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Abstract: Poisson Log-Normal Model is one of the hierarchical 

mixed models that can be used for count data. Several estimation 

methods can be used to estimate the model parameters. The first 

objective of this study was to examine the performance of the 

parameter estimator and model built using the Hierarchical 

Bayes method via Markov Chain Monte Carlo (MCMC) with 

simulation. The second objective was applied the Poisson Log-

Normal model to the West Java illiteracy Cases data which is 

sourced from the Susenas data on March 2019. In 2019, the 

incidence of illiteracy is a very rare occurrence in West Java 

Province. So that, it is suitable as an application case in this 

study. The simulation results showed that the Hierarchical 

Bayes parameter estimator through MCMC has the smallest 

Root Mean Squared Error of Prediction (RMSEP) value and the 

absolute bias is relatively mostly similar when compared to the 

Maximum Likelihood (ML) and Penalized Quasi-Likelihood 

(PQL) methods. Meanwhile, the empirical results showed that 

the fixed variable is the number of respondents who have a 

maximum education of elementary school have the greatest risk 

of illiteracy. Also, the diversity of census blocks significantly 

affects illiteracy cases in West Java 2019. 

 

1. INTRODUCTION  

In statistical modeling, the Generalized Linear Mixed Model (GLMM) is a model 

which the linear predictor contains both random effects and fixed effects. The GLMM also 

inherits the idea of extending the linear model to non-normal data from the GLM. One of 

them is count data which distribute Poisson, known as the Mixed Poisson Model (Bolker et 

al., 2009). 

The Mixed Poisson Model can be a two-level hierarchical model with the Log-

Normal conjugate. This model is called the Poisson Log-Normal Model. The main difficulty 

of the model that is the estimation of the parameters that are not easy to obtain analytic 

solutions to maximize the marginal likelihood of the data. Due to this fact, different 

estimation methods based on approximations or simulations have been developed in recent 

years. Several methods include Penalized Quasi-Likelihood (PQL) (Breslow & Clayton, 

1993), Maximum Likelihood (ML) using the Laplace method (McCullagh & Nelder, 1989), 

and Hierarchical Bayes using Markov Chain Monte Carlo (MCMC)(Gelman et al., 2013). 
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 From National Socio-Economic Survey (Susenas), the national illiteracy rate in 2020 

is 1.78% (Kemdikbud, 2020). Illiteracy cases are rare nowadays, especially in West Java 

Province. According to Statistic Indonesia, illiteracy is a condition of being unable to read 

and write. Its broad meaning is being able to read and write simple letters or sentences or to 

be able to read and write Braille characters. People with disabilities who have been able to 

read and write are classified as able to read and write (BPS, 2020).  

This research was conducted to examine the performance of parameter estimators 

and models built using the Hierarchical Bayes MCMC method. Meanwhile, the PQL and 

ML methods are used as a comparison model. One of Hierarchical Bayes advantage is to 

provide inferences that are conditional on the data and are exact, without reliance on 

asymptotic approximation. Small sample inference proceeds in the same manner as if one 

had a large sample.  Furthermore, this study also applies the Poisson Log-Normal model to 

the West Java Illiteracy Case data which is sourced from the March 2019 Susenas data. 

 

2. LITERATURE REVIEW 

2.1.  Generalized Linear Mixed Model (GLMM) 

Generalized Linear Mixed Model (GLMM) is typically constructed by incorporating 

random effects into the linear predictors of the conditional independent exponential family 

model. The two key elements in GLMM are independent of random effects and the 

distribution of random variables is an exponential family (Jiang, 2007).  

The definition of GLMM follows (Jiang, 2007; McCulloh & Searle, 2001): 

𝑌𝑖|𝒖~𝑖𝑛𝑑𝑒𝑝. 𝑓𝑌𝑖|𝒖(𝑦𝑖|𝒖), 

𝑓𝑖(𝑦𝑖|𝒖) = 𝑒𝑥𝑝 {
𝑦𝑖𝜉𝑖 − 𝑏(𝜉𝑖)

𝑎𝑖(𝜙)
+ 𝑐𝑖(𝑦𝑖, 𝜙)}, 

𝐸[𝑌𝑖|𝒖] = 𝜇𝑖, 

𝑔(𝜇𝑖) = 𝒙𝒊
′𝜷 + 𝒛𝒊

′𝒖𝒊, 

𝒖~𝑓𝑼(𝒖) 

(1) 

Where 𝑌𝑖 of the exponential family is the distribution conditional on a random effect 𝒖. 

