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Abstract: Competing risk failure time data occur frequently in 

medical a number of methods have been proposed for the 

analysis of these data. The classic approach is to model all 

cause-specific hazards and then estimate the cumulative 

incidence curve based on these cause-specific hazards. 

Unfortunately, the cause-specific hazard function does not 

have a direct interpretation in terms of survival probabilities 

for the particular failure type.  In this paper, we consider a 

more flexible model for the subdistribution. It is a combination 

of the additive model and the Cox model and allows one to 

perform a more detailed study of covariate effects. One 

advantage of this approach is that our regression modeling 

allows for non-proportional hazards. This leads to a new 

simple goodness-of-fit procedure for the proportional 

subdistribution hazards assumption that is very easy to use. We 

applied this method to melanoma data and estimated the 

cumulative death rate for those who died from melanoma after 

surgical removal of the tumor. It was found that two covariates 

had a time-varying effect and two other covariates had a 

constant effect in predicting the cumulative incidence curve in 

patients who died of melanoma following tumor removal 

surgery. 

 

1. INTRODUCTION  

Survival analysis is a statistical method where the outcome variable that is 

considered is the time until an event occurs or survival time. In survival data, the problem 

that often arises is the presence of censored observations. Censored observations occur 

when the survival time of the individual being observed is not known with certainty. 

Censored is the basic concept that distinguishes survival analysis from conventional 

statistical methods, causing univariate, bivariate, and multivariate analysis to be invalid for 

analyzing survival data, so special statistical methods are needed, one of which is the Cox 

regression model, also known as the Cox Proportional Hazard model. In survival analysis 

the most popular regression method used is the semiparametric regression method, this is 

because in semiparametric regression it does not require assumptions about the survival 

time distribution, but the results of the parameter estimates are close to the parametric 

regression method. The semiparametric regression method that is often used in survival 

analysis is the Cox regression model. The application of the Cox model for some situations 

is sometimes inappropriate, one of which is when competing risks occur. In general, 
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competing risks arise when an individual can experience more than one type of event, and 

the occurrence of these events precludes the occurrence of other types of events. Often, the 

timing of an event in competing risk is influenced by one or several independent variables 

(covariate). 

The Cumulative Event Curve (CIF) is the probability that a certain type of event 

occurs at or before a certain point in time and is an appropriate summary curve in 

analyzing competing risk. The Kaplan-Meier (KM) method has become a widely used tool 

for estimating survival functions and cumulative occurrence functions. This method is 

conceptually easy to understand and easy to compute, however if there is more than one 

type of event (or failure), and if these events are dependent, the KM method is biased. This 

bias arises because the KM method assumes that all events are independent, therefore the 

KM method is not appropriate for estimating the cumulative event curve. 

In biomedical studies it is important to study the effect of covariate on the 

cumulative occurrence function of a particular failure. The standard approach is to model a 

cause specific hazard for all causes. The cox proportional hazard model is the most 

commonly used regression model for all causes. This approach is valid when all cause 

specific hazards are modeled correctly, because the cumulative incidence curve for a 

particular cause is a function of all cause specific hazards. However, this method has the 

disadvantage that it is difficult to identify which specific covariate have a time-varying 

effect on the cumulative incidence curve. Overcoming this problem, Fine & Gray (1999) 

proposed a model based on subdistribution that can estimate the effect of covariate on the 

cumulative incidence curve. In this study, the authors focus on a more flexible and general 

model for the hazard subdistribution function in estimating the effect of covariate on CIF. 

This model is a combination of the additive model and the Cox model, making it possible 

to carry out a more detailed study of covariate effects. The method will be applied to the 

censored competing risks data. Sun & Liu (2006) extended the Cox proportional model to a 

more general additive hazard model for hazard subdistributions with independent time 

covariates and used the IPCW technique for censored data. In addition, the advantages of 

the model allow for non-proportional hazard in this case leading to the goodness-of-fit test 

procedure. 

 

2. LITERATURE REVIEW 

2.1. Survival Analysis 

Survival analysis is one of the statistical methods used to analyze data where the 

variable considered is the time until an event occurs. Time can be expressed in units of 

days, weeks, months, or even years, which are obtained from the initial observation of an 

individual until an event occurs for that individual (Kleinbaum and Klein, 2012). The 

purpose of survival analysis is to determine the relationship between the time of occurrence 

and the independent variables measured at the time of the study. In addition, it is also used 

to identify the factors that significantly influence an event. In survival data, one of the 

problems that arise is incomplete observations, which are generally grouped into censored 

data and truncated data. Censored data is data that cannot be observed in its entirety 

because the research subject is missing or for other reasons so that the data cannot be 

retrieved, or until the end of the study, the subject has not experienced a certain event. 

