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Abstract: The Option is widely applied in the financial sector.  

The Black-Scholes-Merton model is often used in calculating 

option prices on a stock price movement. The model uses 

geometric Brownian motion which assumes that the data is 

normally distributed. However, in reality, stock price 

movements can cause sharp spikes in data, resulting in 

nonnormal data distribution. So we need a stock price model 

that is not normally distributed. One of the fastest growing 

stock price models today is the 𝐿�̀�𝑣𝑦 process exponential 

model. The 𝐿�̀�𝑣𝑦 process has the ability to model data that has 

excess kurtosis and a longer tail (heavy tail) compared to the 

normal distribution. One of the members of the 𝐿�̀�𝑣𝑦 process 

is the Variance Gamma (VG) process. The VG process has 

three parameters which each of them, to control volatility, 

kurtosis and skewness. In this research, the secondary data 

samples of options and stocks of two companies were used, 

namely zoom video communications, Inc. (ZM) and Nokia 

Corporation (NOK).  The price of call options is determined by 

using closed form equations and Monte Carlo simulation. The 

Simulation was carried out for various 𝑁 values until 

convergent result was obtained.  

 

1. INTRODUCTION  

A well-known option price model is the Black-Scholes model. This model was 

developed by Fisher Black and Myron Scholes in 1973 to determine the price of European-

type options assuming no dividend payments, no transaction costs, constant risk-free 

interest rates, and changes in stock prices following a random pattern (Hull, 2002). The 

Black-Scholes model assumes that the volatility of asset returns is constant and that the 

asset's log returns are normally distributed. The existence of high volatility is one of the 

causes of the assumption of normality not being met, because it has excess kurtosis and a 

longer tail (heavy tail) compared to the normal distribution. Abdurakhman & Maruddani 

(2018) have conducted research using the Black-Scholes model with equations related to 

the third and fourth moments, namely skewness and kurtosis. Therefore, a model that is 

able to control skewness and kurtosis is needed, namely the VG model. Seneta & Madan 

(1990), Madan & Milne (1991) have argued a Variance Gamma (VG) approach which has 
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the advantage of addiarameters to the log returns distribution to control volatility and 

kurtosis in the log returns distribution.  

Then, this VG model was generalized by Madan et al. (1998) by developing a 

three-parameter VG process, namely the addition of a parameter that controls skewness. 

Several research on options have been carried out such as in Daal & Madan (2005). 

Permana et al. (2014) which concluded that the VG model gives better results than the 

Black-Scholes model.  Another research that has been submitted by Finlay & Seneta 

(2006), in which the VG distribution is an excellent model for handling financial data. 

Hoyyi et al. (2021) have conducted a research on stock price prediction which gives the 

result that the VG model is better than the Geometric Brownian Motion model. The 

computational procedure for calculating option prices has been introduced by Avramidis et 

al. (2003), Fu (2007). The closed form is presented by Ivanov (2018), Ivanov & Ano 

(2016) which is the development of the form presented by Madan et al. (1998). 

 

2. LITERATURE REVIEW 

2.1. Brownian Motion 

According to Shreve et al. (1997), a stochastic process {𝑊𝑡} is called Brownian 
motion or Wiener process if it fulfills the following properties: 

a. 𝑊0 = 0, 

b. 𝑊𝑡 is continuous function in 𝑡 

c. If 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 and defined increments from, 𝑊𝑡 and 𝑌1 = 𝑊𝑡1
−

 𝑊𝑡0
,  𝑌2 = 𝑊𝑡2

− 𝑊𝑡1
, … , 𝑌𝑛 = 𝑊𝑡𝑛

− 𝑊𝑡𝑛−1
 

Then,  

1. 𝑌1, 𝑌2, … , 𝑌𝑛 is independent,  

2. 𝐸(𝑌𝑗) = 0  ∀𝑗, 

3. var (𝑌𝑗) = 𝑡𝑗 − 𝑡𝑗−1  ∀𝑗. 