Second, the link function, g(·) is applied to the conditional mean of 𝑌𝑖|𝒖 to obtain the 

conditional linear predictor. Finally, the linear predictor is assumed to consist of two 

components: the fixed effect, 𝒙𝒊
′𝜷, and effect random, 𝒛𝒊

′𝒖𝒊. In addition, 𝑏(. ),  𝑎𝑖(. ),  𝑐𝑖(. ), a 

known function, 𝜙 is a dispersion parameter that cannot know. The parameter 𝜼𝒊 = 𝒙𝒊
′𝜷 +

𝒛𝒊
′𝒖, 𝑔(𝜇𝑖) = 𝜼𝒊, 𝑏

′(𝜉𝑖) = 𝜇𝑖 and 𝜉𝑖 = 𝜂𝑖 (Jiang, 2007). 

2.2. Poisson Log-Normal Model 

The Poisson model is a model for count data. The term "count" refers to data with a 

non-negative integer response variable. As the name implies, shredding arises from studies 

that track the number of occurrences, for example, the number of defects in a quality 

improvement study, the number of disease occurrences in a medical study, the number of 

insects or birds or weeds in an ecological or agricultural study (Stroup, 2013).  

Let 𝑦𝑖𝑗 is the count taken from the j-th observation and the i-th cluster which are 

independent of each other. The Poisson Log-Normal Model is written as follows (McCulloh 

& Searle, 2001): 
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𝑦𝑖𝑗|𝒖~𝑖𝑛𝑑𝑒𝑝. 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗), 𝑖 = 1, 2, … 𝑚; 𝑗 = 1, 2, … , 𝑛𝑖 

𝑔(𝜇𝑖𝑗) = log(𝜇𝑖𝑗) = 𝒙𝒊
′𝜷 + 𝒖𝒊, 

𝑢𝑖~𝑖. 𝑖. 𝑑 𝑁(0, 𝜎𝑢
2) 

(2) 

Estimating parameters in the Poisson Log-Normal Model can be done in various 

ways, i.e Maximum Likelihood, Penalized Quasi-Likelihood, and Hierarchical Bayes via 

MCMC i.e Gibbs sampling. Research on the Mixed Poisson model has been conducted by 

several researchers (Berliana et al., 2019; Bermúdez et al., 2020; Mallya et al., 2018). 

2.3. Maximum Likelihood (ML) Method 

The Maximum Likelihood (ML) estimation is an estimate method of the model 

parameters. The ML method selects the set of values of the model parameters that maximizes 

the likelihood function. In the context of the exponential family, we do this by maximizing 

the log-likelihood function, ℓ(𝜃;  𝒚, 𝜙), with respect to the canonical parameter θ given the 

observation, 𝒚, and parameters scale, 𝜙 (Stroup, 2013). 

From Equation (1) can be written with the likelihood function integration in the 

distribution of  𝒖 the q-dimension is as follows (McCulloh & Searle, 2001): 

𝐿 = ∫ ∏ 𝑓𝒀|𝒖(𝒀|𝒖)𝑓𝑼(𝒖)𝑑𝒖

𝑖

  

The log-likelihood function of the Poisson Log-Normal model can be written as 

follows: 

𝑙 = 𝑙𝑜𝑔 (∏ ∫ ∏
𝜇

𝑖𝑗

𝑦𝑖𝑗𝑒−𝜇𝑖𝑗  

𝑦𝑖𝑗!

