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Abstract: The voltage sensors are widely used in various 

applications. In certain applications, such as medical devices, 

autonomous vehicles, or the military, the sensor's accuracy and 

level of precision play an important role, making it necessary to 

evaluate the sensor's performance. In this research, testing of 

direct current (DC) voltage sensors was carried out using 

analysis of variance (ANOVA) and Tukey honestly significant 

difference (HSD) to test sensor performance in various voltage 

ranges. This research used an experimental-based quantitative 

approach, using the ATmega328P. Data collection begins by 

calibrating the analog-to-digital converter (ADC) readings 

against voltage values with linear regression, the Chauvenet 

criterion to eliminate outlier data caused by noise from the 

environment, One-way ANOVA is used to determine 

differences in variations between voltage distances, and a Q-Q 

plot is used to determine the normality of the sensor error 

distribution. This research obtained from Tukey-HSD that 9 

comparisons accepting the null hypothesis (H0). And 27 pairs 

accepting the alternate hypothesis (H1). The data was found to 

be normally distributed through the calculation of residual 

ANOVA, and visualization of data with the Q-Q plot, and the 

use of the sensor was effective in the range of 3V to 24.5V. 

 

1. INTRODUCTION  

The development of electronic devices in the world industry continues to enter a new 

phase to achieve perfection. Electronic devices are applied in the industry mainly in 

measuring and automation. Changes in the measurement process are seen when previously 

measurements used an analog system, now most of the tools are working digitally (Davis & 

Clowers, 2023). In recent years, with the development of the industrial era 5.0, sensors have 

been integrated with Machine Learning and even Artificial Intelligence. Sensor 

measurement data is taken and then processed with an embedded program for analysis or 

making a decision. The application of sensors in the industry requires a high level of 

accuracy, and the need increases as sensors are combined with Machine Learning. The higher 

the measurement accuracy, the higher the price of the sensor (Abubakar et al., 2017). That 

makes electronic device developers continue to compete in designing a sound measurement 

system with high accuracy and precision. 
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Many studies have discussed the workings and accuracy of various types of sensors. 

In summary, sensor performance is determined by comparing analog signal readings more 

stable the analog value readings, the better the sensor's measurement results (Pahuja, 2022). 

Using the sensor must go through calibration first to set the measurement parameters. Use 

accompanied by calibration is carried out using Polynomial Regression with the Arduino 

Mega based ZMPT101B sensor (Abubakar et al., 2017). The results indicate that sensor 

measurements after calibration have increased accuracy, with error values calculated at 0.9% 

to 2.4%. The study shows the importance of the calibration process as the resulting 

measurement error changes with higher accuracy. 

The accuracy of measuring voltage is essential because electronic devices support most 

human activities. Identification of the voltage is required to provide a response ranging from 

extra-high voltage devices to different low voltage devices. Roman, in his research (Hrbac 

et al., 2020), built measurement devices to measure high-voltage electricity, where its use 

can be implemented in transformers, high-voltage equipment, and electricity distribution 

networks. Contrary to this, Agustina (Lascano et al., 2017), in the scope of neurology, uses 

evoked potential devices utilizing extra-low voltage measurements to diagnose patients. 

The role of voltage measurement is essential, so further discussion must be carried out 

regarding the calibration process and analysis of measurement results from measuring 

devices or sensors. Follow-up research was carried out using statistics to determine the 

measurement accuracy level from variations in data on sensors by applying the Analysis of 

Variance (ANOVA) test (Chen et al., 2022). The purpose of using the ANOVA test is to test 

differences in sensor measurement variations, with normally distributed data or not. The data 

obtained represents that the results have significant differences, so further tests, such as 

Tukey or Scheffe, must be carried out. This paper focuses on developing a calibration to 

reduce measurement errors. The ANOVA test was introduced to the data obtained to evaluate 

the normality results of the data plots. DC 0-25 volts used is low-cost if compared to others. 

The authors are interested in researching the accuracy and precision of sensor readings. 

 

2. LITERATURE REVIEW 

2.1. Linear Regression 

The calibration process in the regression analysis involves using an optimization 

model to match the linearity between the observed data of the independent variable, which 

is the value read by the sensor, and the dependent variable, which is the voltage from the 

measuring instrument (Maria et al., 2022). A linear line is drawn based on the measurement 

results of the digital multimeter and then intersects with the reading of the analog value on 

the sensor. Raw sensor measurements that fall outside the process distribution are more 

difficult to identify, as unobserved results during model training result in higher deviations 

(Tancev & Toro, 2022).  