If given a Brownian motion model with a drift term, 𝐵(𝑡) = 𝜇 −
1

2
𝜎2 +

𝜎𝑊(𝑡); 𝑡 ≥ 0 with parameters drift  𝜇 −
1

2
𝜎2, variance parameter 𝜎2, dan 𝑊𝑡 is a 

Brownian motion process that starts at 𝑊0 = 0 . On the movement of total assets, the 

stochastic process {𝑉(𝑡); 𝑡 ≥ 0} is called geometric Brownian motion if 𝑅(𝑡) = ln
𝑉𝑡

𝑉𝑡−1
, 

with 𝑅(𝑡) is the asset's log returns at time t (Dmouj, 2004).  

2.2. Geometric Brownian Motion Stock Price Model.  

According to Reddy & Clinton (2016) Geometric Brownian Motion is a derivative 

of the Brownian Motion process which is used as a method to simulate stock prices based 

on stock returns. The Geometric Brownian Motion model will be effectively applied if the 

company or agency is in a good and stable condition, the stock price of the company or 

agency is continuous in time, and the stock returns value is normally distributed. The 

Geometric Brownian Motion  model has two parameters, the first parameter is   which is 

the expected value of stock returns, the second parameter   is the volatility of stock 

prices. 

According to Brigo et al. (2011) Geometric Brownian Motion model is determined 

as follows: 

       tdWtSdttStSd     
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where the stock price is denoted by S and time is denoted by t. W is Standard Brownian 

Motion with Normal distribution with mean 0 and variance equal to 𝑡𝑗 − 𝑡𝑗−1, is the 

expected value of stock returns, and    is stock price volatility. The solution of the 

Stochastic Differential Equation to obtain a Geometric Brownian Motion stock price model 

can be obtained through the oIt ˆ theorem. 

If there is an equation: 

       tdWtSdttStdS     

Then according to oIt ˆ theorem, the function   tsGG ,  is as follows: 
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so that, 
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Then by integrating both sides from 0 to t, we get: 

   









t tt

o

tdWdtGd
0 0
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To simulate this process, the discrete-time continuous model 𝑡0 < 𝑡1 <  … < 𝑡𝑛 is solved as 

follows: 
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𝑺(𝒕𝒊+𝟏) = 𝑺(𝒕𝒊) 𝐞𝐱𝐩((𝝁 −
𝟏

𝟐
𝝈𝟐)(𝒕𝒊+𝟏 − 𝒕𝒊) +  𝝈√𝒕𝒊+𝟏 − 𝒕𝒊𝒁𝒊+𝟏)  

Where 𝑍1, 𝑍2, … , 𝑍𝑛 is generated randomly independent of the standard normal distribution. 

2.3. Variance Gamma Process 

According to Shreve et al. (1997) the stock price at time t is 𝑆(𝑡)  following the 
geometric Brownian motion expressed in the equation:  

𝑺(𝒕) = 𝑺(𝟎). 𝒆𝒙𝒑 [(𝝁 −
𝟏

𝟐 
𝝈𝟐) 𝒕 + 𝝈𝑾(𝒕)]  

According to (Madan et al., 1998)  Variance Gamma (VG) process was obtained by 

evaluating Brownian motion (with constant drift and volatility) at random time changes 

given by the Gamma process. 

𝒃(𝒕; 𝜽, 𝝈) =  𝜽𝒕 +  𝝈𝑾(𝒕)  

VG process is defined on Brownian motion with drift 𝑏(𝑡; 𝜃, 𝜎)  and Gamma process with 

mean rate unit, 𝛾(𝑡; 1, 𝑣) is: 

𝑿𝑽𝑮 = 𝒃(𝜸(𝒕; 𝟏, 𝒗); 𝜽, 𝝈)  

In other words, the VG process can be obtained from Brownian motion by replacing the 

random variable time 𝑡 with the  Gamma  process 𝛾. 

