
 

p-ISSN 1979 – 3693 e-ISSN 2477 – 0647 

MEDIA STATISTIKA 17(1) 2024: 36-44 

http://ejournal.undip.ac.id/index.php/media_statistika 

 

Media Statistika 17(1) 2024: 36-44 36 

 

A-OPTIMAL DESIGN IN NON-LINEAR MODELS TO INCREASE SILICON 

DIOXIDE PURITY LEVELS 

 
Ghea Weisha1, Erfiani1, Utami Dyah Syafitri1, Irzaman2 
1 Department of Statistics, IPB University, Bogor, Indonesia 
2 Department of Physics, IPB University, Bogor, Indonesia 

 

e-mail: utamids@apps.ipb.ac.id 

 

DOI: 10.14710/medstat.17.1.36-44 
 

Article Info: 
Received: 28 April 2022 

Accepted: 21 September 2024 

Available Online: 14 October 2024 

 
Keywords:  
Optimal Design; A-Optimal; 

Silicon Dioxide 

. 

 

Abstract: Silica is the most mineral found on earth and is 

widely used in industry. Silica used in industry is usually silicon 

dioxide with a purity ≥ 95% and its often sold at a higher cost. 

To obtain the silica at a lower cost, silica extraction from 

biomass such as rice husk can be conducted. The purity of silica 

extracted from biomass tends to be lower than that of mineral 

silica. Silica with low purity can be increased by adjusting the 

temperature and the rate of temperature rise. This research aims 

to obtain the best design to determine the purity of silicon 

dioxide. The design of this study was generated based on the A-

optimality criterion using the DETMAX algorithm. The A-

optimality criterion is  minimizing the trace of the variance-

covariance of the parameter estimation. The best design points 

obtained using A-optimal design consist of three temperature 

groups: the minimum temperature of 800°C, the middle 

temperature of 850°C, and the maximum temperature of 900°C, 

with varying rates of temperature rise. Points were repeated at 

the temperature of 850°C, with rates of temperature rise of 

1.67°C/min and 3.34°C/min.  

 

1. INTRODUCTION  

Silicon dioxide (SiO2), or silica is a common mineral found on Earth. Utilizing silica 

is quite large, including in the production of windows, glasses, beverage bottles, and more.  

Silica is also a widely used material in semiconductor devices as the primary material for 

electronic components (Arul Prishya et al., 2023). High-purity silica (≥ 95%) is used in 

industrial applications such as microcomputer chips, solar cells, and others (Ghosh et al., 

2017). Mineral silica is generally sold at a relatively high price. While mineral silica 

commands a premium, silica can also be extracted from biomass sources like rice husks, rice 

straw, and bamboo leaves, offering a more accessible alternative.  

Previous studies have shown that rice husk ash contains the highest silica content 

among the agricultural biomass studied, ranging from 90-98% of its dry weight (Casnan et 

al., 2019). Bamboo leaf ash, with a silica content of 75.9% (Sa’diyah et al., 2016), comes in 

second place. Straw ash, on the other hand, contains approximately 75% silica (Har et al., 

2019). Therefore, based on these findings, rice husk ash exhibits the highest silica content.  

In most countries that grow rice, the rice husk is often thrown away or burned after 

the rice is processed. As agricultural waste, the annual output of rice husks is 120 million 
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tons worldwide (Mohd Kamal et al., 2014). Compared with other biomass, the main content 

of rice husk ash is silicon dioxide (Guo et al., 2021). Due to the extremely high selling price 

of mineral silica, rice husk waste can be used to produce silica and it has more economical 

alternative. The low purity of silica can be improved through an extraction process by 

adjusting the temperature factor (°C) and rate of temperature rise (°C/min), where the 

combination of these factors will affect the improvement of silica purity to varying degrees 

(Adli et al., 2018; Aminullah et al., 2018; Sintha et al., 2017).  

To obtain the combination of these factors, an experimental design is needed. 

Experimental design is conducted to obtain results with minimal error (Montgomery, 2020). 

One of the challenges in conducting experimental design is that the combination of these 

factors can result in a large number of experiments. To investigate the impact of multiple 

experimental factors, researchers can employ optimal design theory (Atkinson et al., 2007).  

The optimal design is used to identify the best test points to achieve the desired 

outcomes in an experiment. The optimal design uses several criteria, one of which is the 

optimal design with criteria based on parameter estimators, such as D-, A-, I-optimal criteria 

and others. This research was conducted collaboratively by a group of researchers. The 

members was tasked with investigating the relative merits of I-optimal (Aliu et al., 2024) 

and G-optimal (Wulandari et al., 2023). A previous study evaluated the performance of A-

optimal and D-optimal designs, which are criteria used in screening experiments to assess 

parameter estimate variance, the A-optimal design gave better results than the D-optimal 

design (Jones et al., 2020).  

