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Abstract: The response variable of the regression analysis has 

a linear relationship with one of the variable predictors, however 

the unknown relationship pattern with the other predictor 

variables. Consequently, it can be approached by using 

semiparametric regression model. The predictor variable that 

has a linear relationship with the response variable can be 

approached by using linear parametric curve called parametric 

component. Meanwhile, the unknown relationship between the 

response variable with another predictor variable can be 

approached by using nonparametric curve called nonparametric 

component. If the predictor variable in nonparametric 

component is more than one, then it can be approached by using 

a different nonparametric curve named combined or mixed 

estimator. In this research, nonparametric component is 

approached using mixed estimator of multivariable linear 

truncated spline and multivariable kernel. The objective of this 

research is to estimate the model of semiparametric regression 

curve with mixed estimator of multivariable truncated spline 

and multivariable kernel. Estimation of this mixed model using 

ordinary least square method. 

1. INTRODUCTION

Regression analysis is the statistical method that is used to estimate the relationship 

pattern of the predictor variables and response variables. The main purpose of the regression 

analysis is to find out the estimated regression curve. The approaches which are generally 

applied to estimate the regression curve are parametric regression and nonparametric 

regression. Parametric regression is used when the regression curve is known whilst the 

nonparametric regression is used if the regression curve is unknown (Barry & Hardle, 1993). 

Meanwhile, there are some cases in regression analysis where there are both parametric and 

nonparametric components. Regression model which contains these two components is 

called semiparametric regression (Ruppert et al., 2003). 

Semiparametric regression model which is developed by the scientists so far uses the 

same estimation for some or even all of its predictor variable. This is due to the assumption 

that the pattern of each predictor is considered to have the same pattern so researchers use 
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only one form of estimator model for all predictor variables. Meanwhile, the reality is often 

encountered cases with different data patterns of each predictor variable. Therefore, to 

overcome these problems some researchers have developed mixed estimator of 

nonparametric regression curve such that each pattern of the data in nonparametric 

regression model is approached by the estimator curves corresponding to the data pattern.  

Previous research that uses mixed estimator have been conducted by (Wayan 

Sudiarsa et al., 2015), (Nurcahayani et al., 2021), (Nisa’ & Budiantara, 2020), which used 

mixed estimator of truncated spline and Fourier series, and (Mariati et al., 2020) using mixed 

estimator of smoothing spline and Fourier series. The mixed estimator of kernel and Fourier 

series has been conducted by (Afifah et al., 2017) and (Nisa et al., 2017). Meanwhile, 

previous research that use mixed estimator of spline and kernel have been conducted by 

(Ratnasari et al., 2016), (Budiantara et al., 2015), (Rismal et al., 2016), and (Hidayat et al., 

2020) only involve a mixed estimator in nonparametric regression. There has been no 

research involving the mixed estimator on the semiparametric regression. Therefore, this 

research uses a mixed model of multivariable linear truncated spline and multivariable kernel 

on semiparametric regression. So, the objective of this research is to estimate the model of 

semiparametric regression with mixed estimator of multivariable truncated spline and 

multivariable kernel. 

 

2. LITERATURE REVIEW 

2.1. Parametric, Nonparametric, and Semiparametric Regression  

Regression Analysis is a statistical method that explains the relationship pattern 

between an explanatory variable X and a response variable Y. Given a paired data (𝑥𝑖, 𝑦𝑖), 

𝑖 = 1,2, . . . , 𝑛, which the relationship pattern can be expressed in the regression model as 

follows (Barry & Hardle, 1993). 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖 (1) 

with 𝑦𝑖 is the response variable, 𝑓(𝑥𝑖) is regression function, and 𝜀𝑖 is an independent random 

error, distributed normally with zero mean and 𝜎2 variance.  

Parametric regression is used if the shape of the 𝑓(𝑥𝑖) curve in Equation (1) is known, 

which means that the pattern of the relationship between the predictor variable and the 

response variable is known. Meanwhile, nonparametric regression is used if the shape of the 

𝑓(𝑥𝑖) curve in Equation (1) is unknown (Barry & Hardle, 1993). If regression model consists 

both of parametric components and nonparametric components, then it is called 

semiparametric regression (Ruppert et al., 2003). Given paired data  
(xi, ui, vi, yi), 𝑖 = 1,2, … , 𝑛, that are assumed to follow the model of semiparametric regression 

in the Equation (2). 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝑔(𝑢𝑖) + ℎ(𝑣𝑖) + 𝜀𝑖 (2) 

with 𝑦𝑖 is the response variable, the 𝑓(𝑥𝑖) curve is a parametric component, the g(ui) and 

ℎ(𝑣𝑖) are nonparametric components, 𝜀𝑖 is an independent random error, distributed 

normally with zero mean and 𝜎2 variance. 