𝑦̂ = 𝑎̂ + 𝑏̂𝑥 (1) 

𝑎̂ =
|

∑ 𝑦 ∑ 𝑥

∑ 𝑥𝑦 ∑ 𝑥2|

|
𝑛 ∑ 𝑥

∑ 𝑥 ∑ 𝑥2|
  

(2) 

𝑏̂ =
|

𝑛 ∑ 𝑦
∑ 𝑥 ∑ 𝑥𝑦

|

|
𝑛 ∑ 𝑥

∑ 𝑥 ∑ 𝑥2|
  

(3) 
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with 𝑦 = dependent variable; 𝑎̂ = intercept of the line; 𝑏̂ = slope of the line; 𝑥 = values of the 

independent data set; 𝑛 = total number of values 

𝑦̂ = [
|

∑ 𝑦 ∑ 𝑥

∑ 𝑥𝑦 ∑ 𝑥2|

|
𝑛 ∑ 𝑥

∑ 𝑥 ∑ 𝑥2|
] + [

|
𝑛 ∑ 𝑦

∑ 𝑥 ∑ 𝑥𝑦
|

|
𝑛 ∑ 𝑥

∑ 𝑥 ∑ 𝑥2|
] 𝑥  

(4) 

After formulation, a constant variable is obtained from the equation for the increase 

in the linear line. Then the equation is embedded into the Arduino ATmega328p program as 

the basis for processing the voltage sensor. The low error rate of measurement is obtained 

after the calibration process. However, it is necessary to conduct further analysis of the data 

to determine whether the measurements form normal variations or have significant 

differences in the data distribution. Before the ANOVA test is applied in analyzing data from 

sensor readings, the decision to remove outliers is made to reduce noise in the data. The 

difference between the actual and measured values in percentage form is a relative 

measurement error. It is used to evaluate the accuracy of a measurement or calculation. When 

the measurement deviation is too far, the data cannot be classified into relative error. 

Chauvenet's criterion is introduced to identify data that has a probability. 

2.2. Outlier Data Classification    

Data that can be categorized as abnormal is data with too large a deviation from other 

data. Chauvenet is used to control this error (Christensen, 2015), where data deviate too far 

from others. That can be due to noise from rapid, repeated measurement processes. Noise 

data falls under the category of random errors. Outlier noise data is categorized as invalid, 

as the values produced do not fall within the measurement distribution (Wang et al., 2018).  

𝐷𝑚𝑎𝑥 ≥ 𝑧𝑠𝑐𝑜𝑟𝑒 (5) 

𝑄(𝑃𝑧) ≥
|𝑥𝑠𝑢𝑠 − 𝑥̅𝑚𝑒𝑎𝑛 |

𝑆𝑥
 

(6) 

with 𝐷𝑚𝑎𝑥 = maximum allowable deviation; 𝑧𝑠𝑐𝑜𝑟𝑒 = Z-score calculation; 𝑄 = quantile 

distribution; 𝑃𝑧 = probability represented by one tail of the distribution; 𝑥𝑠𝑢𝑠 = value of 

suspected outlier; 𝑥̅𝑚𝑒𝑎𝑛 = sample mean; 𝑆𝑥 = sample standard deviation. 

Data is classified as an outlier when 𝐷𝑚𝑎𝑥 ≥ 𝑧𝑠𝑐𝑜𝑟𝑒 is rejected or inappropriate. Where 

it turns out that 𝑧𝑠𝑐𝑜𝑟𝑒  > 𝐷𝑚𝑎𝑥 so that the data is classified as an outlier. If the conditions 

fulfill the equation 𝐷𝑚𝑎𝑥 ≥ 𝑧𝑠𝑐𝑜𝑟𝑒  accepted, the data still enters the distribution. Searching for 

outliers one by one will undoubtedly take quite a long time. Dmax dan zscore calculations use 

programming to remove applied stress data outliers so that distribution results are obtained 

that are ready to be used in the ANOVA test. 

2.3. Standard Deviation and Uncertainty Level 

Adjustment of the distribution by removing data that is not needed is followed by 

looking for the standard deviation. All standard deviations of the nine measurement 

variations are calculated. After getting the standard deviation and mean, the analysis 

continues to find the sensor's uncertainty level. This level of uncertainty can be used as an 

indicator of measurement reliability (Aroulanandam et al., 2022). The 95% confidence level 

is determined by referring to several studies. The 95% confidence model with a statistical 

significance of 5% is often used for data representation (Van Der Veen, 2018).  

