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Abstract: Missing values are a problem that is often 

encountered in various fields and must be addressed to obtain 

good statistical inference such as parameter estimation. Missing 

values can be found in any type of data, included count data that 

has Poisson distributed. One solution to overcome that problem 

is applying multiple imputation techniques. The multiple 

imputation technique for the case of count data consists of three 

main stages, namely the imputation, the analysis, and pooling 

parameter. The use of the normal distribution refers to the 

sampling distribution using the central limit theorem for discrete 

distributions. This study is also equipped with numerical 

simulations which aim to compare accuracy based on the 

resulting bias value. Based on the study, the solutions proposed 

to overcome the missing values in the count data yield 

satisfactory results. This is indicated by the size of the bias 

parameter estimate is small. But the bias value tends to increase 

with increasing percentage of observation of missing values and 

when the parameter values are small. 

 

1. INTRODUCTION  

Data can be carried out in various ways such as field surveys, interviews, 

experimental activities in the laboratory and so on. But in its implementation, especially in 

survey activities, it is often to be found the non-response items or items that are not answered 

by respondents and cause missing values. For example, a respondent refused when asked 

about age, number of children, marital status, etc. because they were considered private so 

that the required data was not obtained from the respondent. Missing values can be define as 

a failure to obtain observational values from several sample units which then cause problems 

in data analysis (Wiegand, 1968). Missing values or non-response items in data collection 

activities will then form a missing data. 

In general, missing data or data containing missing values can cause two problems, 

namely loss of efficiency or information and cause bias (O’Kelly, 2014). This problem arises 

because the sample size used is reduced than it should. This action in overcoming missing 

values is the initial stage in the process of data analysis or commonly known as pre-

processing data. At this stage, data must be prepared so that it is feasible to enter the analysis 

phase. 
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One easy way to handle this case of missing data is to delete observations related to 

the missing value. This certainly has an impact on the sample size that will shrink. The 

deletion of cases is the worst method and is not recommended in practical applications 

(Enders, 2017; Wilkinson, 1999). Another way to overcome the missing data is to fill the 

missing value with the estimated replacement values based on the values that were 

successfully observed. The method is then known as imputation. Imputation is a work 

process used to determine and assign substitute values for missing values (Rubin, 1987). The 

imputation method is important if the percentage of observations with missing values is 

relatively large. 

The Imputation method has also developed a lot, for example (Akmam et al., 2019) 

discusses about multiple imputation with predictive mean matching method for numerical 

missing data. (Christopher et al., 2019) also explain about imputation for numerical data 

using Fractional Hot Deck. (Aristiawati et al., 2019) introduced the missing values 

imputation based on fuzzy CMeans algorithm. In addition, there is imputation for 

multivariate missing data using Sequential Regression Multivariate. For the mixed datasets, 

(Anwar et al., 2019) introduced the method of imputation with K-Harmonics mean 

algorithm. 

In this study, we will focus on multiple imputation as our technique to overcome 

missing value. Because multiple imputation is a technique for overcoming missing values 

by replacing each missing value with more than one substitute value, called m values (𝑚 >
1) that resulting m complete data. Each of the complete data will be analyzed using the 

appropriate analysis method (based on cases) to obtain parameter estimations and the results 

will be combined based on Rubin's rules (Rubin, 1987). Multiple imputation has advantages 

over single imputation, which are; increases estimation efficiency, better accuracy of 

parameter estimation and provides more valid statistical inference (van Buuren, 2018). 

Missing value on ordinary count data is considered to be the main focus in this study. 

By Central Limit Theorem, the problem of missing value on ordinary count data that assume 

Poisson distributed will be solved with approximation of normal distribution as the 

assumption of large sample size was fulfilled. Generalized Linear Model Poisson Regression 

is selected to be analytical method because we will assume that ordinary count data as 

response variable has relationship with a predictor variable. In the end of this study, we will 

show a result of numerical simulation with few parameters (λ) and large sample size (n). 