𝑛𝑖

𝑗=1

1

√2𝜋𝜎2
𝑒

−
1

2𝜎2𝑢𝑖
2

𝑑𝑢𝑖

∞

−∞

𝑚

𝑖=1

 (3) 

= 𝑦′𝑋𝛽 − ∑ 𝑙𝑜𝑔 𝑦𝑖𝑗

𝑖,𝑗

 

+ ∑ 𝑙𝑜𝑔 ∫ 𝑒𝑥𝑝 {𝑦𝑖𝑢𝑖 − ∑ 𝑒𝑥𝑖𝑗
′ 𝛽+𝑢𝑖

𝑗

}
∞

−∞𝑖

1

√2𝜋𝜎2
𝑒

−
1

2𝜎2𝑢𝑖
2

𝑑𝑢𝑖 

Based on Equation (3), according to McCulloh & Searle (2001) the equation for the 

log-likelihood function for the fixed effect parameter 𝛽  is 

𝑙 = 𝑙𝑜𝑔 ∫ 𝑓𝒀|𝒖(𝒀|𝒖)𝑓𝑼(𝒖)𝑑𝒖 = 𝑙𝑜𝑔𝑓𝒀(𝒚) 
 

So that 

𝜕𝑙

𝜕𝛽
=

𝜕

𝜕𝛽
∫

𝑓𝒀|𝒖(𝒀|𝒖)𝑓𝑼(𝒖)𝑑𝒖

𝑓𝒀(𝒚)
= ∫

[
𝜕

𝜕𝛽
𝑓𝒀|𝒖(𝒀|𝒖)] 𝑓𝑼(𝒖)𝑑𝒖

𝑓𝒀(𝒚)
 

(4) 

Because 𝑓𝑼(𝒖) does not depend on 𝛽, so it can be written as follows: 

𝜕𝑓𝒀|𝒖(𝒀|𝒖)

𝜕𝛽
= (

1

𝑓𝒀|𝒖(𝒀|𝒖)

𝜕𝑓𝒀|𝒖(𝒀|𝒖)

𝜕𝛽
) 𝑓𝒀|𝒖(𝒀|𝒖) 

(5) 
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=
𝜕𝑙𝑜𝑔𝑓𝒀|𝒖(𝒀|𝒖)

𝜕𝛽
𝑙𝑜𝑔𝑓𝒀|𝒖(𝒀|𝒖) 

Substituting Equation (5) to Equation (4) is obtained: 

𝜕𝑙

𝜕𝛽
= ∫

𝜕𝑙𝑜𝑔𝑓𝒀|𝒖(𝒀|𝒖)

𝜕𝛽
𝑓𝒀|𝒖(𝒀|𝒖)𝑓𝑼(𝒖)𝑑𝒖

𝑓𝒀(𝒚)
 

(6) 

= ∫ [
𝜕

𝜕𝛽
𝑓𝒀|𝒖(𝒀|𝒖)] 𝑓𝑼|𝒚(𝒖|𝒚)𝑑𝒖  

= 𝑿′𝑬[𝑾∗|𝒚] − 𝑿′𝑬[𝑾∗𝝁|𝒚]  

where  𝑾∗ = { [𝑎(𝜙)𝑣(𝜇𝑖)𝑔𝜇(𝜇𝑖)]
−1

𝑑
} 

So the probability equation for 𝛽 at Equation (2) when 𝑾∗ = 𝑰 is as follows: 

𝑿′𝒚 = 𝑿′𝑬[𝝁|𝒚] (7) 

Analogous to Equation (6), the probability function equation for the random effect 

parameter in the distribution 𝑓𝑼(𝒖) can be written as follows: let 𝜑 is a parameter in the 

distribution  𝑓𝑼(𝒖) so that: 

𝜕𝑙

𝜕𝜑
= ∫

𝜕𝑙𝑜𝑔𝑓𝑼(𝒖)

𝜕𝜑
𝑓𝑈|𝑦(𝑢|𝑦)𝑑𝑢 = 𝐸 [

𝜕𝑙𝑜𝑔𝑓𝑼(𝒖)

𝜕𝜑
| 𝒚] (8) 

The Parameters of the model are estimated using Equation (7) and (8). Since the exact 

likelihood function is difficult to calculate, the approach method is one of the natural 

alternatives. A well-known method for estimating integrals is called Laplace. Suppose we 

want to approach the integral form (Jiang, 2007): 