According to Collet (2003), censored data types are divided into three types, namely: 

1. The left sensor is a sensor that is carried out when the initial time of the observation 

subject is not observed, but the full failure time event can be observed before the 

research study ends. 
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2. Right censorship occurs when the subjects included in the observation can be observed 

in full but, until the end of the study, had not experienced an incident. 

3. An interval sensor is a sensor whose survival time is within an interval of certain.  

Another problem with survival data is that the truncated data is divided into left- 

and right-truncated data. Left-truncated data occurs when the individual's incident time is 

less than the left-truncated time, while right-truncated data occurs when the individual's 

incident time is more than the right-truncated time. Individuals who experienced a left or 

right slit were not included in the observation. 

2.2. Survival Function and Hazard Function 

In survival analysis, there are two basic functions, namely the survival function and 

the hazard function. The survival function is a basic function used to describe the 

phenomenon of its occurrence. The survival function is denoted by 𝑺(𝒕), which is the 

opportunity for an individual to survive longer than time 𝒕 (Kleinbaum & Klein, 2012). 

The survival function is a probability, so its value is always in the interval [0, 1]. The 

survival function is defined as follows: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) (1) 

If 𝑇 is a continuous random variable, then the survival function is the complement of the 

cumulative distribution function, where the cumulative distribution is defined as        

𝐹(𝑡) = 𝑃 ≤ 𝑡), so the survival function can be written as follows: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝑃(𝑇 ≤ 𝑡) = 1 − 𝐹(𝑡) (2) 

Furthermore, the value of  𝑆(𝑡)can be obtained through the probability density function 

𝑓(𝑡) as follows: 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) =  ∫ 𝑓(𝑥)𝑑𝑥
∞

0

 (3) 

Theoretically the survival function is a non-increasing function with respect to time t with 

the following characteristics: 

1. The survival function is a decreasing monotone function. 

2. For 𝑡 = 0 then 𝑆(𝑡) = 𝑆(0) = 1 , meaning that the chance for a research unit to 

survive at 𝑡 =  0 is 1.  

3. For 𝑡 → ∞ maka lim
𝑥→∞

𝑆(𝑡) = 0, shows that as time goes by, the chance for a research 

unit to survive will get smaller, so that if 𝑡 is very large, then the chance for a research 

unit to survive will be close to zero. 

An important measure in survival analysis besides the survival function is the 

hazard function. The hazard function often referred to as the hazard rate, is denoted by 

ℎ(𝑡). The hazard function can be defined as the rate of occurrence of an event if it is known 

that an object of research survives until time 𝑡. Systematically, it can be written as follows: 

ℎ(𝑡) = lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < (𝑡 + ∆𝑡)|𝑇 ≥ 𝑡)

∆𝑡
 (4) 

2.3. Estimation of Survival Function and Hazard Function  

The Kaplan-Meier estimator or Product Limit Estimator is a nonparametric estimator 

that is often used to estimate survival functions. The Kaplan-Meier estimator is given as 

follows (Klein & Moeschberger, 2005): 
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{

1 , 𝑡 ≤ 𝑡𝑖

∏(1 −
𝑑𝑖

𝑌𝑖
) ; 𝑡𝑖 ≤ 𝑡

𝑡𝑖≤𝑡

, 𝑡𝑖 ≤ 𝑡 (5) 

where 𝑑𝑖 is the number of individuals who experience the event at time 𝑡𝑖 and 𝑌𝑖 is the 

number of individuals at risk at time 𝑡𝑖 where 𝑡𝑖 is the survival time observed in object, for 

𝑖 =  1, 2, . . . , 𝑘. The Kaplan-Meier estimator is a function of the ladder that goes down 

when there is an event. 

To estimate the survival function using the Kaplan-Meier estimator 𝑆(𝑡), first 

calculate the standard error or variance of the survival function. The variance of the 

Kaplan-Meier estimator can be found using the Greenwoods formula (Klein & 

Moeschberger, 2005): 

𝑉𝑎𝑟[𝑆̂(𝑡)] = 𝑆̂(𝑡)2 ∑
𝑑𝑖

𝑌𝑖(𝑌𝑖 − 𝑑𝑖)
𝑡𝑖≤𝑡

 (6) 

or you can use the following formula as an alternative: 

𝑉𝑎𝑟[𝑆̂(𝑡)] = 𝑆̂(𝑡)2 ∑
1 − 𝑆̂(𝑡)

𝑌(𝑡)
𝑡𝑖≤𝑡

 
(7) 

2.4. Competing Risk Model 

Competing risk is a situation where an individual may experience more than one 

type of event, and the occurrence of one type of event precludes the occurrence of another. 

