number of labor of ith production unit 

(person-hours), 𝐶𝑎𝑝𝑖𝑡𝑎𝑙𝑖 is the capital of ith production unit (thousand rupiahs), 𝑣𝑖 is the noise 

component, 𝑢𝑖 is the inefficiency component, 𝑣𝑖 and 𝑢𝑖 are independent. 

3.2. Analysis Method 

The steps of analysis are: 

a. Transform the output and input variables into natural logarithm. 

b. Choose the best production function for linking output and inputs. The likelihood ratio 

test in equation (3) is used as follow: 

H0: Cobb-Douglas is better than Translog 

 H1: Translog is better than Cobb-Douglas 

𝐿𝑅 = 2(𝑙𝑇𝑅 − 𝑙𝐶𝐷)  

where 𝐿𝑅 is the log-likelihood ratio statistics, 𝑙𝐶𝐷 and 𝑙𝑇𝑅 are the maximum log-

likelihood value of the Cobb-Douglas and Translog production functions, respectively. 

If 𝐿𝑅 > 𝜒0.05;15
2  then Translog is better than Cobb-Douglas production functions. If 

𝐿𝑅 < 𝜒0.05;15
2  then Cobb-Douglas is better than Translog production functions. 

c. Estimate the parameters using Normal – Half Normal and Student’s t – Half Normal 

models. This paper uses rfrontier STATA package to derive the estimates (Wheat et al., 

2019). 
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d. Calculate technical efficiency scores using equation (14) if Normal – Half Normal model 

is used and equation (26) if Student’s t – Half Normal model is used. 

e. Evaluate the performance of Normal – Half Normal and Student’s t – Half Normal 

models using Akaike Information Criterion (AIC): 

𝐴𝐼𝐶 = 2𝑝 − 2𝑙  

where 𝑝 is the number of parameters in model and 𝑙 is the log-likelihood value of the 

model. 

 

4. RESULT 

Table 1 presents the result of Likelihood Ratio (LR) test for choosing the best 

production function. Either Normal – Half Normal or Student’s t – Half Normal model 

produces substantial LR statistics. The LR statistics are larger than 𝜒0.05;15
2 , thus indicate that 

Translog production function is better than Cobb-Douglas production function for linking 

output and input variables. 

Table 1. The Result of Likelihood Ratio (LR) Test 

  
LR 

statistics 

Degree of 

freedom 
𝜒0.05;15
2  p-value Decision 

Normal – Half Normal 3430.07 15 25.00 0.00 Reject Ho 

Student’s t – Half Normal 3459.96 15 25.00 0.00 Reject Ho 

Table 2. Estimation Results 

 
Normal – Half Normal Student’s t – Half Normal 

Coefficient 
Standard 

error 
p-value Coefficient 

Standard 

error 

p-

value 

𝛽0 4.822 0.077 0.000* 4.996 0.074 0.000* 

𝛽1 -0.226 0.013 0.000* -0.273 0.012 0.000* 

𝛽2 -0.026 0.013 0.051 -0.038 0.014 0.006* 

𝛽3 0.024 0.013 0.058 0.024 0.012 0.048* 

𝛽4 0.015 0.013 0.224 0.013 0.012 0.286 

𝛽5 0.011 0.012 0.368 0.005 0.012 0.702 

𝛿1 0.028 0.004 0.000* 0.032 0.004 0.000* 

𝛿2 -0.031 0.006 0.000* -0.028 0.005 0.000* 

𝛿3 -0.030 0.005 0.000* -0.037 0.005 0.000* 

𝛿4 0.016 0.004 0.000* 0.016 0.004 0.000* 

𝛿5 0.000 0.002 0.884 0.000 0.002 0.953 

𝜏12 0.038 0.007 0.000* 0.039 0.007 0.000* 

𝜏13 0.078 0.007 0.000* 0.083 0.008 0.000* 

𝜏14 -0.018 0.006 0.002* -0.019 0.006 0.001* 

𝜏15 0.028 0.005 0.000* 0.022 0.005 0.000* 

𝜏23 0.000 0.008 0.958 -0.005 0.008 0.512 

𝜏24 -0.003 0.007 0.686 -0.002 0.007 0.724 

𝜏25 -0.026 0.005 0.000* -0.023 0.005 0.000* 

𝜏34 -0.002 0.007 0.728 0.000 0.007 0.959 

𝜏35 -0.025 0.005 0.000* -0.019 0.005 0.000* 

𝜏45 0.003 0.004 0.476 0.004 0.004 0.352 

𝜎𝑣 0.244 0.005 0.000* 0.178 0.006 0.000* 

𝜎𝑢 0.730 0.008 0.000* 0.710 0.008 0.000* 

𝑎 ∞ - - 3.408 0.228 0.000* 

*Statistically significant at the 5% level 
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The estimation results of Normal – Half Normal and Student’s t – Half Normal 

models based on Translog production function are presented in Table 2. Coefficient of 𝛽2 

and 𝛽3 are insignificant in Normal – Half Normal model but become significant in Student’s 

t – Half Normal model. Estimate of 𝜎𝑣 is smaller than the estimate of 𝜎𝑢, either in Normal – 

Half Normal model or in Student’s t – Half Normal model. It indicates that the deviance of 

production units to the frontier is more due to inefficiency effect. 