∫ 𝑒𝑥𝑝{−𝑞(𝑥)}𝑑𝑥 (9) 

With the Taylor expansion, q(x) = q(x̃) +
1

2
q′′(x̃)(x − x̃)2 + ⋯, Equation (9) can be 

approximated by 

∫ 𝑒𝑥𝑝{−𝑞(𝑥)}𝑑𝑥 ≈ √
2𝜋

𝑞′′(�̃�)
𝑒𝑥𝑝{−𝑞(�̃�)}  

So that 

∫ 𝑒𝑥𝑝{−𝑞(𝛼)}𝑑𝛼 ≈ 𝑐|𝑞′′(�̃�)|−1/2𝑒𝑥𝑝{−𝑞(�̃�)}  

Where c is a constant that depends only on the dimension of the integral. 

2.4.  Penalized Quasi-Likelihood (PQL) Method 

For more complex models, the marginal or quasi-likelihood estimation equations are 

not available in closed form. The simplest method for adjusting the model uses the Laplace 

approach and is called the Penalized Quasi-Likelihood (PQL; (Breslow & Clayton, 1993)). 

If we apply the Laplace approach to the Integrated Quasi-Likelihood, the estimator of 

𝜽 = [𝜷𝑇 , 𝒖𝑇]𝑇 to remain is obtained by maximizing the penalized quasi log-likelihood  
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−
1

2𝜑
∑ 𝑑𝑖(𝑦𝑖; µ𝑖

𝒃)

𝑛

𝑖=1

−
1

2
𝒖𝑇𝑹−1𝒖  

Or the equivalent by solving the following estimation equations 

𝑼𝜷 = 𝑿𝑇𝑾−1( 𝒀 − 𝝁) = 𝟎 (10) 

𝑼𝒖 = 𝒁𝑇𝑾−1( 𝒀 − µ ) − 𝑹−1𝒖 = 𝟎  

Where 𝑾 = 𝑑𝑖𝑎𝑔{𝜑𝑎𝑖
−1𝑣(µ𝑖 )[ 𝑔 (µ𝑖)]2} and R are components of the error variance. In 

Normal GLMM, the solution for (10) equals is obtained by solving the linear system 

repeatedly: 

[ 𝑿𝑻𝑾−𝟏𝑿 𝑿𝑻𝑾−𝟏𝒁
𝒁𝑻𝑾−𝟏𝑿𝑹−𝟏 𝑹−𝟏 ] [

𝜷
𝒖

] = [𝑿𝑻𝑾−𝟏𝒀∗ 
𝒁𝑻𝑾−𝟏𝒀∗ ]  

where 𝒀∗ = 𝜼 + ( 𝒀 − µ )[ 𝑔′(µ𝑖 )]
𝑛𝑥1

is called the work vector (McCullagh & Nelder, 

1989). 

2.5. Hierarchical Bayes (HB) Method via Markov Chain Monte Carlo (MCMC) 

In the Bayesian context, let 𝜆 is parameter that has a prior distribution of 𝑅(𝜆) and a 

posterior distribution of 𝑅(𝜃|𝒚) where θ is the parameter of interest, given 𝒚 data will be 

obtained. In HB, the model will be given in stages, namely 𝑅(𝒚|𝜃, 𝜆1) and 𝑅(𝜃|𝜆2). The two 

models are combined with the prior distribution in the model parameters 𝝀 = (𝜆1, 𝜆2). 
Suppose the parameter you want to find is 𝜗 = 𝑘(𝜃). In the Hierarchical Bayes method (HB), 

the parameter 𝜑 will be obtained by calculating the mean of the posterior distribution 𝑅(𝜃|𝒚) 

as follows (Gelman et al., 2013): 

�̂�𝐻𝐵 = 𝐸(ℎ(𝜃)|𝒚) = ∫ ℎ(𝜃) 𝑅(𝜃|𝒚) 𝑑𝜃 (11) 

In Equation (11), the posterior distribution is required 𝑅(𝜃|𝒚) before searching �̂�𝐻𝐵. The 

posterior distribution 𝑅(𝜃|𝒚) can be obtained by applying the Bayes theorem, so that the 

joint posterior distribution of the small area 𝑢 parameter 𝜆 will be obtained and the model 

parameter is given y data as follows: 