 

2. MATERIAL AND METHODS 

2.1. Count Data 

Before we go further about the imputation task, here will be described about count 

data because this study is focused on missing value for count data. In statistics, count data is 

a statistical data type, a type of data in which the observation can take only the non-negative 

integer values {0, 1, 2, 3, ...}, and where these integers arise from counting rather than 

ranking (Barbur et al., 1994). Examples of count data include the number of children in a 

family, the number of crimes committed or the number of someone recovering from the 

illness (van Buuren, 2018). 

The simplest probabilistic model for count data is the Poisson distribution that 

introduced by Siemon D. Poisson in 1837. A random variable is Poisson distributed with 

parameter λ > 0 is notated by Y ~ Poisson (λ) and this random variable has pmf (probability 

mass function) as 
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𝑓(𝑦) = {

𝜆𝑦𝑒−𝜆

𝑦!
; 𝑦 = 0,1,2, …

0     ; 𝑦 elsewhere

  (1) 

Poisson distribution has equidispersion property about its parameter. This property 

can be proved by moment generating function of Poisson distribution using Equation 1 and 

this property can be witten as 

𝐸(𝑌) =  𝑉𝑎𝑟(𝑌) =  𝜆 (2) 

Equation 2 shows that the expectation and the variance value of Poisson Distribution 

is equal (Hogg Allen T Craig, 1978). Next will be shown the pmf (probability mass function) 

plot of Poisson distribution for few parameters. 

 
Figure 1. Pmf Curve for Poisson Distribution in Few Parameters 

Based on Figure 1 we can see that the greater value of the Poisson distribution 

parameter, the pmf curve of the Poisson distribution is increasingly symmetrical which 

indicates the fulfillment of normal properties. 

Sometimes if we have one response variable that has Poisson distribution and the 

other predictor variable that assumed fixed, and we wish to know the relation about the 

variable we can construct the Poisson regression that modeled as follows 

𝑦𝑖 = exp(𝛽0 + 𝛽1𝑥1 + ⋯ +  𝛽𝑘𝑥𝑘) + 𝜀𝑖 (3) 

The Poisson regression model in Equation 3 can be used to know the relationship 

about predictor variable/s to a response variable that Poisson ditributed. The method to get 

the parameter estimation on Poisson regression model can be found by maximum likelihood 

method and iteratively by Newton-Raphson method (Barbur et al., 1994). 

2.2. Multiple Imputation 

Classically, the technique to overcome missing value is delete the observation of the 

missing value itself or namely case deletion. It’s very easy to do but it will decrese the size 

of sample and larger bias of parameter estimation will be produced. The another way to 

dealing missing value is imputation. Single imputation is filling in each missing value by 

one imputation value only. 

Another technique as a solution to overcome missing values is multiple imputation. 

Multiple Imputation was first introduced by Rubin (1987). By definition, multiple 

imputation is similar to single imputation, but substitute values that produce more than one 

value. So that in multiple imputations some complete data will be formed from the estimation 

results through this technique. Then each complete data is analyzed using standard analysis 

which will then produce a combined parameter for the final estimate. Multiple Imputation 

fills in missing values by assuming that the missing value also comes from the Posterior 
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distribution which is the same as the observed value so that the obtained results are valid 

(Rubin, 1987). The Figure 2 ilustrates the workflow of multiple imputation. There are 3 stage 

multiple imputation, namely imputation stage, analysis stage, and pooling stage.  

 

 

Figure 2. Scheme of main steps in multiple imputation with m=3 (van Buuren, 2018). 

2.2.1  Imputation Stage 

Normal linear model can be used to approximation model in imputation stage. It means 

for every modeled data the properties of normality should be fulfilled (we use Kolmogorov-

Smirnov test to check the normality of ordinary count data for large sample). Consider the 

following model. 