This research aims to find the best design for estimating parameters in a non-linear 

model using the A-optimality criterion. Non-linear models are more complex than linear 

models, making it harder to find the optimal design. Determining the optimal design in the 

non-linear model is relatively more difficult than in the linear model due to the need for 

additional information in the information matrix. The goal of this study is to find the best 

design for determining the purity of silica levels. 

  

2. LITERATURE REVIEW 

2.1. Non-linier Model 

A non-linear model is a relationship between the response variable and the 

explanatory variable that is not linear in the parameters. In general, the non-linear model can 

be written as follows: 

𝑦𝑖 =  𝜂(𝑡 , 𝜃) + 𝜀𝑖     (𝑖 = 1,2, … , 𝑛) (1) 

The non-linear model in this study is a form of relationship between temperature 

(factor) and purity level. The relationship between temperature and the silica purity levels 

follows an exponential distribution (Rivai et al., 2018). The non-linear model widely used 

in the study of pharmacokinetics and chemical kinetics is the exponential decay model 

(Atkinson et al., 2007). The exponential decay model with single factor is as follows:  

𝑓(𝑡) = [𝐴0]{1 − exp(−𝜃𝑡)} (2) 

with 𝑓(𝑡) = expectation value; 𝐴0 = constants; 𝜃 = parameter; 𝑡 = factor. 

Estimating the parameters of non-linear models usually cannot be solved 

analytically, so a numerical method is needed to obtain the estimated parameters. One of the 

numerical methods that can be used is the Taylor approach (Kouki & Griffiths, 2019). A 
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model is approximated using the Taylor approach to get results closer to the initial solution. 

The nth-order Taylor polynomial approach used for the two variables is as follows: 

𝑓(𝑡, 𝑟) = ∑ ∑
𝑑(𝑖+𝑗)

𝜕𝑡𝑖𝜕𝑟𝑗
𝑓(𝑎,𝑏)

𝑖!𝑗!
(𝑡 − 𝑎)𝑖(𝑟 − 𝑏)𝑗𝑛−𝑖

𝑗=0
𝑛
𝑖=0   (3) 

where  𝑓(𝑡, 𝑟) are a function of 𝑡 and 𝑟, 𝑎, and 𝑏 are constants.  

2.2. Optimal Design 

The experimental design generally arranges the possibilities that arise in an 

experiment. If an experiment has a factor consisting of several levels, the number of 

experiments carried out will be enormous. The more factors are used, the more experiments 

are carried out, so it is increasingly challenging to choose design points that produce optimal 

experiments. 

Optimal design is one part of the experimental design which aims to obtain 𝑛 optimal 

design points that can produce a model coefficient with the smallest standard error (Aguiar 

et al., 1995). The A-optimality criterion in the design is expected to obtain parameter 

estimates with a minimum variance and increase the accuracy of predicting the results of an 

experiment. 

2.3. A-Optimality Criteria 

An A-optimal design minimizes the sum of the diagonal elements of the ordinary 

least-squares estimator's variance-covariance matrix (Jones et al., 2020). The sum is called 

the trace of the variance-covariance matrix, an A-optimal design minimizes the 

trace(𝐗𝑇𝐗)−1. The form of matrix X can be explained as follows (Atkinson et al., 2007): 

𝐗 = [

𝑥11

𝑥21

⋮
𝑥𝑛1

𝑥12

𝑥22

⋮
𝑥𝑛2

⋯
⋯
⋱
⋯

𝑥1𝑝

𝑥2𝑝

⋮
𝑥𝑛𝑝

]   

X is the 𝑛 x 𝑝 matrix, where n is the number of experiments and 𝑝 is the number of 

parameters. 

A measure of the design goodness can be calculated with the efficiency values, for 

A-optimality criteria is called A-efficiency value. The A-efficiency value can be written as 

follows (Atkinson et al., 2007): 

𝐴𝑒𝑓𝑓 = 100 × (
𝑝/𝑁

𝑡𝑟𝑎𝑐𝑒(𝐗𝑇𝐗)−1
)  (4) 

where 𝑝 is the number of parameters, 𝑁 is the number of design points. 

2.4. Design Points Selection 

An algorithm forms the design point candidate selection. One of them is the point-

exchange algorithm. This algorithm aims to remove or add design matrix points by looking 

at the effect of the modification. There are several ways of finding an optimal solution. The 

simplest one is a randomized selective (Aguiar et al., 1995). Previous research has indicated 

that the randomized selective algorithm can be less accurate and more unstable, whereas 

deterministic algorithms have demonstrated higher accuracy, faster execution times, and 

simpler implementation (Broadbent et al., 2010).  This suggests that deterministic algorithms 

like DETMAX algorithm might be a more suitable choice for applications that require 

reliable and efficient performance. 