2.2. Linear Parametric Regression 

Given a paired data (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1,2,… , 𝑛, that have a relationship pattern expressed in 

the regression model in the Equation (1). Regression curve 𝑓(𝑥𝑖) is assumed approached 
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using linear parametric regression. (Ellis et al., 1968) defined the linear form of parametric 

regression as written in the Equation (3). 

𝑓(𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯+ 𝛽𝑝𝑥𝑖𝑝 (3) 

with 𝛽0 is a constant and 𝛽1, 𝛽2, … , 𝛽𝑝 are coefficient of the predictor variables,  

𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝 are the predictor variables. 

2.3. Truncated Spline Linear and Kernel 

Given a paired data (xi, ui, viyi), 𝑖 = 1,2,… , 𝑛, which the relationship pattern expressed 

in regression model in Equation (2). Regression curve g(ui) is assumed to be approached 

using linear truncated spline function. (Barry & Hardle, 1993) defined linear truncated spline 

function as a random function which can be expressed in the Equation (4). 

𝑔(𝑢𝑖) = 𝜃1𝑢𝑖 + ∑ 𝜆𝑘(𝑢𝑖 − 𝐾𝑘)+

𝑚

𝑘=1

 (4) 

with 

(𝑢𝑖 − 𝐾𝑘)+ = {
(𝑢𝑖 − 𝐾𝑘)+ ; 𝑢𝑖 ≥ 𝐾𝑘 

0 ; 𝑢𝑖 < 𝐾𝑘
  

where 𝜃1, 𝜆1, 𝜆2, … , 𝜆𝑚 are unknown parameters, 𝐾𝑘 is Knot-𝑘, 𝑘 = 1,2, … ,𝑚, and 
𝐾1 < 𝐾2 < ⋯ < 𝐾𝑚. 

Regression curve ℎ(𝑣𝑖) is assumed to be approached using kernel function. To 

estimate the regression curve ℎ(𝑣𝑖) in nonparametric regression model, Nadaraya and 

Watson, at (Barry & Hardle, 1993) define kernel regression estimator that called Nadaraya-

Watson estimator as written in the Equation (5). 

ℎ̂𝛼(𝑣𝑖) = 𝑛−1 ∑𝑊𝛼𝑗(𝑣𝑖)𝑦𝑗

𝑛

𝑗=1

 (5) 

with 

𝑊𝛼𝑗(𝑣𝑖) =

1
𝛼 𝐾 (

𝑣𝑖 − 𝑣𝑗

𝛼 )

𝑛−1 ∑
1
𝛼 𝐾 (

𝑣𝑖 − 𝑣𝑗

𝛼 )𝑛
𝑗=1

  

Kernel estimator depends on the kernel function K and bandwidth parameter 𝛼. One 

of the several types of kernel functions is a Gaussian kernel. (Barry & Hardle, 1993) define 

the form of Gaussian kernel as written in the Equation (6). 

𝐾(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 ,   − ∞ < 𝑥 < ∞ (6) 

 

3. METHODOLOGY 

3.1. Research Method 

Steps to get parameter estimator of semiparametric regression curve with mixed 

estimator of multivariable linear truncated spline and multivariable kernel as follows: 

a. Determine the semiparametric model; 
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b. Determine whether the semiparametric model be combined or mixed model; 

c. Determine the parametric component (linear parametric curve) and nonparametric 

component (linear truncated spline and kernel curve);  

d. Find the matrix form of semiparametric model; 

e. Find the estimator of semiparametric regression curve by ordinary least square method as 

follows:  

1. Determine the error equation of the model;  

2. Determine the sum square of error; 

3. Find the first partial derivative of sum square of error;  

4. Equalizing the first derivative of sum square of error to zero;  

f. Getting the estimator of semiparametric regression curve with mixed estimator of 

multivariable linear truncated spline and multivariable kernel. 