The stock price model that follows the VG process is  

𝑺(𝒕) = 𝑺(𝟎). 𝒆𝒙𝒑[(𝝎 + 𝒓)𝒕 + 𝑿𝑽𝑮(𝒕)] (1) 

Accroding to Avramidis & L’Ecuyer (2006) if there is dividend 𝑞, model (1) becomes  

𝑺(𝒕) = 𝑺(𝟎). 𝒆𝒙𝒑[(𝝎 + 𝒓 − 𝒒)𝒕 + 𝑿𝑽𝑮(𝒕)]  

where: 

𝝎 =
𝟏

𝒗
𝐥𝐧 (𝟏 − 𝜽𝒗 −

𝟏

𝟐
𝝈𝟐𝒗)  

 𝑟 : risk free interest rate 

 𝜎 : the volatility of the brown motion which controls the volatility 

 𝑣  : variance of gamma time change to control kurtosis 

 𝜃  : drift on Brownian motion to control skewness 

4.2. Parameter Estimation 

One method of estimating the Variance Gamma parameter is the moment method. 

This method is easy to do and has a closed form.  According to Madan et al. (1998),   𝑋(𝑡) 

at time interval 𝑡 is a random variable VG normally distributed with mean 𝜃𝑔 and variance 

𝜎√𝑔  written as follows: 

𝑿𝑽𝑮(𝒕) =  𝜽𝒈 + 𝝈√𝒈𝒛     (2) 

Where 𝑧 is a standard normal independent of the gamma distribution 𝑔. 
The first step taken to estimate the VG parameter is to determine the first four moments 

(𝑚) of  𝑋(𝑡) as follows: 

𝒎𝟏 = 𝜽𝒕      

𝒎𝟐 = (𝜽𝟐𝒗 + 𝝈𝟐)𝒕  
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𝒎𝟑 = (𝟐𝜽𝟑𝒗𝟐 + 𝟑𝝈𝟐𝜽𝒗)𝒕  

𝒎𝟒 = (𝟑𝝈𝟒𝒗 + 𝟏𝟐𝝈𝟐𝜽𝟐𝒗𝟐 + 𝟔𝜽𝟒𝒗𝟑)𝒕 + (𝟑𝝈𝟒 + 𝟔𝝈𝟐𝜽𝟐𝒗 + 𝟑𝜽𝟐𝒗𝟐)𝒕𝟐  

The proof of this four moment values can be read in (Madan et al., 1998). 

According to t Seneta (2004), for value 𝜃2 ≈ 𝜃3 ≈ 𝜃4 ≈ 0, then the Variance 

Gamma parameters are estimated as follows:  �̂� = √𝑉𝑎𝑟(𝑋), �̂� =
𝜎 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠(𝑋)

3𝑣
 and  �̂� =

 
𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 (𝑋)

3
− 1. 

Another approach to estimate VG parameters is done with maximum likelihood estimation 

(MLE) as written by Fragiadakis et al. (2013). 

Numerical methods have played an increasingly important role in financial 

mathematics. This is due to the fact that most financial models have analytical solutions in 

only a few special cases. The Monte Carlo method is often used when analytical solutions 

are difficult to implement due to the complexity of the problem (Avramidis & L’Ecuyer, 

2006).  

Option pricing depends on the path based on the VG model. The payoff depends on 

the value of the process on a finite number of observations, Let's say 0 = 𝑡0 < 𝑡1 < ⋯ <
𝑡𝑑 = 𝑇, where 𝑇 is the expiration date. According to  Madan et al. (1998), European call 

options price 𝐶(𝑆(0), 𝐾, 𝑡) can be written with a familiar expression as follows 

𝑪(𝑺(𝟎), 𝑲, 𝒕) = 𝒆−𝒓𝒕𝑬[𝐦𝐚𝐱 (𝑺(𝒕) − 𝑲, 𝟎]      

where the expectation is obtained based on the risk-free process equation (1).  