The DETMAX algorithm is often used for non-linear models, where it can be 

challenging to find optimal design points using other methods. The DETMAX algorithm is 
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an iterative algorithm used in experimental design to find optimal design points. It works by 

adjusting the design points in a systematic way to minimize a specified objective function, 

such as the average variance of the parameter estimates The steps of the DETMAX algorithm 

are as follows (Mitchell, 2000): 

1. Create a list of possible experimental setups that explore the full range of design. These 

points will form the candidate set (N).  

2. Starting with a randomly chosen set of n design points (initial design). 

3. Calculate the A-optimal value, trace(𝐗𝑇𝐗)−1, and A-efficiency based on Equation (4). 

4. Add or Remove design points at the initial design to minimize the trace. 

5. Repeat the process until the trace of the inverse information matrix reaches a minimum 

or stopping criterion is met. The Algorithm should stop when 𝐴𝑒𝑓𝑓(𝑖) > 𝐴𝑒𝑓𝑓(𝑖−1).  

 

3. MATERIAL AND METHOD  

3.1. Model Used 

An A-optimal design approach was employed to determine the optimal experimental 

conditions for increasing the silica purity levels. The best design results from the A-optimal 

design in non-linear models using the DETMAX algorithm with the help of SAS PROC 

OPTEX (SAS Institute Inc., 2018), we generated an A-optimal design with 𝑛 experimental 

runs.  

The model in this study is a non-linear model obtained from the relationship between 

temperature (°C) and rate of temperature rise (°C /min) as factors with the silica purity levels 

(%) as the response (Rivai et al., 2018). The used factors in this design are the temperature 

levels at intervals of 800°C to 900 °C and the rate of temperature rise at intervals of 1.67 

°C/min to 5 °C/min with the increasing 0.5 °C/min.  

The relationship between temperature and the silica purity levels of silica follows an 

exponential distribution. The non-linear model that is widely used in the study of 

pharmacokinetics and chemical kinetics is the exponential decay model (Atkinson et al., 

2007). Based on the Equation (2), the exponential decay model used in this study is as 

follows: 

𝑓(𝑡, 𝑟) = [𝐴0]{1 − 𝑒−𝜃1𝑡+𝜃2𝑟}  (5) 

where 𝑓(𝑡, 𝑟) = expected value of the response; 𝐴0 = constants; 𝜃1, 𝜃2 = parameters; 𝑡 = 

temperature; 𝑟 = rate of temperature rise. 

3.2. Steps of Point Exchange Algorithm 

The algorithm to determine the design point of the temperature factors is described 

as follows: 

1. Create N design points (candidate set) from the temperatures levels at intervals 800 °C 

to 900 °C and the rate of temperature rise at intervals 1.67 °C/min to 5 °C/min with the 

increasing 0.5 °C/min. 

2. Determine n choice sets which are chosen randomly from the candidate set so that the 

matrix, X(0), is obtained. 

3. Calculate the A-optimal value and the A-efficiency value based on Equation (4). 

4. Exchange point on the choice set matrix with the candidate set. This step is called the 

improvement process. The exchanges process uses the DETMAX algorithm, which adds 

and reduces a current choice set from the candidate set.  

5. Repeat steps 2, 3, and 4 by the iterating process until the design point is selected with 

the best A-efficiency value (the highest value), when 𝐴𝑒𝑓𝑓(𝑖) > 𝐴𝑒𝑓𝑓(𝑖−1). 
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4. RESULTS AND DISCUSSION 

4.1 Non-linear Model Approach 

The Taylor method is a useful technique for simplifying non-linear equations by 

approximating them with linear equations. The approach adopted here focuses on finding an 

initial solution that minimizes error. Specifically, this method applies the Taylor expansion 

up to the 𝑛th-order polynomial equation. The selection of the appropriate order in this study 

was guided by the Mean Square Error (MSE) values, with the order that resulted in the 

smallest MSE being chosen. Table 1 summarizes the selected orders and their corresponding 

MSE values. 

Table 1. MSE Values of the Silicon Dioxide Purity Level 

 Taylor Polynomial MSE  

 First Order 7.90E-08  

 Second Order 5.08E-10  

 Third Order 1.95E-12  

As shown in Table 1, the second-order Taylor polynomial was chosen for this study 

because it provides a lower MSE (5.08E-10) compared to the first-order polynomial, while 

maintaining a less complex model than the third-order alternative. This balance between 

model simplicity and prediction accuracy makes the second-order approach more suitable 

for the analysis of the Silicon Dioxide purity level. Using Equation (3) with 𝜃1= 0,005 and 

𝜃2= 0,005, the second-order Taylor approximation employed in this study is detailed as 

follows: 

𝑓(𝑡, 𝑟) = 0.79413127 + 0.00037952𝑡 − 0.00037952𝑟 

−1.813010525 10−7𝑡2 + 3.6260211 10−7𝑡𝑟 

−1.8130105 10−7𝑟2 

(6) 

4.2 A-Optimal Design on Silicon Dioxide Purity Levels 

A-optimal design was used to find optimal design points from the predictor variables, 

namely temperature, and rate of temperature rise on the response variable of the silicon 

dioxide purity levels. In this study, three alternatives will be carried out. The first alternative 

takes six design points, the second alternative takes nine design points, and the third 

alternative takes 12 design points. The efficiency values of the three options can be seen in 

Table 2. 