𝒚~𝑵(𝑿𝜷, 𝝈𝟐𝑰) (4) 

Equation (4) is a basic model that considered in this study. Based on Central Limit 

Theorem, data that has Poisson ditributed can be approximates with normal distribution as 

the sample size is large. The final goal at this stage is to estimate the missing value based on 

bayesian inference which is assumed that missing value 𝑦𝑚𝑖𝑠 comes from the posterior 

distribution which is equal to the value that was successfully observed 𝑦𝑜𝑏𝑠. It will be 

denoted as 

𝒚𝒎𝒊𝒔~𝑵(𝑿𝒎𝒊𝒔𝜷∗, 𝝈∗
𝟐𝑰) (5) 

Based on Equation (5), 𝑦𝑚𝑖𝑠 is vector of estimated missing values and 𝑋𝑚𝑖𝑠 denotes 

the covariate matrix that pairs with the response 𝑦 that considered as missing value. By 

Bayesian method, 𝜷∗𝝈∗
𝟐𝑰 can be estimated so the missing value of response variable can be 

calculated. 

Rubin (1987) and Buuren (2018) formulates the imputation task for n sample size and 

q parameters as follows. 

a. Draw a random variable that has 𝜒(𝑛−𝑞)
2  denote by g then Then calculate the variance 

for estimating missing values using the following equation 

𝜎∗
2 = �̂�2(𝑛 − 𝑞)/𝑔  (6) 

b. Then calculate 𝜷∗ by adding up the estimation value of 𝜷∗ and an uncertainty value 

vector 𝑞 × 1 which is drawn from standar normal distribution denotes z. 

Mathematically formulated as follow 

𝛽∗  = 𝐸(𝛽∗) + 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑣𝑎𝑙𝑢𝑒  (7) 
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      = �̂� + 𝝈∗[𝑽]𝟏/𝟐𝒛 

c. Finally the missing value can be predicted by 

𝒚𝒎𝒊𝒔𝒔∗ = 𝑿𝒎𝒊𝒔𝒔,𝜷∗ + 𝒛𝝈∗ (8) 

Where z denotes a random vector that drawn from standar normal distribution by 

simulation. If we want to do as many as m imputation simulations, then the steps above 

are repeated m times. 

2.2.2  Analysis Stage 

After the complete m-dataset of the results of the multiple imputation stages in the 

previous section is obtained, the next step is to analyze each complete data from the results 

of the imputation with an appropriate analysis method. In this study, the analytical method 

that to be chosen is the Generalized Linear Model Poisson Regression analysis. Then the 

steps in this analysis phase are as follows; 

a. Check that Y ~ Poisson (λ) for each complete dataset as we require for the analysis using 

Generalized Linear Model Poisson Regression by Kolmogorov-Smirnov test 

b. Bulid Generalized Linear Model Poisson Regression for each complete dataset 

c. Estimating parameters on Generalized Linear Model Poisson Regression for each 

complete dataset 

All these stages above are flexible or can be adjusted to the analytical method chosen 

by the researcher (depending on the case that is the focus of the study) (Ibrahim et al., 2005). 

The end of this stage will produce parameter estimates from the analysis method selected for 

each complete data estimate. Estimates of the parameters in this simulation will be combined 

based on Rubin's rules which will be discussed later. 

2.2.3  Pooling Stage 

After parameter estimation is obtained for each complete data from imputation and 

analysis stages, the next step is pooling or combining parameters based on Rubin's rules 

(Rubin, 1987). This step aims to obtain a final parameter from the m parameters from m 

complete datasets. Following are the equations in Rubin's rule. 

For example if there are M complete dataset of imputation results or for 𝑚 =
 1, 2, … , 𝑀 and the estimated k-regression coefficient (𝑘 =  0, 1, 2, … , 𝑝) on m-imputed data 

is denoted by �̂�𝑘
𝑚. he pooling parameter for k-regression coefficient is obtained by 

calculating the average of �̂�𝑘 values from m-imputed analysis results. Mathematically, the 

pooling parameter can be written as 

�̅̂�𝑘 =  
1

𝑀
(�̂�𝑘

1 + �̂�𝑘
2 + ⋯ + �̂�𝑘

𝑀)   

      =
1

𝑀
∑ �̂�𝑘

𝑚𝑀
𝑚=1   

(9) 

If the analysis just limited by one predictor variable, so we can obtained the �̅̂�0 and �̅̂�1. 