 

4. RESULT 

4.1. Estimation of Semiparametric Regression Curve with Mixed Estimator of 

Multivariable Linear Truncated Spline and Multivariable Kernel  

Given a paired data (𝑥𝑖 , 𝑢1𝑖, 𝑢2𝑖, … , 𝑢𝑝𝑖, 𝑣1𝑖, 𝑣2𝑖, … , 𝑣𝑞𝑖, 𝑦𝑖), 𝑖 = 1,2, … , 𝑛 which is 

assumed to follow the semiparametric regression model with multivariable nonparametric 

component which is given by Equation (7). 

𝑦𝑖 = 𝜇(𝑥𝑖 , 𝑢1𝑖, 𝑢2𝑖 , … , 𝑢𝑝𝑖 , 𝑣1𝑖, 𝑣2𝑖, … , 𝑣𝑞𝑖) + 𝜀𝑖 (7) 

If 𝑦𝑖 is assumed to follow the mixed model, then it can be written as Equation (8). 

𝑦𝑖 = 𝑓(𝑥𝑖) + ∑𝑔𝑟(𝑢𝑟𝑖)

𝑝

𝑟=1

+ ∑ℎ𝑠(𝑣𝑠𝑖)

𝑞

𝑠=1

+ 𝜀𝑖 (8) 

with 𝑦𝑖 is the response variable, 𝑓(𝑥𝑖) curve, 𝑖 = 1,2,… , 𝑛 is assumed referring to linear patter 

(parametric component), 𝑔𝑟(𝑢𝑟𝑖) 
curves, 𝑟 = 1,2,… , 𝑝 and ℎ𝑠(𝑣𝑠𝑖) curves, 𝑠 = 1,2,… , 𝑞 are 

assumed as nonparametric components. gr(uri) curve is assumed to be approached by using 

linear truncated spline function,  hs(vsi) curve is assumed to be approached by using 

Nadaraya-Watson Kernel function and 𝜀𝑖 is an independent random error, normally 

distributed with zero mean and 𝜎2 variance. To get the estimation of semiparametric 

regression curve with mixed estimator of multivariable linear truncated spline and 

multivariable kernel, given some of the following lemmas. 

Lemma 4.1  Model of multivariable semiparametric regression is given in Equation (8). 

If the 𝑓(𝑥𝑖) curve, 𝑖 = 1,2, … , 𝑛 is assumed to refer to a linear regression pattern, then: 

𝑓(𝑥) = 𝑿𝛽  

with 

𝑓(𝑥) = [

𝑓(𝑥1)
𝑓(𝑥2)

⋮
𝑓(𝑥𝑛)

], 𝑿 = [

1 𝑥11

1 𝑥21

… 𝑥1𝑝

… 𝑥2𝑝

⋮ ⋮
1 𝑥𝑛1

⋱ ⋮
… 𝑥𝑛𝑝

], 𝛽 = [

𝛽0

𝛽1

⋮
𝛽𝑝

]  

Proof. The 𝑓(𝑥𝑖) curve is assumed to refer to a linear pattern/linear parametric function in 

Equation (3), so the model is obtained for 𝑖 = 1 as follows: 

𝑓(𝑥1) = 𝛽0 + 𝛽1𝛽𝑖1 + 𝛽2𝛽12 + ⋯+ 𝛽𝑝𝛽1𝑝  
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A similar way can be obtained for 𝑖 = 2,3,… , 𝑛, so the model for 𝑖 = 1,2,… , 𝑛 is as follow: 

[

𝑓(𝑥1)
𝑓(𝑥2)

⋮
𝑓(𝑥𝑛)

] =

[
 
 
 
𝛽0 + 𝛽1𝑥11 + ⋯+ 𝛽𝑝𝑥1𝑝

𝛽0 + 𝛽1𝑥21 + ⋯+ 𝛽𝑝𝑥2𝑝

⋮
𝛽0 + 𝛽1𝑥𝑛1 + ⋯+ 𝛽𝑝𝑥𝑛𝑝]

 
 
 

  

Then can be written as: 

[

𝑓(𝑥1)
𝑓(𝑥2)

⋮
𝑓(𝑥𝑛)

] = [

1 𝑥11

1 𝑥21

… 𝑥1𝑝

… 𝑥2𝑝

⋮ ⋮
1 𝑥𝑛1

⋱ ⋮
… 𝑥𝑛𝑝

] [

𝛽0

𝛽1

⋮
𝛽𝑝

] 

So, we obtain the following model: 