Table 2. A-Efficiency Value Using DETMAX Algorithm 

Design 

Number 

A-efficiency 

Alternative 1 Alternative 2 Alternative 3 

1 24.9383 31.1997 32.7587 

2 24.8916 31.1997 32.7587 

3 24.8860 31.1997 32.7587 

4 24.8860 31.1997 32.7587 

5 24.8837 31.1997 32.7587 

6 24.8837 31.1997 32.7587 

7 24.8782 31.1997 32.7587 

8 24.8616 31.1997 32.7587 

9 24.8576 31.1997 32.7587 

10 24.8497 31.1997 32.7587 

Table 2 shows alternative 2 and alternative 3 have consistently higher A-efficiency 

values than alternative 1 across all design numbers.  Alternative 3 consistently achieves the 
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highest A-efficiency values across all experimental runs. This indicates that Alternative 3 is 

the most efficient design for estimating the model parameters in this study. The best A-

efficiency value of each alternative is shown in design number 1. The best design points of 

each choice are presented in Table 3, Table 4, and Table 5. 

Table 3. A-Optimal Design with 6 Design Points 

No Temperature Rate 

1 800 1.67 

2 800 4.17 

3 850 3.00 

4 850 5.00 

5 900 1.67 

6 900 4.17 

Table 4. A-Optimal Design with 9 Design Points 

No Temperature Rate 

1 800 1.67 

2 800 3.50 

3 800 5.00 

4 850 3.00 

5 850 3.17 

6 850 5.00 

7 900 1.67 

8 900 3.5 

9 900 5.00 

Table 5. A-Optimal Design with 12 Design Points 

No Temperature Rate 

1 800 1.67 

2 800 3.17 

3 800 5.00 

4 850 1.67 

5 850 1.67 

6 850 3.34 

7 850 3.34 

8 850 3.34 

9 850 5.00 

10 900 1.67 

11 900 3.17 

12 900 5.00 

Table 3, Table 4, and Table 5 present the optimal design points for a process based 

on the A-optimal criterion. The three tables correspond to different numbers of design points: 

6, 9, and 12. The A-optimal design with six design points at Table 3 offers a balance between 

efficiency and experimental cost. However, if higher precision is desired, the A-optimal 

design with nine design points at Table 4 or twelve design points at Table 5 can be 

considered. The pattern of best A-optimal designs as shown in Figure 1.     

The A-optimal designs in Figure 1, for alternative 1, 2, and 3 are categorized into 

three temperature groups: minimum, middle, and maximum. In all three alternatives, the first 

group consists with the minimum temperature 800°C, the second group consists with the 

middle temperature 850°C, and the third group consists with the minimum temperature 
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900°C. In alternatives 1 and 2, there were no repeated design points. However, in Alternative 

3, there was a repetition of points at a temperature of 850°C with the rate of temperature rise 

of 1.67°C/min and 3.34°C/min. Based on Figure 1, each design suggests that as the number 

of design points increases, the frequency of repeated points within the design area also 

increases. 

A quadratic pattern of design points is often used in experiments to capture non-

linear relationships between variables. In this case, the quadratic pattern in Alternative 3 

ensures that the design points are distributed across the entire temperature range, allowing 

for a more accurate estimation of the model parameters and a better understanding of the 

non-linear relationship between temperature and rate of temperature rise. 

The A-efficiency of each design points will be compared with those from previous 

studies. The first study yielded an A-efficiency of 21.98872 (Wulandari et al., 2023), while 

the second study obtained an A-efficiency of 18.52071 (Aliu et al., 2024). Based on the 

results, the design points obtained in this research have an A-efficiency of 32.7587, which 

is more powerful than those previous studies.  

 

5. CONCLUSION 

This study obtained the results using A-optimal design with DETMAX algorithm, 

which were significantly better than previous studies. The A-optimal design with an A-

efficiency of 32.7587 was selected for this study, as it outperformed other designs. While 

the six point design offers a good balance between efficiency and cost, the twelve point 

design is better for achieving the optimal accuracy. 

(a) (b) 

(c) 

Figure 1. Design points for: (a) Alternative 1, (b) Alternative 2, (c) Alternative 3  
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