While the total variance associated with �̅̂�𝑘 is formulated by 

𝑉
�̅̂�𝑘

= �̅��̂�𝑘
+ (1 +

1

𝑀
) �̅��̂�𝑘

  (10) 
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�̅��̂�𝑘
denoted within-imputation variance can be written as �̅��̂�𝑘

=
1

𝑀
∑ 𝑉𝑎𝑟(�̂�𝑘

𝑚)𝑀
𝑚=1   and  

𝐵�̂�𝑘
 denoted between-imputation variance can be written as �̅��̂�𝑘

=
1

𝑀−1
∑ (�̂�𝑘

𝑚 − �̅̂�𝑘)
2

𝑀
𝑚=1  . 

In this study, we only focus on pooling parameter for regression coefficient on Equation (9). 

 

2.3 Evaluation Measurement of Multiple Imputation 

Evaluation measurement that can be used to measure the efficiency of multiple 

imputation technique is “bias” (Falcaro & Carpenter, 2017). Bias value can be defined as the 

difference between the average parameter estimate and the true value which is assumed to 

be represented by the estimated parameters obtained when the model is full. In the simulation 

that will be carried out in the next chapter, the bias value is defined as follows 

𝑏𝑖𝑎𝑠 = �̅̂�𝑘 − 𝛽𝑘          

          = �̅̂�𝑘 − �̂�𝑘 (𝑘 = 0,1,2. . . ) 
(11) 

�̅̂�𝑘 denoted the average parameter for k-regression coefficient that already defined in 

Equation (9) and �̅̂�𝑘denoted the parameter estimation of k-regression coeffiicient while data 

is fully observed (0% missing value) (Gupta & Grover, 2017). This will be clarified in 

numerical simulations which will be discussed next. 

2.4 Missing at Random 

For each method of analysis for missing data, statistical assumptions about how the 

missing value could occur must be made. A multiple imputation technique is suitable to be 

applied in the case of missing values that occur with the Missing at Random mechanism. 

The mechanism of Missing at Random or which can be abbreviated as MAR assumes that 

the probability or likelihood of a value in the observation data is missing depends on one or 

more other variables that have been successfully observed (Rubin, 1987). This assumption 

will be used on numerical simulation later. 

 

3. EXPERIMENTS AND RESULTS 

In this simulation, 200 pairs of complete observational data are generated consisting 

of one response variable Y and one predictor variable X. The response variable generated is 

a type of discrete or count variable that follows the Poisson distribution. While the predictor 

variables raised are continuous variable types. The parameter values of the response 

variables used are 5,10 and 15 to approximate the normality properties. 
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Figure 3. Flow Chart of Numerical Simulation 

In this simulation, the Missing At Random (MAR) mechanism is carried out in three 

different scenarios based on the percentage of the number of missing values that is 10%, 

20% and 30% for the purpose of comparison and evaluation of efficiency (Gupta & Grover, 

2017).  

First of all, we would check whether the dataset which we’re generated were also 

Normal distributed. For it purpose, we construct Kolmogorov-Smirnov test (Conover, 2008). 

𝐻0: Data come from the population which has distribution function 𝐹(𝑦) (Normal 

Distribution) 

𝐻1 : Data did not come from the population which has distribution function 𝐹(𝑦) (Normal 

Distribution) 

With significance level 𝛼 = 0,05 and test statistic 

𝑇 = sup
𝑦

|𝐹𝑛(𝑦) − 𝐹(𝑦)|  

Where 𝐹(𝑦)is distribution function of normal distribution (theoretical distribution) and 

𝐹𝑛(𝑦) is distribution function of data (empirical distribution). If p-value less than 𝛼 = 0,05 

we reject the null hypothesis and conclude that data did not follow the theoretical distribution 

(normal distribution). This is quite important because our method is depend on normality 

properties, so the normality of data especially for response variable should be fulfilled. 