𝑅(𝜃, 𝜆|𝒚) =
𝑆(𝒚, 𝜃|𝜆)𝑅(𝜆)

𝑅1(𝑦)
 (12) 

By integrating the posterior distribution function together in Equation (12) to the parameters 

𝜆, the desired posterior distribution is obtained as follows: 

𝑅(𝜃|𝒚) = ∫ 𝑅(𝜃, 𝜆|𝒚) 𝑑𝜆  = ∫ 𝑅(𝜃|𝒚, 𝜆)𝑅(𝜆|𝒚) 𝑑𝜆 (13) 

By substituting Equation (13) into Equation (11), the following values �̂�𝐻𝐵 are obtained: 

�̂�𝐻𝐵 = ∬ ℎ(𝜃) 𝑅(𝜃, 𝜆|𝒚) 𝑑𝜃 𝑑𝜆 (14) 

From Equation (14), it can be seen that to obtain the posterior mean 𝑅(𝜃|𝒚) complex 

integration techniques are required, so that the posterior mean will be difficult to obtain 

analytically. Therefore, a numerical approach will be carried out. A random sample 𝜃(𝑘) will 

be generated first from the posterior distribution 𝑅(𝜃|𝒚), then ∫ 𝑘(𝜃) 𝑅(𝜃|𝒚) 𝑑𝜇 estimated 
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from the previously obtained random sample mean 
1

𝐾
∑ ℎ𝐾

𝑘=1 (𝜃(𝑘)). Generating random 

samples from the posterior distribution 𝑅(𝜃|𝒚) is not easy, so it takes a special method to 

resolve the issue. One method that can be used is the Markov Chain Monte Carlo (MCMC) 

(J. D. Hadfield, 2015; Rao & Molina, 2015). 

MCMC is a method commonly used when the sample 𝜃 cannot be generated directly 

from the posterior distribution 𝑅(𝜃|𝒚). Instead, the sample is 𝜃 generated iteratively in such 

a way that each sampling is expected to come from a distribution that is close to the posterior 

distribution 𝑅(𝜃|𝒚) (Gelman et al., 2013). In the application of MCMC, a Markov chain is 

built {𝜃(𝑘), 𝑘 = 1,2, … } where 𝜃(𝑘) the sample is generated in k-iterations and depends on 

previous sampling (𝜃(𝑘−1)). When 𝑘 →  ∞, the Markov Chain will converge towards the 

posterior distribution 𝑅(𝜃|𝒚). In MCMC, the commonly used algorithms are Gibbs 

Sampling and Metropolis-Hasting. Several studies using the Bayes method have been carried 

out by Maulina et al. (2019) and Yanuar et al. (2020). 

2.6.  The Goodness of Fit of the Model Measures 

The measures of goodness of fit that used in this research are the Root Mean Squared 

Error of Prediction (RMSEP) and Absolute Bias (AB). The MSEP value is obtained from 

the average squared difference between the actual and predicted data. Then the RMSEP 

value is calculated by rooting the MSEP value. While the absolute bias parameter estimator 

is obtained from the difference between the parameters and the expected value. The RMSEP 

value is calculated based on the testing data while the absolute bias is calculated based on 

the training data. The RMSEP measure is used to assess the goodness of the model's 

predictions. Meanwhile, Absolute Bias is used to assess the goodness of the parameter 

estimators of the model being built. The formula for RMSEP and Absolute Bias (AB) is as 

follow (Sunandi et al., 2021) :  

𝑅𝑀𝑆𝐸𝑃 = √∑
(𝑦𝑖 − �̂�𝑖)2

𝑡

𝑡

𝑖=1

 (15) 

𝐴𝐵(𝜃) = |𝜃 − 𝐸(𝜃)| (16) 

Where 𝑡 is the number of validation data, 𝑦𝑖 is the response variable and 𝑦�̂�  is the estimated 

value of the response variable, and 𝜃 is the parameter estimator 𝜃. 
 