𝜎2 =
∑(𝑥𝑖 − 𝜇)2

𝑛
 

(7) 
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𝜎𝑥̅ =
𝜎

√𝑛
 

(8) 

with 𝜎 = standard deviation; 𝑥𝑖 = the i-th observed value; 𝜇 = mean value; 𝜎𝑥̅ = standard error. 

2.4. Data Classification with ANOVA Test 

The use of ANOVA assumes that the data is normally distributed and the groups 

being compared have the same variance. If this assumption is not met, the ANOVA results 

may be biased (Christensen, 2015). The type of equation used in the calculations is one-way 

ANOVA, with stress data used to compare variances between groups. Then, from the data, 

it can be seen that the distribution between groups, whether there is a significant difference 

or not. The data represented on the ANOVA distribution chart has an upper and lower bound, 

with continuous lines to represent the abundance of the distribution in the boxed region and 

little data in the striped portion. The equation used to calculate the ANOVA F-ratio is shown 

in equation (11). 

𝑆𝑆𝐺 = ∑ 𝑛𝑖(𝑥𝑖̅ − 𝑥)2
𝑘

𝑖=1
 

(9) 

𝑆𝑆𝐸 = ∑ (𝑛𝑖 − 1)𝑠𝑛
2

𝑘

𝑖=1
 

(10) 

𝐹 =
𝑆𝑆𝐺 (𝑘 − 1)⁄

𝑆𝑆𝐸 (𝑁 − 𝑘)⁄
 

(11) 

with 𝑆𝑆𝐺 = sum of squares between groups; 𝑥𝑖̅ = mean of group i;𝑘 = number of groups; 

𝑆𝑆𝐸 = sum of square within groups; 𝑠𝑛= variance of each group; 𝐹 = ratio. 

2.5. Tukey’s Honestly Significant Difference (HSD) 

Tukey's method is then used as a companion to the ANOVA distribution plot. 

Tukey's HSD is applied to mathematically identify the plot against the results of the ANOVA 

distribution. This method is used to determine the hypothesis for nine variations of the data, 

classifying them as accepted or rejected. The equation for Tukey's HSD is shown in equation 

(12). 

𝐻𝑆𝐷 = 𝑞√
𝑆𝑆𝐸 (𝑁 − 𝑘)⁄

𝑛𝑘
 

(12) 

with 𝑀𝑆𝑊 = mean square for within group from the ANOVA; 𝑞 = standardize range statistic; 

𝑛𝑘 = effective replicate n. 

With 𝐻0 is the average value of the data distribution is not significantly different, 𝐻1 

is the average value of the data distribution is significantly different. 𝐻0 and 𝐻1 describe 

conditions that can be seen from the data representation. To ensure the validity of the data, 

comparisons were made between the data each set. The results were considered valid when 

the p-value was greater than 0.05. 

 

3. MATERIAL AND METHOD  

Research equipment was prepared and designed as a measurement setup to support 

data collection with Arduino devices as shown in Figure 1. Voltage readings are taken using 

an adjustable power supply as the measurement source, with the supply terminals connected 

in parallel to the measuring instrument and the device under test. Sensor measurements are 
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also displayed on the OLED display in real time, providing a clear and live view. Then 

software VS-Code used for digital data collection and statistical analysis. 

 

Figure 1. Setup Apparatus Voltage Measurement 

 

The research method was carried out in several steps, as shown in Figure 2. The 

measurement value is taken with a multimeter as a readable instrument, with an assumed 

error of ±1-3%. The processing base uses an Arduino Nano ATmega328p 10-bit 

microcontroller. As stated in Moradi's paper (Moradi et al., 2019), it is confirmed that the 

sensor's value can shift during the measurement process as it reads the analog input value. A 

converging measurement value follows each increase in the analog signal value due to the 

influence of the formula, assuming the linearity between ADC reading and voltage 

measurement of the sensor. The use of a customized formula can increase the sensor's 

reliability. A one-way ANOVA was conducted to investigate the differences in variations 

among the different voltage values, with the assumption that the distribution of voltage 

values is normally distributed. If the ANOVA test rejected the null hypothesis, post-hoc 

analysis using Tukey-HSD was performed. The final analysis included computation of 

descriptive statistics such as the mean, standard deviation, standard error, and uncertainty. 