Table 1 is the result of normality test of the data from few parameters λ. 

Table 1. Normality Test of Data 

Sample size (𝑛) Parameter value (𝜆) P-value Conclusion 

200 5 0.587 𝐻0 is not rejected 

200 10 0.665 𝐻0 is not rejected 

200 15 0.704 𝐻0 is not rejected 

Based on Table 1 above, 𝐻0 is not rejected for each simulation parameter value in 

significance level 𝛼 = 0,05 and we conclude that data follows normal distribution which is 
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being our theoretical distribution for each simulation parameter value. Since normality 

properties were fulfilled for each simulation parameter value, we able to run the imputations 

under normal linier model. 

Table 2. Comparison of Numerical Simulation 

𝜆 MAR Bias (�̂�0) Bias (�̂�1) 

5 

10% 0.007115 0.000413 

20% 0.047002 0.00194 

30% 0.067196 0.004578 

10 

10% 0.006396 0.000202 

20% 0.024658 0.002506 

30% 0.05338 0.005668 

15 

10% 0.000812 0.000228 

20% 0.001866 0.000182 

30% 0.037408 0.002702 

Table 2 shows bias value of �̂�0 and �̂�1 for each simulation MAR mechanism of each 

parameter 𝜆. Based on that table we can conclude that the increasing value of the parameter 

λ, the parameter bias value for �̂�0 and �̂�1 tend to decrease for each percentage of MAR 

mechanism.  

 

Figure 4. Graph for bias value of �̂�0 

 

Figure 5. Graph for bias value of �̂�1 



 

76  Titin Siswanting (Multiple Imputation for Ordinary Count Data) 

Figure 4 and Figure 5 show the bias resulting from both estimated regression 

coefficients 𝛽0 and 𝛽1. It can be seen that for 𝜆 = 5, 10, 15 shows a larger bias in the 

random missing proportion of 10% − 30%, so it can be shown that this method is 

suitable for small random missing proportions to obtain a minimum bias for both 

regression coefficients. 

 

4. CONCLUSION 

Missing value can be defined as a failure to get the information in the sample unit of 

research. Missing values must be overcome to get better statistical inference. One technique 

commonly used to overcome missing values is the multiple imputation. Missing values can 

occur in all types of data, including count data. One simplest probability distribution that 

includes count data is Poisson distribution with the assumption that the equidispersion is 

fulfilled. If there is a predictor variable that is thought to affect the response variable that has 

a missing value, then a regression analysis can be performed to estimate the missing values. 

Because the response variable discussed in this study is Poisson distribution, in overcoming 

this the Multiple Imputation technique with Generalized Linear Model Poisson Regression 

method is suitable to be applied.  

Based on numerical simulations that have been done, the multiple imputation 

technique with the GLM Poisson regression analysis method as a solution to handle missing 

values in the count data gives satisfactory results especially if the percentage of missing 

values is relatively small and the value of parameters is large. This is indicated by the small 

value of bias of the estimated Poisson regression coefficient. However, for observations of 

relatively large missing values and small parameter values, the multiple imputation 

technique with the Poisson regression is not recommended to be implemented because it will 

produce larger parameter bias values of the estimated Poisson regression coefficient.  

As this study also gives some suggestions for research or subsequent writing with 

topics that are relevant to what has been discussed in this study. These suggestions are; Using 

other methods such as Fully Bayesian to get the imputation equation in the general count 

data case, learn more about the imputation case for missing values in other types of count 

data such as the overdispersion model, the excess zero model and so on. Extending the 

research by examining cases of multivariate regression or multiple regression, combining 

sample sizes and the number of imputation simulations and implementing multiple 

imputation techniques on real data. 
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