If failure were the different causes of death, then only death from the first cause would be 

observed and considered an event of interest, whereas death from any other cause would be 

considered a competing risk. The existence of competitive risks implies that the usual 

methods of survival must be applied with caution, and the consequences of their use must 

be recognized. One method that is often used to estimate the probability of survival over a 

certain period of time is the Kaplan-Meier method. 

 

Figure 1. Figure Illustrating the Competing Risks Model 

In the case of competing risks, the Kaplan-Meier method considers failures from 

other causes or competing risks as censored observations, but this causes bias. Kalbfleisch 

and Prentice (1980) suggest an approach that can be used in calculating competing risk, 

namely the cumulative event function (CIF), by using this technique, the probability of 

each event that occurs is partitioned into the probability for each type of event. In general, 

the standard approach that is often used in estimating and modeling the cumulative event 

function is by estimating and modeling the cause specific hazard 𝑘(𝑡)𝑓𝑜𝑟 𝑘 =  1, … , 𝐾 

cause as shown in Figure 1. 
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2.5. Additive Subdistribution Hazard Model 

In the case of  competing risks, assuming two types of failures 𝑘 (𝑘 =  1, 2, . . . ) the 

cumulative incidence function for cause 1 given a set of covariates 𝑥 is given by 

𝐹1(𝑡; 𝑿, 𝒁) = 𝑃(𝑇0 ≤ 𝑡, 𝜀 = 1|𝑿, 𝒁)  

With 𝑋 and 𝑍 as covariates. Cumulative event function inference for other types of failures 

can be done in a similar way. To estimate 𝐹1, Fine & Gray (1999) proposed a model of the 

hazard function  𝐹1, as a substitute for the cause-specific hazard function. The advantage of 

this model is that it can estimate  𝐹1 directly without simultaneously estimating 

subdistributions corresponding to other failure types, defined as follows: 

𝜆1(𝑡; 𝑿, 𝒁) = lim
∆𝑡→0

1

∆𝑡
𝑃{(𝑡 ≤ 𝑇0 ≤ 𝑡 +  ∆𝑡, 𝜀 = 1|𝑇0 ≤ 𝑡 ∩ 𝜀 ≠ 1), 𝑿, 𝒁} 

=  −
𝑑

𝑑𝑡
𝑙𝑜𝑔{1 − 𝐹1(𝑡; 𝑿, 𝒁)} 

 

with 𝐹1(𝑡; 𝑿, 𝒁) = 1 − exp{−Λ1(𝑡; 𝑿, 𝒁)} 

where Λ1(𝑡; 𝑿, 𝒁) = ∫ 𝝀𝟏(𝑢; 𝑿, 𝒁)𝑑𝑢.
𝒕

𝟎
 In the following, it assumes that 𝜆1 has the form 

𝜆1(𝑡; 𝑿, 𝒁) = 𝜶𝑻(𝑡)𝑿 + 𝜆10(𝑡)exp (𝜷𝟎
𝑻𝑍) (8) 

where 𝜶(𝑡) is the q unknown dimension vector of the time-dependent component 

representing the covariate effect 𝑿, where as 𝛽0  is the dimension vector p of the unknown 

regression parameter showing the covariate effect 𝒁, and 𝜆10 is the baseline hazard 

function that is undefined. 

2.6. Regression Parameter Estimation 

Let 𝑇𝑖, 𝐶𝑖, 𝜀𝑖, 𝑿𝑖 , 𝒁𝑖}, 𝑖 = 1, … , 𝑛 be 𝑛 be 𝑛 independent, and {𝑇𝑖, 𝛿𝑖 , 𝛿𝑖𝜀𝑖, 𝑿𝑖 , 𝒁𝑖} is 

the observed data. It is assumed that for simplification the censoring variable 𝐶 is 

independent of the survival time of  𝑇, and the covariate 𝑿 and the covariate 𝒁. Define 

𝑁𝑖(𝑡) = 𝐼(𝑇𝑖
0 ≤ 𝑡, 𝜀 = 1), 𝑌𝑖(𝑡) = 1 − 𝑁𝑖(𝑡), and 𝐺(𝑡) = 𝑃{𝐶 ≤ 𝑡}. Define 𝐺̂(𝑡) shows 

the Kaplan-Meier estimator of 𝐺(𝑡). 

It should be noted that 𝑁𝑖(𝑡) and 𝑌𝑖(𝑡) are usually not fully observed when 

censorship is present and the risk indicator is equal to 1 as long as no type 1 event occurs. 