 

METHODOLOGY 

3.1. Data 

The data used in this study are simulation data and empirical data. The simulation 

data are generated based on the Poisson Log-Normal model in equation (2). Some parameters 

are set in the model, namely 𝑎 = 0.5, 𝑏 = 0.0005, 𝜎𝑒
2 = 0.3, and 𝛽0 = 0.5. 

Meanwhile, secondary data used is Susenas data on March 2019. The data collected 

by the Statistics Indonesia. The unit of observation is the household and the census block as 

a cluster. The variables used in this study, as response variable, was illiterate cases with the 

age of the respondent at least 12 years old. Furthermore, some fixed and random effect 

variables can be seen in Table 1.  
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Based on previous research (Astuti et al., 2017) that the level of education and work 

or not a person can be an indicator of the risk of illiteracy. In addition, visual, hearing, 

emotional, communication and concentration problems can hinder language skills so that it 

can lead to illiteracy (Rohmani Nur Indah, 2017). In addition, age is also an indicator of 

illiteracy (Mariyono, 2016). Furthermore, of the currently illiterate population, about two-

thirds are women (Wahyuni et al., 2017). This means that gender can be an indicator of 

illiteracy cases.  

 

Table 1. List of Fixed and Random Variables 

Code Variable Name 

Fixed factor 

𝑿𝟏  Number of respondents who have visual impairments 

𝑿𝟐 Number of respondents who have hearing loss  

𝑿𝟑 Average respondent's age (in years)  

𝑿𝟒 Number of respondents who have communication problems       

𝑿𝟓 Number of respondents who have emotional disorders 

𝑿𝟔 Number of respondents who have impaired concentration  

𝑿𝟕 Number of respondents who are male  

𝑿𝟖 Number of respondents who work  

𝑿𝟗 Number of respondents graduated up to elementary school   

Random factor 

u Census block of Susenas on March 2019 

3.2. Method  

Simulation data is used to assess the performance of the MCMC, PQL, and ML 

methods in the Poisson Log-Normal Model. The simulation data and algorithm are as 

follows: 

1. Determined the number of simulation replications 𝑠 = 100, the number of observations 

𝑛 =  24000, the number of clusters = 𝑛/10, and the number of parameters 𝑝 = 11 

2. Generated  𝑋𝑘~𝑁(0,1) 

3. Generated 𝜎𝑢
2~𝐼𝐺(𝑎, 𝑏) 

4. Calculated 𝜎𝑢 

5. Generated 𝑢𝑖~𝑁(0, 𝜎𝑢
2) 

6. Determined 𝜎𝑒 

7. Generated 𝑒~𝑁(0, 𝜎𝑒
2) 

8. Generated 𝛽𝑘~𝑢(0,1) 

9. Determined  𝛽0 = 0.5 

10. Calculated  𝑚𝑢 = exp(𝛽0 + ∑ 𝛽𝑘𝑋𝑘𝑖𝑗
𝑝
𝑘=1 + 𝑢𝑖) 

11. Generated  𝑦𝑖𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑚𝑢) 

12. The data was divided into 2 parts with stratified random sampling method, i.e training 

data (80%) and testing data (20%).  

13. GLMM modeling was carried out using the PQL, ML, and Hierarchical Bayes methods 

via MCMC (1300 iterations) 

14. Measured the goodness of fit the model using equation (15) and (16) 

15. Interpreted of results  

Analogous to the simulation flow, the analysis procedure on empirical data was as 

follows:  
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1. Data exploration. 

2. The data was divided based on stratified Random sampling into 80% training data and 

20% testing data. 

3. GLMM modeling was carried out using the PQL, ML, and Hierarchical Bayes methods 

via MCMC (1300 iterations). 

4. Measured the goodness of the model. 

5. Interpreted of results. 

 

4. RESULTS  

4.1. Simulation Results 

The simulation is designed to assess the performance of the MCMC method in 

estimating the parameters of the Poisson Log-Normal Model with the PQL and ML methods 

as a comparison. In this study, a simulation was carried out with a scenario iteration of 1300 

gibbs sampling MCMC which was repeated 100 times. Computing programming using the 

R program packages “MCMCglmm” (J. Hadfield, 2012), “glmmML” (Brostrom, 2020), and 

“nlme” (Pinheiro, 2020).  