3.1. Microcontroller 

The microcontroller device processes the interfacing voltage sensor data and works 

with a voltage divider circuit. The circuit consists of two resistors: Resistor number one (R1) 

is 30K Ω, and resistor number two (R2) is 7.5K Ω. The interfacing voltage module can 

measure a voltage range of 0-25 volts. It is known that the measurement of the voltage value 

is carried out by connecting the measuring instrument in parallel with the voltage source. 

The voltage is divided into smaller quantities, then converted into analog signals (Junaldy et 

al., 2019). Then, the rheostat can be neglected because the voltage can still be measured 

without a load. 

The processing speed of the Arduino ATmega328p is 16 MHz, equipped with a 10-

bit ADC that can convert analog to digital with 10-bit resolution (Debnath et al., 2022). 

Measurements can be made using a 10-bit ATmega328p by converting the analog signal to 

be measured into a digital signal. The analog signal comes from various sources. After the 

analog signal is converted into a digital signal, it can be processed by the ATmega328p 

microcontroller using its program (Zhang et al., 2018). The ATmega328p divides the input 

voltage into 10-bit or 1023 decimal resolution, with 5 volts representing 1023 and 0 volts 
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representing 0 decimal at V-reference 5V. The data collection technique was carried out by 

collecting nine sample variations ranging from 0-25 volts, with 1000 data points from each 

variation used to calculate the standard deviation and divide the level of uncertainty. 

 

Figure 2. Research Process Flowchart 

The research process on sensor measurement results is divided into two. The first stage 

is the pre-process, which includes sensor calibration with linear regression to find a digital 

value multiplier formula, then converted into a voltage quantity. The second stage is the 

analysis process, managing data that has been measured or retrieved by sensors to be 

processed into diagrams representing the data. The final result, as a process of analysis and 

discussion, describes the data management process and determines whether the quality of 

the sensor is feasible or not from the data produced. 

 

4. RESULTS AND DISCUSSION 

Research on improving the accuracy and readings from voltage sensors has been 

widely carried out. However, in-depth discussions regarding error and normality analysis of 

these sensors have not yet been carried out. This research aims to evaluate performance based 

on error and normality analysis of low-cost voltage sensors. Linear regression is applied 

using equation (4) to determine the coefficient and constant. In the ATmega328p 

microcontroller's ADC, linear regression is used to find the best straight-line fit to the data 

points obtained by measuring the sensor's output voltage and comparing it to the ADC 

reading. The result obtained after calculation using linear regression shows more accurate 

measurements using oversampling and linear regression techniques, with lower error results, 

namely 0.32% higher than measurements without linear regression calibration and 

oversampling techniques. Accurate data collection from sensors is essential in order to obtain 

accurate results. It can be done by appropriately setting the measurement frequency, sample 

size, and the type of sensor. In this case, data sampling is performed by varying the voltage 

on the sensor with each data collection of 1000 samples. The voltage variations given are 
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3v, 6v, 9v, 12v, 15v, 18v, 21v, and 24.5v, with the following description of the data shown 

in Table 1. 

 

 

Figure 3. Linear Regression between ATmega328p Analog Readings to Voltage Reading 

 

(a) 

 

(b) 

Figure 4. (a) Relative Error (%) Distribution for Each Sample, 

(b) Relative Error (%) Distribution for Population 

In the boxplot graph in Figure 4(a), it is known that the voltage variation of 0.5v has 

the largest spread compared to other data, affecting the overall population distribution result 

as shown in Figure 4(b). The variation and deviation of this 0.5v voltage are caused by the 

floating pin effect of the ATmega328p, which reads electromagnetic signal noise inference 

inducing voltage and causing readings on the microcontroller. Each data is analysed for 

distribution and variation to determine the sensor's characteristics. A histogram of the data 

volume is also displayed to represent the volume of the distribution fraction. They are using 

Table 1. Data Summary  
 0.5v 3v 6v 9v 12v 15v 18v 21v 24.5v 

Sample size 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Mean 0.500 3.020 6.000 9.000 12.000 14.990 18.090 21.020 24.520 

Std 0.023 0.016 0.017 0.016 0.018 0.0180 0.0180 0.020 0.0180 

Minimum data 0.380 2.940 5.920 8.940 11.920 14.870 17.940 20.960 24.450 

Q1 0.500 3.020 5.990 8.990 11.990 14.990 18.010 21.010 24.500 

Q2 0.500 3.020 6.010 9.010 11.990 14.990 18.010 21.010 24.520 

Q3 0.530 3.040 6.010 9.010 12.010 15.010 18.040 21.040 24.520 

Maximum data 0.600 3.060 6.060 9.060 12.060 15.060 18.090 21.090 24.570 
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equation (8) to find the standard deviation. The distribution of the data that has been 

standardized using the Gauss distribution and histogram is visualized in Figure 5. 