Next is defined 

𝑟𝑖(𝑡) = 𝛪(𝐶𝑖 ≥ 𝑇 ⋀ 𝑡)  

𝑟𝑖(𝑡) = 1 then 𝑁𝑖(𝑡) and 𝑌𝑖(𝑡) can be counted up to time 𝑡, and if 𝑟𝑖(𝑡) =  0  then 

individuals are observed until time 𝐶𝑖 and for 𝑁𝑖(𝑡) and 𝑌𝑖(𝑡) are not observed. Next, we 

define the time-dependent weight function 

𝑅𝑖(𝑡) = 𝑟𝑖(𝑡)𝐺̂(𝑡)/𝐺̂(𝑇𝑖⋀ 𝑡)  

Let  𝑑𝑁𝑖
∗(𝑡) =  𝑅𝑖(𝑡) 𝑑𝑁𝑖(𝑡) and 𝑌𝑖

∗ = 𝑅𝑖(𝑡) 𝑌𝑖(𝑡), with 𝑵∗ = (𝑁1
∗, … , 𝑁𝑛

∗)𝑇,  

𝑿∗ = (𝑌1
∗𝑿1, … , 𝑌𝑛

∗𝑿𝑛)𝑇 , 𝒁∗ = (𝒁1, … , 𝒁𝑛)𝑇 , 𝜙𝑖 = 𝜙𝑖(𝜷) = 𝑌𝑖
∗ exp(𝜷𝑇𝒁𝑖) 

𝜙 = 𝜙(𝜷) = (𝜙𝟏, … , 𝜙𝒏)𝑻, 𝚽 = 𝚽(𝜷) = 𝑑𝑖𝑎𝑔(𝜙𝑖), 𝑾 = 𝑑𝑖𝑎𝑔(𝑤𝑖) 

𝑽 = 𝑑𝑖𝑎𝑔(𝑣𝑖), with 𝒘 = (𝑤1, … , 𝑤𝑛)𝑇 and 𝒗 = (𝑣1, … , 𝑣𝑛)𝑇 as a weight function. 

To  estimate the parameter c𝛽0, 𝐴(𝑡) = ∫ 𝛼(𝑢)𝑑𝑢
𝑡

0
, and  Λ10(𝑡) = ∫ 𝜆10(𝑢)𝑑𝑢

𝑡

0
 

with Inverse Probability of Censoring Weighting (IPWC) technique by using the following  

score function:  
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∫ 𝒁∗𝑇
𝚽𝐕{d𝐍∗ − 𝑿∗𝑑𝐴 − 𝜙𝑑Λ10} = 0

𝑡

0

 

𝑿∗𝑾{𝑑𝑵∗ − 𝑿∗𝑑𝐴 − 𝜙𝑑Λ10} = 0 

𝜙𝑇𝑾{𝑑𝑵∗ − 𝑿∗𝑑𝐴 − 𝜙𝑑Λ10} = 0 

 

where 𝜏 is a prespecified constant such that 𝑃{𝑇 ≥ 𝜏} > 0. For a given 𝜷, solving the 

second and third score equations gives a weighted Aalen estimator 

𝐴̂(𝑡; 𝜷̂) = ∫ (𝑿∗𝑇𝑾𝑸𝑿∗)−1𝑿∗𝑇𝑾𝑸𝑑𝑵∗(𝑢)
𝑡

0

 (9) 

for 𝐴, and a Breslow estimator 

Λ̂10(𝑡; 𝜷) = ∫ (𝜙𝑇𝑾𝜙)−1𝜙𝑇𝑾𝑯𝑑𝑵∗(𝑢)
𝑡

0

 (10) 

for Λ10, where 𝑯 = 𝑰 − 𝑿∗(𝑿∗𝑇𝑾𝑸𝑿∗)−1𝑿∗𝑇𝑾𝑸 and 𝑸 = 1 − 𝜙(𝜙𝑡𝜷𝑾𝜙)−1𝜙𝑇𝜷𝑾. By 

plugging Equation (9) and (10) into the first score equation for 𝜷0 is obtained, 

𝑈(𝜷; 𝜏) = ∫ 𝒁∗𝑻
𝚽𝑽𝑸𝑯𝑑𝑵∗(𝑡)

𝜏

0

 (11) 

By letting 𝑤𝑖 = ℎ𝑣𝑖  for function ℎ, 𝑈(𝛽; 𝜏) is reduced to Cox-like scoring equation.  