𝑓(𝑥) = 𝑿𝛽 ■ 

Lemma 4.2  Model of multivariable semiparametric regression is given in Equation (8). 

if the 𝑔𝑟(𝑢𝑟𝑖) curve, 𝑟 = 1,2, … , 𝑝 is assumed approached by using linear truncated spline 

function, then: 

∑𝑔𝑟(𝑢𝑟𝑖)

𝑝

𝑟=1

= 𝑮(�̃�)�̃� 

with 

∑ 𝑔𝑟(𝑢𝑟𝑖)
𝑝
𝑟=1 = 𝑔1(𝑢1𝑖) + 𝑔2(𝑢2𝑖) + ⋯ + 𝑔𝑝(𝑢𝑝𝑖), 

𝑮(�̃�) = [𝑮(𝑘1) 𝑮(𝑘2) … 𝑮(𝑘𝑝)], 

�̃� =

[
 
 
 
�̃�1

�̃�2

⋮
�̃�𝑝]

 
 
 

 

Proof. The 𝑔𝑟(𝑢𝑟𝑖) curve is assumed to be approached by using linear truncated spline 

function in Equation (4), then it can be written as: 

𝑔𝑟(𝑢𝑟𝑖) = 𝜃𝑟1𝑢𝑟𝑖 + 𝜆𝑟1(𝑢𝑟𝑖 − 𝐾𝑟1)+ + ⋯+ 𝜆𝑟𝑚(𝑢𝑟𝑖 − 𝐾𝑟𝑚)+ 

with 𝜃1, 𝜆1, 𝜆2, … , 𝜆𝑚 are unknown parameters.  

Model is obtained for 𝑟 = 1 as follows: 

𝑔1(𝑢1𝑖) = 𝜃11𝑢1𝑖 + 𝜆11(𝑢1𝑖 − 𝐾11)+ + ⋯+ 𝜆1𝑚(𝑢1𝑖 − 𝐾1𝑚)+ 

with i=1, 2,…, n, the model is: 

[

𝑔1(𝑢11)

𝑔1(𝑢12)
⋮

𝑔1(𝑢1𝑛)

] = [

𝜃11𝑢11 + 𝜆11(𝑢11 − 𝐾11)+ + ⋯+ 𝜆1𝑚(𝑢11 − 𝐾1𝑚)+

𝜃11𝑢12 + 𝜆11(𝑢12 − 𝐾11)+ + ⋯+ 𝜆1𝑚(𝑢12 − 𝐾1𝑚)+

⋮
𝜃11𝑢1𝑛 + 𝜆11(𝑢1𝑛 − 𝐾11)+ + ⋯+ 𝜆1𝑚(𝑢1𝑛 − 𝐾1𝑚)+

]
 

Then it can be written as: 
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[

𝑔1(𝑢11)

𝑔1(𝑢12)
⋮

𝑔1(𝑢1𝑛)

] = [

𝑢11 (𝑢11 − 𝐾11)

𝑢12 (𝑢12 − 𝐾11)
… (𝑢11 − 𝐾1𝑚)+

… (𝑢12 − 𝐾1𝑚)+

⋮ ⋮
𝑢1𝑛 (𝑢1𝑛 − 𝐾11)

⋱ ⋮
… (𝑢1𝑛 − 𝐾1𝑚)+

] [

𝜃11

𝜆11

⋮
𝜆1𝑚

]
 

Then we obtain the following model: 

�̃�1(𝑢1) = 𝑮(𝑘1)�̃�1 
Similarly, it can be obtained for 𝑟 = 2 until for 𝑟 = 𝑝, so for multivariabel linear truncated 

spline with 𝑟 = 1,2,… , 𝑝 we obtain the model as follow: 

∑𝑔𝑟(𝑢𝑟𝑖)

𝑝

𝑟=1

= [𝑮(𝑘1) 𝑮(𝑘2) … 𝑮(𝑘𝑝)]

[
 
 
 
�̃�1

�̃�2

⋮
�̃�𝑝]

 
 
 

 

∑𝑔𝑟(𝑢𝑟𝑖)

𝑝

𝑟=1

= 𝑮(�̃�)�̃� ■ 

Lemma 4.3 Model of multivariable semiparametric regression is given in Equation (8). 