 

Figure 5. Standardized Relative Error (%) of each Sample 

The Chauvenet Criterion is used to eliminate data probability of less than 0.5%, which is 

considered an outlier and must be removed. Calculate this probability. The mean and 

standard deviation of the data must first be determined. Then, the probability of each data is 

calculated using the normal distribution formula. Data with a probability less than 0.5% is 

considered an outlier and must be removed from the data, refer to equation (5), with the result 

shown in Table 2. 

Table 2. Chauvenet Criterion Result 
 Iteration - 1 Iteration - 2 Iteration - 3 Iteration - 4 

Mean 0.32 0.09 0.13 0.08 

Std. Dev. 1.67 0.56 0.34 0.21 

Outlier 386 127 403 18 

A one-way ANOVA, using equation (12), can be performed to determine if there is 

a significant difference between groups in the relative error of the treatment data for the 

dependent variable. If significant differences are found, it can be concluded that the 

independent variable influences the dependent variable. Conversely, if no significant 

differences are found, it can be concluded that the independent variable does not affect the 

dependent variable. In a one-way ANOVA, the grand mean represents the overall mean of 

all the data points in all the groups being compared. It is calculated by taking the average of 

all the data points in all the groups. The mean of each group, on the other hand, represents 

the average of all the data points in that specific group. The difference between the mean of 

each group and the grand mean can indicate how the groups differ from the overall 

population. If the means of the groups are similar to the grand mean, it suggests that the 

groups are similar to the overall population, whereas if the means of the groups are 

significantly different from the grand mean, it suggests that the groups are different from the 

overall population, the mean of each group is shown by boxplot graph with grand mean is 

shown by red line in Figure 6. 
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Figure 6. Relative Error (%) from Each Sample 

The value of α = 0.05 is used in determining the p-value threshold of ANOVA. The 

calculation results shown in Table 3 show that the ANOVA test rejects H0 and accepts H1. 

That explains the difference between the treatment data groups on the dependent variable. 

Table 3. ANOVA One-Way Result 
 Sum of Squares Degree of Freedom F PR(>F) 

Treatment 977.53 8 152.04 0 

Residual 6548.50 8148   

The Tukey HSD method compares each treatment by making 36 pairwise data comparisons 

using equation (13). Of these, nine paired comparisons reject H1 and accept H0, and 27 paired 

comparisons accept H1 and reject H0. Thus, the determination of using H1 is more dominant 

as shown in Table 4. 

Table 4. Tukey’s HSD Result 

Voltage (V) Diff Lower Upper q-value p-value H0 

0.5 3 0.55 0.52 0.58 81.74 0.00 Rejected 

0.5 6 0.02 -0.01 0.04 3.00 0.46 Accepted 

0.5 9 0.01 -0.01 0.04 2.48 0.68 Accepted 

0.5 12 0.00 -0.02 0.03 0.38 0.90 Accepted 

0.5 15 0.01 -0.01 0.04 1.98 0.90 Accepted 

0.5 18 0.01 0.07 0.12 16.16 0.00 Rejected 

0.5 21 0.11 0.08 0.13 17.43 0.00 Rejected 

0.5 24.5 0.07 0.04 0.01 11.69 0.00 Rejected 

3 6 0.54 0.51 0.56 91.33 0.00 Rejected 

3 9 0.54 0.51 0.56 92.03 0.00 Rejected 

3 12 0.55 0.53 0.58 94.30 0.00 Rejected 

3 15 0.57 0.54 0.59 96.74 0.00 Rejected 

3 18 0.46 0.43 0.48 77.96 0.00 Rejected 

3 21 0.45 0.42 0.47 76.65 0.00 Rejected 

3 24.5 0.48 0.46 0.51 82.61 0.00 Rejected 

6 9 0.00 -0.02 0.02 0.63 0.90 Accepted 

6 12 0.01 -0.01 0.04 3.16 0.38 Accepted 

6 15 0.03 0.01 0.05 6.02 0.00 Rejected 

6 18 0.08 0.06 0.10 15.86 0.00 Rejected 

6 21 0.09 0.06 0.11 17.38 0.00 Rejected 

6 24.5 0.05 0.03 0.07 10.47 0.00 Rejected 

9 12 0.01 -0.01 0.03 2.54 0.66 Accepted 
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9 15 0.03 0.00 0.05 5.40 0.00 Rejected 