𝑈(𝜷; 𝜏) = ∑ ∫ {𝒁𝑖 −
∑ 𝑤𝑗𝜙𝑗𝒁𝑗𝑌𝑗exp (𝛽𝑇𝒁𝑗

𝑛
𝑗=1

∑ 𝑤𝑗𝜙𝑗𝑌𝑗exp (𝛽𝑇𝒁𝑗
𝑛
𝑗=1

}
𝜏

0

𝑛

𝑖=1

𝑣𝑖𝜙𝑖𝑑𝑁̂𝑖(𝑡) = 0  

where 𝑑𝑵̃  =  𝑯𝑑𝑵∗. Let 𝜷̂ show the solution of Equation (11), after 𝜷̂ is obtained, the 

researcher can estimate the cumulative function baseline hazard of Λ̂10 and the additive 

component 𝐴(𝑡) using the Brelow estimator Λ̂10(𝑡) = Λ̂10(𝑡; 𝜷̂) and the Aalen estimator 

𝐴̂(𝑡)  = 𝐴̂(𝑡, 𝛽). If there is only one cause of failure, then Equations (9) - (11) are reduced 

to a score equation (Martinussen & Scheike, 2002). 

To investigate asymptotic nature of 𝜷̂, Λ̂10(𝑡) and 𝐴̂(𝑡),  Suppose 𝜙̂, Φ̂, 𝑸̂,  and 𝑯̂ 

be defined as 𝜙,𝚽,Q and 𝑯 with 𝜷 replaced by 𝜷̂. 𝑛1 2⁄ 𝑈(𝜷0; 𝜏) has an asymptotic normal 

distribution with mean zero and a covariance matrix that can be consistently estimated by  

Σ̂𝑈 = 𝑛−1 ∑ Ψ̂1𝑖

𝑛

𝑖=1

(𝜏)Ψ̂1𝑖
𝑇 (𝜏) (12) 

Therefore, 𝑛1 2⁄ (𝜷̂ − 𝜷𝟎) has an asymptotic normal distribution with mean zero and 

covariance matrix that can be consistently estimated by 

Σ̂𝜷 = 𝑛−1𝐼−1(𝜷̂) ∑ Ψ̂1𝑖(𝜏)Ψ̂1𝑖
𝑇 (𝜏)𝐼−1(𝜷̂)𝑇

𝑛

𝑖=1

 (13) 

Next, it will be shown that 𝑛1 2⁄ {𝐴̂10(𝑡) − 𝐴10(𝑡)} converges to a zero-mean Gaussian 

process for which the covariance function at (𝑡1, 𝑡2) can be estimated consistently with 

𝜎̂𝐴(𝑡1, 𝑡2) = 𝑛−1 ∑ Ψ̂2𝑖(𝑡1)Ψ̂2𝑖
𝑇 (𝑡2)

𝑛

𝑖=1

 (14) 

Similarly,  𝑛1 2⁄ {Λ̂10(𝑡) − Λ10(𝑡)}  converges  weakly  to  a  zero-mean   Gaussian  process  

whose covariance function at (𝑡1, 𝑡2) can be estimated consistently with 
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𝜎̂Λ10
(𝑡1, 𝑡2) = 𝑛−1 ∑ Ψ̂3𝑖(𝑡1)Ψ̂3𝑖

𝑇 (𝑡2)

𝑛

𝑖=1

 (15) 

2.7. Prediction of Cumulative Incidence Functions 

One of the main goals in survival analysis is to predict certain survival probabilities 

for future subjects. To predict ℱ1 under (8) for a patient with a set of covariates 𝑿 =  𝒙 

and 𝒁 =  𝒛, one can first estimate the cumulative distribution hazard Λ1(𝑡; 𝒙, 𝒛) by 

Λ̂1(𝑡; 𝑥, 𝑧) = ∫ 𝑥𝑇(𝑢)𝑑𝐴̂(𝑢)
𝑡

0

+ ∫ exp (𝛽̂𝑇𝑧(𝑢))𝑑Λ̂10(𝑢)
𝑡

0

 (16) 

The predicted cumulative incidence is then given by ℱ̂1(𝑡; 𝒙, 𝒛) = 1 − exp{−Λ̂1(𝑡; 𝑥, 𝑧)}. 