If the ℎ𝑠(𝑣𝑠𝑖) curve, 𝑠 = 1,2,… 𝑞 is assumed to be approached by using kernel, then: 

∑ℎ̂𝑠(𝑣𝑠)

𝑞

𝑠=1

= 𝑫(�̃�)�̃� 

with 

𝑫(�̃�) =

[
 
 
 
 
 
 
 
 
 
𝑛−1 ∑ 𝑊𝛼𝑘1(𝑣1)

𝑞

𝑘=1

𝑛−1 ∑ 𝑊𝛼𝑘2(𝑣1)

𝑞

𝑘=1

𝑛−1 ∑ 𝑊𝛼𝑘1(𝑣2)

𝑞

𝑘=1

𝑛−1 ∑ 𝑊𝛼𝑘2(𝑣2)

𝑞

𝑘=1

… 𝑛−1 ∑ 𝑊𝛼𝑘𝑛(𝑣1)

𝑞

𝑘=1

… 𝑛−1 ∑ 𝑊𝛼𝑘𝑛(𝑣2)

𝑞

𝑘=1

⋮ ⋮

𝑛−1 ∑ 𝑊𝛼𝑘1(𝑣𝑛)

𝑞

𝑘=1

𝑛−1 ∑ 𝑊𝛼𝑘2(𝑣𝑛)

𝑞

𝑘=1

⋱ ⋮

… 𝑛−1 ∑ 𝑊𝛼𝑘𝑛(𝑣𝑛)

𝑞

𝑘=1 ]
 
 
 
 
 
 
 
 
 

 

and 

 �̃� = [

𝑦1

𝑦2

⋮
𝑦𝑛

] 

Proof. The ℎ𝑠(𝑣𝑠𝑖) curve is assumed to be approached by using kernel function in the 

Equation (5), then can be written as follow: 

ℎ̂𝛼𝑠
(𝑣𝑖) = 𝑛−1 ∑𝑊𝛼𝑠𝑗

(𝑣𝑖)𝑦𝑗

𝑛

𝑗=1  

 



18 Hesikumalasari (Estimation of Semiparametric Regression Curve) 

 

Model is obtained for 𝑠 = 1 as follows: 

ℎ̂𝛼1
(𝑣𝑖) = 𝑛−1 ∑𝑊𝛼1𝑗

(𝑣𝑖)𝑦𝑗

𝑛

𝑗=1

 

with i=1,2,...,n, model is obtained: 

[
 
 
 
 
ℎ̂𝛼1

(𝑣1)

ℎ̂𝛼1
(𝑣2)

⋮
ℎ̂𝛼1

(𝑣𝑛)]
 
 
 
 

=

[
 
 
 
 
𝑛−1𝑊𝛼11(𝑣1)𝑦1 + 𝑛−1𝑊𝛼12(𝑣1)𝑦2 + ⋯+ 𝑛−1𝑊𝛼1𝑛(𝑣1)𝑦𝑛

𝑛−1𝑊𝛼11(𝑣2)𝑦1 + 𝑛−1𝑊𝛼12(𝑣2)𝑦2 + ⋯+ 𝑛−1𝑊𝛼1𝑛(𝑣2)𝑦𝑛

⋮
𝑛−1𝑊𝛼11(𝑣𝑛)𝑦1 + 𝑛−1𝑊𝛼12(𝑣𝑛)𝑦2 + ⋯+ 𝑛−1𝑊𝛼1𝑛(𝑣𝑛)𝑦𝑛]

 
 
 
 

 

Then can be written as: 

[
 
 
 
 
ℎ̂𝛼1

(𝑣1)

ℎ̂𝛼1
(𝑣2)

⋮
ℎ̂𝛼1

(𝑣𝑛)]
 
 
 
 

=

[
 
 
 
 
𝑛−1𝑊𝛼11(𝑣1) 𝑛−1𝑊𝛼12(𝑣1)

𝑛−1𝑊𝛼11(𝑣2) 𝑛−1𝑊𝛼12(𝑣2)

… 𝑛−1𝑊𝛼1𝑛(𝑣1)

… 𝑛−1𝑊𝛼1𝑛(𝑣2)

⋮ ⋮
𝑛−1𝑊𝛼11(𝑣𝑛) 𝑛−1𝑊𝛼12(𝑣𝑛)

⋱ ⋮
… 𝑛−1𝑊𝛼1𝑛(𝑣𝑛)]

 
 
 
 

[

𝑦1

𝑦2

⋮
𝑦𝑛

]
 