According to  Hull (2002) There are six factors that affect the price of stock 

options, that is: the current stock price, 𝑆0 (current stock price), deal price, K (strike price), 

expired date, T (time to expiration), stock price volatility, σ (volatility), risk free interest 

rate, r (risk-free interest rate) and dividends expected to be paid. The VG density function 

is very complex because it involves the Gamma process and the Bessel function, resulting 

in the determination of the call option price also requiring a fairly complicated process. 

Closed form European call option prices have been discovered by Madan et al. (1998). In 

this study, two approaches were used to estimate the value of the call option, namely the 

Monte Carlo simulation and the closed form. The following is a Monte Carlo simulation 

algorithm for N to calculate European call options without dividends using the VG model, 

a. Monte Carlo simulation of the VG process as a change in Brownian motion to Gamma 

time 

Input: 
 𝑁, 𝑆0, 𝐾, 𝑟, 𝑇 

   Parameter VG : 𝜎, 𝜃 and 𝑣 

   𝜔 =
1

𝑣
ln (1 − 𝜃𝜐 − 0,5𝜎2𝑣) 

Loop : i = 1 to N:  

1. Generate Δ𝑔𝑖~Γ (
Δ𝑡𝑖

𝑣
, 𝑣) , 𝑍𝑖 ~ 𝑁(0,1) mutually independent 

 𝑆(𝑖) = 𝑆0 exp((𝑟 + 𝜔) 𝑇 + 𝜃Δ𝑔
𝑖

+ 𝜎√Δ𝑔
𝑖
 𝑍𝑖) 

2. Return 𝑢(𝑖) = exp(−𝑟𝑇) max(𝑆(𝑖) − 𝐾, 0) 

Calculate: call option =
1

𝑁
∑ 𝑢𝑖

𝑁
𝑖=1  
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b. Monte Carlo simulation of the VG process as the difference between the two Gamma 

processes 

Input: 
 𝑁, 𝑆0, 𝐾, 𝑟, 𝑇 

 Parameter VG : 𝜎, 𝜃  and 𝑣 

 𝜇𝑟 =
1

2
√𝜃2 +

2𝜎2

𝑣
+

𝜃

2
 , 

 𝜇𝑠 =
1

2
√𝜃2 +

2𝜎2

𝑣
−

𝜃

2
 

 𝜔 =
1

𝑣
ln (1 − 𝜃𝜐 − 0,5𝜎2𝑣) 

Loop : i = 1 to N:  

1. Generate  𝑔𝑟𝑖~Γ (
Δ𝑡𝑖

𝑣
, 𝑣𝜇𝑟), 𝑔𝑠𝑖~Γ (

Δ𝑡𝑖

𝑣
, 𝑣𝜇𝑠) mutually independent 

 𝑆(𝑖) = 𝑆0 exp((𝑟 + 𝜔) 𝑇 + 𝑔
𝑟𝑖

−  𝑔
𝑠𝑖

 ) 

2. Return 𝑢(𝑖) = exp(−𝑟𝑇) max(𝑆(𝑖) − 𝐾, 0) 

Calculate : call option =
1

𝑁
∑ 𝑢𝑖

𝑁
𝑖=1  

 

3. MATERIAL AND METHOD  

The stages of data analysis are as follows: 

a. Calculating daily stock data log returns using equation (3) 

b. Exploring daily stock returns log data. 

c. Conducting data distribution tests including normality test and Variance Gamma 

distribution test. 

d. Estimating VG parameters 

e. Performing a Monte Carlo simulation to obtain a call option value with several N 

values until a convergent result is obtained 

f. Calculating the value of the call option using the closed form equation. 