Furthermore, an estimate 𝑡̂𝑝 for the 100pth percentile 𝑡𝑝 of ℱ1(𝑡|𝒙, 𝒛) can be obtained by 

solving the equation ℱ̂1(𝑡; 𝒙, 𝒛) = 1 − 𝑝, where 0 < 𝑝 < 1 is such that 𝑡𝑝 < 𝜏. Using the 

functional 𝛿-method, one can show that for a known, monotone, absolutely continuous 

transformation 𝑔, 𝑛1 2⁄ {𝑔(𝐹̂1(𝑡; 𝑥, 𝑧)) − 𝑔(𝐹1(𝑡; 𝑥, 𝑧))} converges weakly to a zero-mean 

Gaussian process whose covariance function at 𝑡1, 𝑡2 can be consistently estimated by 

𝜎̂𝐹(𝑡1, 𝑡2) = 𝑛−1 𝑔((𝐹̂1(𝑡1; 𝑥, 𝑧))𝑔(𝐹̂1(𝑡2; 𝑥, 𝑧))(1 − 𝐹̂1(𝑡1; 𝑥, 𝑧)) 

× (1 − 𝐹̂1(𝑡1; 𝑥, 𝑧)) ∑ Ψ̂4𝑖(𝑡1)Ψ̂4𝑖
𝑇 (𝑡2)

𝑛

𝑖=1

 (17) 

The above transformation 𝑔 is usually chosen to stabilize the variance and to ensure that 

pointwise and simultaneous confidence intervals for the probability 𝐹1(𝑡; 𝑥, 𝑧) are bounded 

between 0 and 1. One commonly used choice is 𝑔 =  𝑙𝑜𝑔(−𝑙𝑜𝑔). Sometimes one is 

interested in constructing confidence bands for (𝑡), Λ10(𝑡), 𝐹1(𝑡; 𝑥, 𝑧) or 𝑡𝑝. This may be 

analytically difficult since the limiting Gaussian processes for 𝑛1 2⁄ {𝐴̂(𝑡) − 𝐴(𝑡)}, 

𝑛1 2⁄ {Λ̂10(𝑡) − Λ10(𝑡)}, and 𝑛1 2⁄ {𝑔(𝐹̂1(𝑡; 𝑥, 𝑧) − 𝐹1(𝑡; 𝑥, 𝑧)} do not have independent 

increments. To this end, we propose to use the following simulation approach to 

approximate these limiting distributions as in Lin, et al. (1994) and Scheike & Zhang 

(2003). Let be {𝐺𝑖; 𝑖 = 1, … , 𝑛} be a simple random sample of size 𝑛 from the standard 

normal distribution and independent of the observed data. Then one can construct the 

simultaneous confidence bands for (𝑡), Λ10(𝑡), 𝐹1(𝑡; 𝑥, 𝑧) or 𝑡𝑝 or tp by replacing 𝑀̂𝑖(𝑡) 

and 𝑀̂𝑖
𝑐(𝑡) with 𝐺𝑖𝑀̂𝑖(𝑡) and 𝐺𝑖𝑀̂𝑖

𝑐(𝑡), respectively, and repeatedly generating normal 

random samples {𝐺𝑖; 𝑖 = 1, … , 𝑛} given the observed data. Note that since Λ10(𝑡) is 

nonnegative, one may want to use the log transformation for the construction of its 

confidence bands.  

2.8. Test for Model Identification 

This section considers the goodness of fit test of the model and the of time-varying 

covariates. For these, we develop some asymptotically procedures. To evaluate the 

goodness of fit of the covariates included in the multiplicative part of the model, following 

Lin, et al. (1993) and Wei (1984), consider the cumulative score processes. The observed 

score process is given by 𝑛−1 2⁄ 𝑈(𝛽̂; 𝑡), t), and its asymptotic distribution is equivalent 

distribution of 

𝑛−1 2⁄ ∑{Ψ̂1𝑖(𝑡) − 𝐼(𝛽̂, 𝑡)𝐼−1(𝛽̂, 𝜏)Ψ̂1𝑖(𝜏)}

𝑛

𝑖=1
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where 𝐼(𝛽, 𝑡) is the minus of the derivative of 𝑛−1 2⁄ 𝑈(𝛽; 𝑡). Note that if multiplicative part 

of the model is appropriate, the components of the score process should behave as under 

the null. This suggests that we can use the following test statistics  

ℱ1 = sup
0≤𝑡≤𝜏

|𝑛−1 2⁄ 𝑈𝑗(𝛽̂; 𝑡)|,   (𝑗 = 1, … , 𝑝) (18) 

where 𝑈𝑗(𝛽; 𝑡) denotes the 𝑗th component of 𝑈(𝛽; 𝑡). The percentiles of this test statistic 

can be estimated empirically using a number of simulated processes as discussed in the 

previous section, or in Lin, et al. (1993). Now consider testing if covariate 𝑗, included in 

the additive part of the model, is significant. For this, we suggest the test statistic 

ℱ2 = sup
0≤𝑡≤𝜏

|
𝐴̂𝑗(𝑡)

𝜎̂𝐴,𝑗
2 (𝑡)

| (19) 

where 𝐴̂𝑗 is the jth component of 𝐴̂ and 𝜎̂𝐴,𝑗
2 (𝑡) is the estimate of the variance of 𝐴̂𝑗(𝑡). 