9 18 0.08 0.06 0.10 16.53 0.00 Rejected 

9 21 0.09 0.07 0.11 18.06 0.00 Rejected 

9 24.5 0.06 0.03 0.08 11.13 0.00 Rejected 

12 15 0.01 -0.01 0.04 2.86 0.52 Accepted 

12 18 0.10 0.07 0.12 19.10 0.00 Rejected 

12 21 0.10 0.08 0.13 20.62 0.00 Rejected 

12 24.5 0.07 0.05 0.09 13.69 0.00 Rejected 

15 18 0.11 0.09 0.13 21.95 0.00 Rejected 

15 21 0.12 0.10 0.14 23.48 0.00 Rejected 

15 24.5 0.08 0.06 0.10 16.55 0.00 Rejected 

18 21 0.01 -0.01 0.03 1.53 0.9 Accepted 

18 24.5 0.03 0.00 0.05 5.41 0.00 Rejected 

21 24.5 0.03 0.01 0.06 6.94 0.00 Rejected 

Through filtering using Chauvenet, four iterations were obtained with a total of 843 

data discarded. Analysis using Q-Q plot is performed to determine whether the data 

distribution is normally distributed or not by comparing the data distribution to the diagonal 

line. Through Q-Q plot and probability density chart, the normal distribution of residual 

ANOVA data is obtained as shown in Figure 7(a) and 7(b). 

  

(a) (b) 

Figure 7. (a) Q-Q plot from residual ANOVA;  

(b) Probability density of residual ANOVA 

The Q-Q plot is used to assess the normality of the deviation level of the data set by plotting 

the data being tested against the quantiles of the normal distribution. The data are represented 

as points, and the points will remain on the line formed by zscore. The outlier spread on the 

Q-Q plot is caused by the 0.5v variation that affects the Grand Mean value of the ANOVA 

residual and the standard deviation of the Chauvenet filtering process. This variation causes 

non-uniform outlier removal, resulting in outliers on the Q-Q plot. To estimate the likelihood 

of the sample distribution relative to the population distribution, and to describe the extent 

of uncertainty in measurement or statistical test data shown in Table 5. 

Table 5. Final Result 
 0.5V 3V 6V 9V 12V 15V 18V 21V 24.5v 

Mean 0.50 3.01 6.00 9.00 12.00 15.00 18.01 21.02 24.52 

Standard Deviation 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 

Standard Error 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Voltage 0.50 

±0.00 

3.01 

±0.01 

6.00 

±0.01 

9.00 

±0.01 

12.00 

±0.01 

15.00 

±0.01 

18.01 

±0.02 

21.02 

±0.02 

24.52 

±0.01  
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Based on the final results of the nine variations, the range of error variations at a value 

of 0.5 volts is 0. That is due to the excessive data loss caused by the filtering, resulting in the 

final results only considering data classification at the precise value of 0.50 volts. 

 

5. CONCLUSION 

The R2 value obtained from the linear regression analysis shows that the 

measurement results have a high enough correlation with a value greater than 0.99. This 

shows that the linear regression model can explain data variations well. The filtering process 

using the Chauvenet Criterion shows 9.3% or 843 data outliers caused by noise. The largest 

data variation occurred at a voltage of 0.5v, which was assumed by the floating pin effect of 

the ATmega328p, which can read electromagnetic signal noise on the microcontroller. 

Variation analysis was performed using the One-way ANOVA method and Tukey HSD, and 

the results showed that the data rejected H0 and accepted H1 with a total of 36 pairs of Tukey 

HSD data comparisons. Of these, 9 data pairs of comparisons rejected H1 and accepted H0, 

and the 27 data otherwise. Based on that, it can be concluded that measurements using a 

voltage sensor with an ATmega328p can be used from 3v to 24.5v. This research aims to 

provide contributions and knowledge regarding sensor quality evaluation methods through 

statistical and experimental approaches, which can be used as a reference and basis for 

further research. In the future, evaluate the performance of the voltage sensor. This research 

can be developed by taking pulse voltage data or alternating current data. 
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