Then obtained the following model: 

~
ℎ̂𝛼1

(𝑣) = 𝑫(𝛼1)�̃� 

Similarly, can be obtained for 𝑠 = 2 until for 𝑠 = 𝑞, so for multivariabel kernel with 

𝑠 = 1,2,… , 𝑞 obtained the model as follows:

 ∑ℎ̂𝑠(𝑣𝑠)

𝑞

𝑠=1

= 𝑫(𝛼1)�̃� + 𝑫(𝛼2)�̃� + ⋯+ 𝑫(𝛼𝑞)�̃� 

∑ℎ̂𝑠(𝑣𝑠)

𝑞

𝑠=1

= 𝑫(�̃�)�̃� ■ 

Based on Lemma 4.1, Lemma 4.2, and Lemma 4.3 we obtained the following 

theorem. 

Theorem 4.1 Given a paired data (𝑥𝑖, 𝑢1𝑖, 𝑢2𝑖, … , 𝑢𝑝𝑖, 𝑣1𝑖, 𝑣2𝑖, … , 𝑣𝑞𝑖 , 𝑦𝑖), 𝑖 = 1,2,… , 𝑛 which 

are assumed to follow the mixed model: 

𝑦𝑖 = 𝜇(𝑥𝑖 , 𝑢1𝑖 , 𝑢2𝑖 , … , 𝑢𝑝𝑖, 𝑣1𝑖 , 𝑣2𝑖 , … , 𝑣𝑞𝑖) + 𝜀𝑖 

𝑦𝑖 = 𝑓(𝑥𝑖) + ∑𝑔𝑟(𝑢𝑟𝑖)

𝑝

𝑟=1

+ ∑ℎ𝑠(𝑣𝑠𝑖)

𝑞

𝑠=1

+ 𝜀𝑖 

If the 𝑓(𝑥𝑖) curve, 𝑖 = 1,2, … , 𝑛 is assumed to be approached by using linear parametric 

function, the 𝑔𝑟(𝑢𝑟𝑖) curve, 𝑟 = 1,2, … , 𝑝 is assumed to be approached by using linear 

truncated spline function, and the ℎ𝑠(𝑣𝑠𝑖) curve, 𝑠 = 1,2,…𝑞 is assumed to be approached by 

using kernel, then: 

a. Semiparametric regression curve estimator for linear parametric component as follows: 

𝑓(𝑥) = 𝑹(�̃�, �̃�)�̃� 
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with 

𝑹(�̃�, �̃�) = 𝑿 [𝑰 − (𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�) (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿]

−1

 

[(𝑿𝑇𝑿)−1𝑿𝑇(𝑰 − 𝑫(�̃�)) − (𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�) (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
(𝑰 − 𝑫(�̃�))] 

b. Semiparametric regression curve estimator for multivariable linear truncated spline as 

follows: 

�̂̃�(𝑢) = 𝑺(�̃�, �̃�)�̃� 

with 𝑺(�̃�, �̃�) as follow 

𝑮(�̃�) [𝑰 − (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿(𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�)]

−1

 

[(𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
(𝑰 − 𝑫(�̃�)) − (𝑮(�̃�)

𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿(𝑿𝑇𝑿)−1𝑿𝑇(𝑰 − 𝑫(�̃�))] 

c. Semiparametric regression curve estimator for the mixed of multivariable linear 

truncated spline and multivariable kernel as follows: 

�̂�(𝑥, 𝑢, 𝑣) = 𝑻(�̃�, �̃�)�̃� 

with 

𝑻(�̃�, �̃�) = 𝑹(�̃�, �̃�) + 𝑺(�̃�, �̃�) + 𝑫(�̃�) 

Proof. The model of semiparametric regression which contains multivariable nonparametric 

components is given in Equation (8). Because the 𝑓(𝑥𝑖) curve, 𝑖 = 1,2, … , 𝑛 is assumed to be 

approached by using linear parametric function, the 𝑔𝑟(𝑢𝑟𝑖) curve, 𝑟 = 1,2,… , 𝑝 is assumed 

to be approached by using linear truncated spline function, and the ℎ𝑠(𝑣𝑠𝑖) curve, 𝑠 = 1,2,…𝑞 

is assumed approached by using kernel, then the model can be written as: 

�̃� = 𝑿𝛽 + 𝑮(�̃�)�̃� + 𝑫(�̃�)�̃� + 𝜀̃ 

From model above, can be obtained: 

𝜀̃ = �̃� − 𝑿𝛽 + 𝑮(�̃�)�̃� + 𝑫(�̃�)�̃� 

Then the error can be written as follow: 

𝜀̃ = ((𝑰 − 𝑫(�̃�))�̃� − 𝑿𝛽 − 𝑮(�̃�)�̃� 

The estimator of the model was obtained by using Ordinary Least Square (OLS) method. 