In this study, secondary data for closing daily stock prices and call option data from 

Zoom Video Communications, Inc. (ZM) (Finance Yahoo, 2021b) and Nokia Corporation 

(NOK) (Finance Yahoo, 2021a) were applied. The period of ZM daily stock data used is 

from April 22, 2019 to February 12, 2021 (459 observations). As for NOK stocks from 

February 15, 2019 to February 12, 2021 (503 observations). The data was processed using 

the r4.0.2 software (Team, 2020). Some of the r packages used are: VarianceGamma (Scott 

et al., 2018), BAS (Clyde et al., 2011) and Bessel (Martin & Maechler, 2019). 

 

4. RESULTS AND DISCUSSION 

Data exploration is done to see the characteristics of the data by looking at the shape 

of the data distribution. One form of data exploration that is often used is the histogram. 

The histogram provides information about the symmetry and height of the shape of the 

data distribution. The following histogram of daily stock returns logs ZM and NOK,  
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Figure 1. Histogram Log Returns of Daily ZM 

Stocks 
Figure 2. Histogram Log Returns of Daily 

NOK Stocks 

Figure 1 and Figure 2. Show an asymmetric distribution shape (skewness ≠0) and a 
high curve shape (leptokurtic). These two criteria indicate that the data is not normally 

distributed. The distribution of data that is not normal can be caused by outliers or spikes 

from data that are often found in financial data, one of which is stock data. The spike in 

data can be seen from the plot of data against time (time series plot). The following is a 

time series plot of the daily stock log returns of ZM and NOK 

  

Figure 3. Plot of the Time Series Log Returns 

of ZM's Daily Stock 
Figure 4. Plot of Time Series Log Returns of 

NOK's Daily Stock 

In Figure 3 and Figure 4. Informing that there has been a spike in the value of stock 

log returns at several time periods. The increase in value was due to the large number of 

Zoom and Nokia users which resulted in the increase in the value of ZM and NOK stocks. 

The time series plots in Figures 3 and 4 show data patterns that have non-constant 

variances, so there is an assumption that the data are not normally distributed. To ensure 

that the data distribution is not normal, hypothesis testing is carried out. Testing the normal 

distribution of daily stock log returns of ZM and NOK. Test results using 𝛼 = 5% gave 
value p-value each 0.0007,635 10-4 and 7.426 x 10-13 which concludes that the daily stock 

returns log distribution is not normally distributed. 

Based on the results of data exploration, descriptive statistics and hypothesis 

testing, it can be concluded that the data are not normally distributed. So that the modeling 

is carried out for data that is not normally distributed, that is the Variance Gamma model. 

The VG distribution has three parameters, namely 𝜎, 𝑣 and 𝜃. Estimation of these three 
parameters is carried out using the Maximum Likelihood method. The results are as 

follows: 

Table 2. Parameter Estimation Result of Variance Gamma Distribution 

 

 

Stock Name �̂� �̂� 𝜃 

ZM 0.01763 0.11840 1.60950 

NOK 0.04077 0.11840 -0.01120 
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After the VG distribution parameters have been estimated, the next step is to 

determine the value of the ZM and NOK stock call options using a Monte Carlo simulation 

and a closed form. The required values are as follows:  

a. 𝑆0, is the current stock price. In this study, the closing price of ZM stocks on February 

21, 2021 is used, that is $ 417.26. Meanwhile, for NOK stocks, the closing price of 

stocks is $ 4.0700 

b. 𝑇, is the expiration time. In this study, March 12, 2021 was chosen as the expiration 

date, so the value of  𝑇 = 19/252 
c. r, The risk-free interest rate is determined based on the FED central bank interest rate 

of  0.25% 

d. 𝐾, deal price. The 𝐾 value used varies for 2 call option contract codes 

e. Parameter Variance Gamma as listed in Table 2 

f. 𝑁, the number of simulations used various values of  𝑁. 

The simulation is carried out for various values of N and strike price (K) according 

to the number of the call option contract. The following are the results of the simulation of 

the call option prices for ZM and NOK stocks.  