Table 3 summarizes the results of technical efficiency score for each production unit 

and its associated ranking. Normal – Half Normal and Student’s t – Half Normal models 

produce considerable differences of technical efficiency score and ranking for several 

production units. For example, the ranking of sixth production unit is 676 in Normal – Half 

Normal model but becomes 52 in Student’s t – Half Normal model. 

Table 3. Technical Efficiency Score and Technical Efficiency Ranking 

of Each Production Units Based on Normal – Half Normal and 

Student’s t – Half Normal models 

Production 

Unit 

Normal – Half Normal Student’s t – Half Normal 

Technical 

Efficiency Score 
Ranking 

Technical 

Efficiency Score 
Ranking 

1 0.7952 2197 0.8202 2072 

2 0.6909 5427 0.7142 5058 

3 0.6685 6106 0.6899 5717 

4 0.6570 6410 0.6717 6181 

5 0.8109 1768 0.8362 1544 

6 0.8616 676 0.8598 52 

7 0.5881 8069 0.6038 7823 

8 0.6852 5606 0.6988 5472 

9 0.8179 1575 0.8391 1445 

10 0.5134 9522 0.5172 9516 

11 0.7850 2513 0.8004 2729 

12 0.8469 916 0.8567 512 

13 0.8285 1304 0.8440 1220 

14 0.8386 1077 0.8541 679 

15 0.6866 5558 0.7030 5345 

16 0.6475 6653 0.6355 7134 

⋮ ⋮ ⋮ ⋮ ⋮ 
13993 0.8840 360 0.8582 387 

13994 0.5785 8248 0.5808 8306 

13995 0.6770 5856 0.6937 5614 

13996 0.7639 3271 0.7901 3052 

13997 0.6580 6386 0.6669 6312 

13998 0.7290 4376 0.7316 4656 

13999 0.4279 10851 0.4367 10744 

14000 0.7661 3190 0.7880 3121 

14001 0.7070 4970 0.7335 4612 

14002 0.9247 12 0.8086 2481 

14003 0.5347 9142 0.5370 9159 

14004 0.7433 3928 0.7692 3696 

14005 0.7325 4267 0.7528 4114 

14006 0.5654 8510 0.5682 8561 

14007 0.3393 12421 0.3468 12398 

14008 0.4210 10985 0.4198 11008 
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Figure 2 shows the boxplot of 𝐸(𝑢𝑖|𝜀𝑖), which is used to calculate technical 

efficiency scores. Normal – Half Normal model produces considerable outliers, which is 

represented as data points located outside the whiskers (Q1 – 1.5 IQR or Q3 + 1.5 IQR). The 

outliers are reduced in Student’s t – Half Normal model, thus indicates that Student’s t – Half 

Normal model can handle the outliers. 

The scatterplot of technical efficiency scores from Normal – Half Normal and 

Student’s t – Half Normal models is depicted in Figure 3. The use of Student’s t distribution 

for noise component results in a shrinkage of technical efficiency scores at the tails. The 

extremely low technical efficiency scores in Normal – Half Normal model are revised 

upward by Student’s t – Half Normal model. Conversely, the extremely high technical 

efficiency scores in Normal – Half Normal model are revised downward by Student’s t – 

Half Normal model. 

 

 

 

 

The performance of Normal – Half Normal and Student’s t – Half Normal models 

are compared using Akaike Information Criterion (AIC) in Table 4. The AIC value of 

Student’s t – Half Normal model is smaller than the Normal – Half Normal model, thus 

indicates that Student’s t – Half Normal model has better performance than the Normal – 

Half Normal model. In other words, the performance of stochastic frontier model is improved 

after the outliers are handled. 

Table 4. Comparison of AIC Value 

Model AIC 

Normal – Half Normal 19406.17 

Student’s t – Half Normal 19312.66 

 

5. CONCLUSION 

Utilization of Student’s t distribution in noise component of stochastic frontier model 

can affect the technical efficiency scores. Student’s t – Half Normal model produces less 

outliers than the Normal – Half Normal model. The performance of Student’s t – Half 

Normal model is better than the Normal – Half Normal model if the outliers are present. 

 

Figure 2. Boxplot of 𝐸(𝑢𝑖|𝜀𝑖) 
 

Figure 3. Scatterplot of Technical 

Efficiency Scores 
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