After completing optimization, then the error be: 

𝜀̃𝑇𝜀̃ = �̃�𝑇(𝑰 − 𝑫(�̃�))
𝑇
(𝑰 − 𝑫(�̃�))�̃� − 2𝛽𝑇𝑿𝑇(𝑰 − 𝑫(�̃�))�̃� 

𝜀̃𝑇𝜀̃ = −2�̃�𝑇𝑮(�̃�)
𝑻
(𝑰 − 𝑫(�̃�))�̃� + 𝛽𝑇𝑿𝑇𝑿𝛽 

𝜀̃𝑇𝜀̃ = +2𝛽𝑇𝑿𝑇𝑮(�̃�)�̃� + �̃�𝑇𝑮(�̃�)
𝑻
𝑮(�̃�)�̃� 

For example, the error is 𝑀(�̃�, �̃�), 𝑀(�̃�, �̃�) can be written as follow: 
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𝑀(𝛽, �̃�) = �̃�𝑇(𝑰 − 𝑫(�̃�))
𝑇
(𝑰 − 𝑫(�̃�))�̃� − 2𝛽𝑇𝑿𝑇(𝑰 − 𝑫(�̃�))�̃� 

𝑀(𝛽, �̃�) = −2�̃�𝑇𝑮(�̃�)
𝑻
(𝑰 − 𝑫(�̃�))�̃� + 𝛽𝑇𝑿𝑇𝑿�̃� 

𝑀(𝛽, �̃�) = +2𝛽𝑇𝑿𝑇𝑮(�̃�)�̃� + �̃�𝑇𝑮(�̃�)
𝑻
𝑮(�̃�)�̃� 

Then optimize 𝑀(�̃�, �̃�) using the partial derivative to �̃� and �̃�, partial derivative to �̃� is 

obtained: 

𝜕𝑀(𝛽, �̃�)

𝜕𝛽
= 0 − 2𝑿𝑇(𝑰 − 𝑫(�̃�))�̃� + 2𝑿𝑇𝑿𝛽 + 2𝛽𝑇𝑿𝑇𝑮(�̃�)�̃� 

Meanwhile, a partial derivative to �̃� is obtained: 

𝜕𝑀(𝛽, �̃�)

𝜕�̃�
= 0 − 2𝑮(�̃�)

𝑇
(𝑰 − 𝑫(�̃�))�̃� + 2𝑮(�̃�)

𝑇
𝑿𝛽 + 2𝐺(�̃�)

𝑇
𝑮(�̃�)�̃� 

Then equalizing the first derivative of sum square of error with zero, for �̃� obtained: 

�̂� = (𝑿𝑇𝑿)−1𝑿𝑇(𝑰 − 𝑫(�̃�))�̃� − (𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�)�̃� 

Meanwhile, equalizing the first derivative of sum square of error with zero for �̃� is obtained: 

�̃̂� = (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
(𝑰 − 𝑫(�̃�))�̃� − (𝑮(�̃�)

𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿𝛽

 
Then substitute �̃̂� into �̂̃�, followed by calculation the estimator of �̂̃� is obtained: 

�̂� = [𝑰 − (𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�) (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿]

−1

 

[(𝑿𝑇𝑿)−1𝑿𝑇(𝑰 − 𝑫(�̃�)) − (𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�) (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
(𝑰 − 𝑫(�̃�))] �̃� 

Based on �̂̃�, the estimator of semiparametric regression curve for linear parametric 

component is obtained: 

𝑓(𝑥) = 𝑿�̂� 

𝑓(𝑥) = 𝑿 [𝑰 − (𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�) (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿]

−1

 

[(𝑿𝑇𝑿)−1𝑿𝑇(𝑰 − 𝑫(�̃�)) − (𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�) (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
(𝑰 − 𝑫(�̃�))] �̃� 

𝑓(𝑥) = 𝑹(�̃�, �̃�)�̃� 

Then substitution of �̂̃� into �̃̂�, followed by calculation so the estimator of �̃̂� is obtained: 