When viewed from the measure of the goodness of the simulation results model, the 

Hierarchical Bayes method through MCMC has a smaller RMSEP value than PQL and ML, 

i.e. 5.194. Meanwhile, if viewed from the absolute bias of each parameter estimator, the 

three methods have relative similar values. All estimators have very small absolute bias 

values tending towards zero. Except b1, it still has a relatively large absolute bias value 

(0.67). 

Table 2. Summary of Measures of the Goodness of fit the Model 

 Measure  PQL ML MCMC 

RMSEP 324.955 239.422 5.194 

AB(b0) 0.002 0.001 0.007 

AB(b1) 0.644 0.644 0.642 

AB(b2) 0.001 0.002 0.001 

AB(b3) 0.003 0.002 0.004 

AB(b4) 0.001 0.000 0.001 

AB(b5) 0.002 0.002 0.002 

AB(b6) 0.000 0.001 0.003 

AB(b7) 0.002 0.002 0.001 

AB(b8) 0.001 0.000 0.003 

AB(b9) 0.001 0.001 0.001 

AB(b10) 0.000 0.000 0.001 

Similar to the absolute bias of the fixed parameter estimator, the absolute bias of the 

random parameter estimator of the Poisson Log-Normal Model also has the same trend in 

the three estimation methods. The absolute bias of cluster standard deviation (�̂�𝑢)  ranges 

from 0.096-0.097. Whereas the absolute bias of the unit standard deviation (σ̂e) ranges from 

0.444-0.449. Of the three methods, MCMC has a slightly smaller absolute bias random effect 

when compared to PQL and ML. Overall, based on the measures of the goodness of the 

model, it can be claimed that the method of estimating Hierarchical Bayes parameters via 

MCMC is the best method used with the smallest RMSEP value. 
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Table 3. Absolute Bias of Random Parameter Estimator 

 Measure   PQL ML MCMC 

AB(�̂�𝒖) 0.097 0.097 0.096 

AB(�̂�𝒆) 0.449 0.445 0.444 

4.2. Empirical Application to Illiteracy Case Data 

Application of Poisson Log-Normal Model using MCMC, PQL, and ML performed 

on the Susenas West Java data. There are as many as 23,738 households as the unit of 

observation is divided into 2,405 census blocks as a cluster. Figure 1 shows that the 

distribution of illiteracy cases in West Java is quite diverse, both in districts and cities. 

Indramayu District has the largest percentage of illiterate cases, i.e 7.73% (186 cases). 

Meanwhile, Tasikmalaya City had the smallest percentage of illiterate cases, i.e 0.15% (3 

cases). 

Meanwhile, when viewed from the measure of the goodness of the model 

summarized in Table 4, the MCMC method has the smallest RMSEP value, which is 0.004. 

PQL and ML methods have RMSEP values of 0.090 and 0.041, respectively. It means, the 

MCMC method is more accurate in modeling the case of illiteracy in West Java in 2019. 

Table 4 Measures of Goodness of Fit of Illiteracy Case Model 
 

MCMC PQL ML 

RMSEP 0.004 0.090 0.041 

Based on the estimation results of MCMC (Table 5), the variables of the number of 

respondents who have visual impairment (𝑋1), the number of respondents who have hearing 

problems (𝑋2), the average age of the respondents (in years) (𝑋3), the number of respondents 

who have communication problems (𝑋4), the number of respondents who have impaired 

concentration (𝑋6), the number of respondents who work (𝑋8), and the number of 

respondents who graduated up to elementary school (𝑋9) have a significant effect on the risk 

of illiteracy.  

Increment 1 the number of respondents who have a vision impairment (𝑋1), hearing 

loss (𝑋2), communication disorders (𝑋4), or impaired concentration (𝑋6) can increase the risk 

of cases of illiterate 12.26%, 24.70%, 25.23%, or 24.31%, respectively. In addition, 

increasing the average age of the respondents by one year would increase the risk of illiteracy 

by 6.67%. Whereas an increase in the number of respondents who work (𝑋8) 1 person will 

reduce the risk of illiteracy by 14.72%. Furthermore, the increase in the number of 

respondents who graduated up to elementary school (𝑋9), 1 person, will increase the risk of 

illiteracy by 128.96%. 