Table 3. Call Option Value of ZM stock using Monte Carlo Simulation and Closed Form 

Code Price Monte Carlo Closed form 

Call Option Contract 

Code 

Last 

price 
($) 

Bid 

 
($) 

Ask 

 
($) 

Strike 

Price 
($) 

𝑁 Call 

option 
VG1 

($) 

Call 

option 
VG2 

($) 

Call option 

Closed form 
($) 

ZM210312C00250000 171.90 164.20 171.20 250 10 148.9617 210.6376 163.4199 

     100 194.9904 162.4577  
     1,000 170.0779 170.0972  

     10,000 166.8949 167.3095  

     100,000 167.0716 167.7997  

     1,000,000 167.1083 167.7887  

     10,000,000 167.2059 167.7430  

ZM210312C00200000 243.50 213.80 221.00 200 10 198.5891 213.0348 216.3705 
     100 208.8432 210.7308  

     1,000 216.6191 220.7821  

     10,000 215.5057 218.1523  

     100,000 217.2487 217.9034  
     1,000,000 217.1162 217.6224  

     10,000,000 217.1595 217.6176  

Table 3 provides information on the value of the Zoom stock call option model 

VG1 and VG2. The value of the call option is obtained through a Monte Carlo simulation 

with several N values and using a closed form. In this study, the value of 𝑁 is set from 10 

simulations to 10,000,000 simulations. At  𝑁 = 10 to 𝑁 = 100,000, it shows the estimated 
value of the call option that has not converged. The estimated value of the call option has 

converged in the simulation for 𝑁 = 1,000,000 and 𝑁 = 10,000,000, so that the estimated 

value of the call option at 𝑁 = 10,000,000 is used. For example, on Zoom stocks with code 

ZM210312C00250000 with a strike price of 250, the estimated call option value is 

167.2059 for the VG1 model and 167.7430 for the VG2 model. The results of the Monte 

Carlo estimation with two approaches to the VG1 model and the VG2 model show results 

that are not much different. As well as the value of other Zoom stock call options. While 

the estimation results using the closed form equation on ZM stocks give slightly different 

call option results.  
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Table 4. NOK Stock Call Option Value Using Monte Carlo Simulation and Closed Form 

Code Price Monte Carlo Closed 

form 

Call Option Contract 

Code 

Last 

price 

($) 

Bid 

 

($) 

Ask 

 

($) 

Strike 

Price 

($) 

𝑁 Call 

option 

VG1 
($) 

Call 

option 

VG2 
($) 

Call option 

Closed 

form 
($) 

NOK210312C00002000 2.06 2.01 2.12 2.00 10 2.072329 2.053022 2.070377 
     100 2.073642 2.064653  

     1,000 2.067947 2.073980  

     10,000 2.070188 2.073750  

     100,000 2.070238 2.073517  
     1,000,000 2.070425 2.073794  

     10,000,000 2.070393 2.073730  

NOK210312C00003000 1.07 1.07 1.10 3.00 10 1.091199 1.048112 1.070565 

     100 1.072194 1.068410  

     1,000 1.072100 1.071915  

     10,000 1.070319 1.070427  

     100,000 1.070575 1.070617  
     1,000,000 1.070501 1.070557  

     10,000,000 1.070564 1.070586  

Table 4 provides information on the value of the Nokia stock call option VG1 and 

VG2 models. The simulation process on Nokia stock converges faster than on Zoom stock. 

The estimated value of the call option on NOK stocks has converged at N= 100,000 and 

N= 1,000,000. The estimation result of call options for NOK stocks is closer to the last 

price. The estimation results of the call option obtained from the closed form equation on 

NOK stocks give result that is not much different from the result of the Monte Carlo 

simulation. 

 

5. CONCLUSION 

Stock price option modeling for log returns data that are not normally distributed 

can be conducted using the Variance Gamma model. In this study, the estimation result of 

call options use two approaches, namely the Monte Carlo simulation and the closed form. 

Through these two approaches, the estimation result of call options on NOK stocks gives 

result that is not much different. 
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