Sometimes one may also be interested in testing if an additive component has indeed a 

time-varying effect. To this end, we propose the test statistic  

ℱ3 = sup
0≤𝑡≤𝜏

|𝐴̂𝑗(𝑡) −
𝐴̂𝑗(𝜏)

𝜏
𝑡| (20) 

Note that ℱ2evaluates the departure of 𝐴̂𝑗(𝑡) from the null, while ℱ3 measures the 

departure between 𝐴̂𝑗(𝑡) 𝑡⁄  and the estimate of the constant effect under the null, 𝐴̂𝑗(𝜏) 𝜏⁄ . 

Also note that the asymptotic distribution of 𝑛1 2⁄ {𝐴̂(𝑡) − 𝐴(𝑡)} is equivalent to the 

asymptotic distribution of 𝑛−1 2⁄ ∑ Ψ̂2𝑖(𝑡),𝑛
𝑖=1  where Ψ̂2𝑖(𝑡)is defined in (7). Then the 

percentiles of the above two test statistics can be simulated as before. The proposed tests 

are simple to implement and are omnibus. Additionally, one can plot the estimated 

cumulative regression function and use the plots to visually examine whether a covariate 

has a time-varying effect on the cumulative incidence function. 

 

3. MATERIAL AND METHOD  

3.1. Data 

The data used in this case study is secondary data entitled Melanoma obtained from 

the MASS package in program R. Melanoma data consists of measurements performed on 

patients with malignant melanoma, a type of skin cancer. Each patient underwent surgical 

removal of the tumor at the Department of Plastic Surgery, Odense University Hospital, 

Denmark during the period 1962 to 1977. The surgery consisted of the complete removal 

of the tumor together with approximately 2.5 cm of the surrounding skin. Among the 

measurements taken were the thickness of the tumor and see whether there was ulceration 

or not. This measure is considered an important prognostic variable in patients with thick 

tumors and/or an increased likelihood of death from melanoma. 

3.2.  Variables and Methods 

The data used in this case study is secondary data entitled Melanoma Malignant 

obtained from the MASS package in R 4.0.5 software program. The Melanoma Malignant 

data consists of measurements taken on patients with Melanoma Malignant, a type of skin 

cancer. Each patient underwent surgical removal of the tumor at the Department of Plastic 

Surgery, Odense University Hospital, Denmark during the period 1962 to 1977. The 

surgery consisted of the complete removal of the tumor together with approximately 2.5 

cm of the surrounding skin. Among the measurements taken were the thickness of the 

tumor and seeing whether there was ulcer or not. This measure is considered an important 
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prognostic variable in patients with thick tumors and/or an increased likelihood of death 

from Melanoma. 

The purpose of the analysis of this case is to assess the influence of risk factors on 

survival. The risk factors are gender and age of the patient and histological variables, 

namely thickness and ulcer. 

In the case of Melanoma patients, there are three possible events, namely patients 

who died from Melanoma, patients who died not because of Melanoma, and patients who 

were still alive until the end of the study. Each patient will only experience one event out 

of three possibilities. The incident of concern is the patient who died of Melanoma. If the 

patient dies not due to Melanoma then the patient is considered a competing risk 

individual. Each patient is represented by one row in the data set. The following variables 

are used in the data, including: 

a. Dependent variable is a time variable (in days), which is the duration of time the 

patient survives during surgery until he dies or is censored, and an event variable which 

is the type of event experienced by the patient. 

b. Independent variable (covariate) is a variable that is thought to influence the response 

variable, including the variables sex, age, thickness, and ulcer. The sex variable is the 

sex variable of the patient. Age variable (in years), is the patient's age variable at the 

time of surgery. Thick variable, is the patient's tumor thickness variable (in mm) at the 

time of surgery. The ulcer variable is an ulcer indicator variable.  

Table 1 is a description of the data for categorical variables. 

Table 1. Table of Frequencies and Coding of Categorical Variables 

Variables Category Code  Total 

Event 

       Censored 0 134 

Died of Melanoma 1 57 

Died not because of Melanoma 2 14 

Sex 
Male 0 79 

Female 1 126 

Ulcer 
No Ulcer 0 90 

Ulcer 1 115 

Altogether 205 patients with four risk factors will be entered into the regression model to 

see the effect of covariates and predict the likelihood of the cumulative incidence of 

Melanoma Malignant patients. The data will be processed using the available packages in 

the timereg and cmprsk packages in R 4.0.5 software. In this case, the researchers only 

focused on cause 1, namely patients who died after undergoing surgery to remove a tumor 

due to melanoma. 
 