Media Statistika 14(2) 2021: 194-205  203 
 

 
Figure 1. Distribution of Illiteracy Cases in West Java in 2019 

In Table 6, there is information about the standard deviation estimator of the random 

variables used. The random effect of the census block as a cluster has an estimated standard 

deviation of 0.664 and a standard deviation of household as unit is 0.512. The two standard 

deviations of the random effect significantly affect the model. This means that there is a 

diversity of illiteracy cases in each Susenas census block in West Java 2019.  

 

Table 5. MCMC Fixed Parameter Estimator of Poisson Log-Normal Model 

in Illiteracy Cases 

 Estimate   l-95%CI U-95%CI p-value Relative Risk 

(Intercept) -8.351 -8.753 -7.804 <0.001  

𝑿𝟏  0.116 0.023 0.192 0.014 1.123 

𝑿𝟐 0.221 0.066 0.376 <0.001 1.247 

𝑿𝟑 0.065 0.058 0.070 <0.001 1.067 

𝑿𝟒 0.225 0.033 0.388 0.024 1.252 

𝑿𝟓 0.148 -0.032 0.338 0.130 1.159 

𝑿𝟔 0.218 0.017 0.397 0.026 1.243 

𝑿𝟕 0.010 -0.048 0.089 0.872 1.010 

𝑿𝟖 -0.159 -0.252 -0.064 <0.001 0.853 

𝑿𝟗 0.828 0.777 0.875 <0.001 2.290 

 

  

Kota Tasikmalaya

Kab. Bandung

Kota Bekasi

Kab. Tasikmalaya

Kota Bandung

Kab. Bandung Barat

Kota Cimahi

Kota Cirebon

Kab. Sukabumi

Kab. Sumedang

Kab. Ciamis

Kota Sukabumi

Kab. Pangandaran

Kota Depok

Kota Banjar

Kota Bogor

Kab. Garut

Kab. Purwakarta

Kab. Bekasi

Kab. Majalengka

Kab. Cianjur

Kab. Bogor

Kab. Kuningan

Kab. Karawang

Kab. Subang

Kab. Cirebon

Kab. Indramayu

0.15%

0.26%

0.47%

0.49%

0.50%

0.53%

0.54%

0.56%

0.64%

0.65%

0.67%

0.68%

0.73%

0.76%

0.93%

0.95%

1.42%

1.56%

1.63%

1.73%

1.94%

2.33%

2.52%

2.54%

2.99%

3.42%

7.73%



204 Etis Sunandi (A Study of GLMM for Count Data Using HB Method) 
 

Table 6. MCMC Random Parameter Estimator Poisson Log-Normal Model  

in Illiteracy Cases 

  Estimate  l-95% CI U-95% CI 

�̂�𝒖 0.664 0.295 0.9112 

�̂�𝒆 0.512 0.3278 0.7719 

 

5. CONCLUSION  

The simulation results show that the Hierarchical Bayes method through MCMC has 

a smaller RMSEP value than PQL and ML, i.e. 5.94. Meanwhile, if viewed from the multiple 

bias of each model parameter estimator, the three methods have relatively the same value. 

Similar to the absolute bias of the fixed parameter estimator, the absolute bias of the random 

parameter estimator of the Poisson Log-Normal Model also has the same trend in the three 

estimation methods. From the three methods, MCMC has a slightly smaller relative bias 

random effect when compared to PQL and ML. Overall based on the measures of the 

goodness of fit of the model, it can be claimed that the Hierarchical Bayes parameters 

estimator through MCMC is the best method.   Analogous to the simulation, empirical results 

show that the MCMC method has the smallest RMSEP value of 0.004. MCMC estimation 

based on the results of the variable and the number of respondent’s graduate education up to 

elementary school (X9) has the biggest risk of illiteracy significantly. 
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