�̃̂� = [𝑰 − (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿(𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�)]

−1

 

[(𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
(𝑰 − 𝑫(�̃�)) − (𝑮(�̃�)

𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿(𝑿𝑇𝑿)−1𝑿𝑇(𝑰 − 𝑫(�̃�))] �̃� 

Based on �̃̂� the estimator of semiparametric regression curve for multivariable linear 

truncated spline component is obtained: 
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�̂̃�(𝑢) = 𝑮(�̃�)�̃̂� 

ĝ̃(u) can be written as 

𝑮(�̃�) [𝑰 − (𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿(𝑿𝑇𝑿)−1𝑿𝑇𝑮(�̃�)]

−1

 

[(𝑮(�̃�)
𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
(𝑰 − 𝑫(�̃�)) − (𝑮(�̃�)

𝑇
𝑮(�̃�))

−1

𝑮(�̃�)
𝑇
𝑿(𝑿𝑇𝑿)−1𝑿𝑇(𝑰 − 𝑫(�̃�))] �̃� 

�̂̃�(𝑢) = 𝑺(�̃�, �̃�)�̃� 

So, the estimator of semiparametric regression curve for the mixed of multivariable linear 

truncated spline and multivariable kernel could be written in these three following terms: 

�̂�(𝑥, 𝑢, 𝑣) = 𝑓(𝑥) + �̂̃�(𝑢) + ℎ̂̃(𝑣) 

�̂�(𝑥, 𝑢, 𝑣) = (𝑹(�̃�, �̃�) + 𝑺(�̃�, �̃�) + 𝑫(�̃�)) �̃� 

�̂�(𝑥, 𝑢, 𝑣) = 𝑻(�̃�, �̃�)�̃� ■ 

 

5. CONCLUSION 

The semiparametric model in this paper consists of two components which are 

parametric component and nonparametric component. Parametric component is approached 

using linear parametric function. Meanwhile, the nonparametric component is approached 

using mixed of multivariable linear truncated spline function and multivariable kernel 

function. Given a paired data (𝑥𝑖, 𝑢1𝑖, 𝑢2𝑖, … , 𝑢𝑝𝑖, 𝑣1𝑖, 𝑣2𝑖, … , 𝑣𝑞𝑖, 𝑦𝑖) which are assumed to 

follow the mixed model: 

𝑦𝑖 = 𝜇(𝑥𝑖 , 𝑢1𝑖 , 𝑢2𝑖 , … , 𝑢𝑝𝑖, 𝑣1𝑖 , 𝑣2𝑖 , … , 𝑣𝑞𝑖) + 𝜀𝑖 

𝑦𝑖 = 𝑓(𝑥𝑖) + ∑𝑔𝑟(𝑢𝑟𝑖)

𝑝

𝑟=1

+ ∑ℎ𝑠(𝑣𝑠𝑖)

𝑞

𝑠=1

+ 𝜀𝑖 

If the 𝑓(𝑥𝑖) curve, 𝑖 = 1,2, … , 𝑛 is approached referring to linear pattern, the 𝑔𝑟(𝑢𝑟𝑖) 
curve, 𝑟 = 1,2,… , 𝑝 is assumed to be approached by using linear truncated spline function, 

and the ℎ𝑠(𝑣𝑠𝑖) curve, 𝑠 = 1,2, …𝑞 is assumed to be approached by using kernel function. The 

following model was obtained: 

�̃� = 𝑿𝛽 + 𝑮(�̃�)�̃� + 𝑫(�̃�)�̃� + 𝜀̃ 

The estimator is found by using ordinary least square method. Semiparametric regression 

curve estimator for linear parametric component as follows: 

𝑓(𝑥) = 𝑹(�̃�, �̃�)�̃� 

Semiparametric regression curve estimator for multivariable linear truncated spline as 

follow: 

�̂̃�(𝑢) = 𝑮(�̃�)�̃̂� 

Semiparametric regression curve estimator for the mixed of multivariable linear truncated 

spline and multivariable kernel as follow: 
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�̂�(𝑥, 𝑢, 𝑣) = 𝑻(�̃�, �̃�)�̃� 

with 

𝑻(�̃�, �̃�) = 𝑹(�̃�, �̃�) + 𝑺(�̃�, �̃�) + 𝑫(�̃�) 
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