4. RESULTS AND DISCUSSION 

Descriptive analysis is used to describe the characteristics based on factors that are 

thought to influence the cumulative event function of Melanoma patients at Odense 

University Hospital, Denmark in 1962-1977. Table 2 is the result of a descriptive analysis 

of continuous data. Table 2 provides information that the average length of time Melanoma 

patients are treated at Odense University Denmark after undergoing surgery to remove the 

tumor is 2153 days. The average thickness of Melanoma patients is 2.91 cm, and the 

average age of Melanoma patients is 52 years. 
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Table 2. Descriptive Analysis Results 

Variable N Minimum Maximum Mean 

Time 205 10 5565 2153 

Thick 205 0.10 17.42 2.91 

Age 205 4 95 52 

After being analyzed using the additive model, the following results are obtained: 

Table 3. Results of Analysis with the Additive Model 

Variable Supremum test P-value 

Ulcer 3.73 0.004 

Age 1.30 0.743 

Sex 2.01 0.338 

Thick 3.61 0.003 

Based on the results of the analysis in table 3 above, by testing the hypothesis for 

each independent variable, it can be concluded that the sex and age variables have a 

constant effect, while the thick and ulcer variables have a time-varying effect on the 

cumulative incidence function in patients who died from Melanoma after surgical removal 

of the tumor. 

Next, additive subdistribution hazard modeling will be carried out based on the 

previous analysis, along with the results of the analysis: 

Table 4. Additive Subdistribution Hazard Model 

Model Variable Coefficient P-value 

Parametric 
Sex  -0.010 0.077 

Age  0.001 0.817 

Nonparametric 
Thick 3.610 0.003 

Ulcer 3.660 0.004 

Table 4. above shows that the age and sex variables have a constant effect on the 

cumulative event function, so they are included in the multiplicative model section. As for 

the thick and ulcer variables, they have a time-varying effect on the cumulative incidence 

function in patients who died of Melanoma Malignant after surgical removal of the tumor. 

After being analyzed using additive and multiplicative models, the following results are 

presented in Table 5. 

Table 5.  Analysis Results with Additive and Multiplicative Models 

Model Variable Coefficient P-value 

Multiplicative 
Sex  -0.672 0.017 

Age  0.530 0.260 

Addtive 
Thick 3.61 0.003 

Ulcer 3.66 0.004 

Based on the results of the analysis in Table 4.2 above, by testing the hypothesis for 

each independent variable, based on the multiplicative model, it can be concluded that the 

sex variable has a significant effect on the cumulative incidence function of patients who 

died of melanoma, while the age variable has no significant effect on cumulative incidence 

function. As for the other two variables, namely thick and ulcer variables, based on the 

additive model it was concluded that both had a significant effect on the cumulative 

incidence function in patients who died of Melanoma after surgery after tumor removal. 

To further check the suitability of the model, an analysis was performed by 

comparing male and female patients who had ulcers and those who did not have ulcers. 
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The data used is the average age of Melanoma patients and the average thickness of 

Melanoma patients. The prediction results based on the additive subdistribution hazard 

model can be seen in the Figure 1(a).  

Based on the Figure 1(a), it can be concluded that the probability or risk of 

Melanoma Malignant patients dying after surgery to remove the tumor for male patients 

who have ulcers is 0.59, while for male patients who do not have ulcers it is 0.29. 

  

Figure 1. (a) Estimation of Cumulative Function in Male Patients 

(b) Estimation of Cumulative Function in Female Patients 

Based on the Figure 1(b), it can be concluded that the probability or risk of Melanoma 

Malignant patients dying after surgery to remove the tumor for female patients who have 

ulcers is 0.49, while for female patients who do not have ulcers it is 0.18. Based on the two 

pictures, it can be concluded that Melanoma Malignant patients either have ulcers or do not 

have ulcers, indicating that male patients have a greater risk of dying after surgical removal 

of the tumor compared to female Melanoma Malignant patients. 

 

5. CONCLUSION 

The additive subdistribution hazard regression model is a flexible model for 

regression analysis of competing risk failure time data. In applying additive subdistribution 

hazard  regression analysis to melanoma patient data, it was found that the thick and ulcer 

variables had a time-varying effect on the cumulative incidence function of  patients who 

died of melanoma, while the sex and age variables were not constant on the cumulative 

incidence function of  patients who died because of melanoma after perform tumor 

removal surgery.  
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