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Abstract: The problem of overdispersion as a violation of 

the assumption of equidispersion in Poisson Regression is 

generally caused by sources of unobserved heterogeneity, 

missing observations on predictor variables, outliers in the 

data, errors in the specification of the bridging function and 

many observed values that are zero. The purpose of this 

study is to find out the right model and the variables that 

affect data that occurs overdispersion and excess zero in the 

case of the number of days of disruption at work, school or 

other daily activities due to health complaints. The method 

used were Poisson Regression, Negative Binomial 

Regression, Hurdle Poisson Regression, Zero Inflated 

Poisson Regression, Zero Inflated Negative Binomial 

Regression and Hurdle Negative Binomial Regression. The 

data used were morbidity taken from data on the number of 

days of disruption at work, school or other daily activities 

due to health complaints in Seluma district, Bengkulu 

Province. It was found that the best model is Zero Inflated 

Negative Poisson with the smallest Akaike Information 

Criterion (AIC) value of 1620.609 and the variables that 

have a significant effect on the log model and the logit 

model are marital status and work variables. 

1. INTRODUCTION 

Poisson Regression Analysis is a method that can be used if the response variable is 

in the form of count data that follows a Poisson distribution, that is, when the data has a 

mean value that is roughly the same as the variance value (equidispersion). However, some 

research data found that the average value was greater than the variant value 

(overdispersion) (Fitriani et al., 2019). If Poisson regression is used in overdispersion 

conditions, it will result in errors in drawing conclusions, namely the explanatory variable 

looks as if it affects the response variable but actually has no effect (underestimates). 

Therefor Poisson regression is not appropriate for overdispersion data. 

Several regression models used to overcome the overdispersion problem are: 

Hurdle Poisson (HP) regression model, Negative Binomial Regression model, Zero 

Inflated Poisson (ZIP) Regression model, Zero Inflated Negative Binomial (ZINB) 

Regression model and Hurdle Negative Binomial (HNB) model. Eunice et al. (2017) 

compared the Poisson regression model with Negative Binomial regression in a case study 
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of malaria incidence in the village of Apac, Uganda and the results of this study showed 

that the Negative Binomial regression was better than the Poisson regression. According to 

Sreelatha & Miniswamy (2018), Zero Inflated Poisson (ZIP) regression is better than 

Poisson regression for overdispersion conditions, with many observations having a zero 

value on the response variable. Another study by Ariawan et al. (2012) used ZINB 

regression to overcome overdispersion due to excess zero in PT Sinar Mas Insurance 

Semarang Branch in 2010. 

Another model used to overcome the overdispersion problem with an excess of 

zeros is the Hurdle Negative Binomial (HNB) model. This HNB model can overcome 

excess zero events by dividing the two models into two parts, namely the first model is a 

binary model for observations where the data is zero, namely the logit model. The second 

model for positive value data will be estimated using the Truncated Poisson model. This 

model has been used by Desjardins (2014), with a comparison of the performance of the 

ZINB regression model and the HNB regression using simulated data generated based on 

sample size, dispersion parameter values, parameter values of the first component (δ), the 

second component was conducted by Fitriani et al. (2019) count data with zero excess and 

overdispersion can be used in the Zero Inflated Negative Binomial (ZINB) regression 

model and the Hurdle Negative Binomial (HNB) regression model. 

Research by Hu et al. (2011) on applications in the health sector experienced 

overdispersion and excess zero. The results show that ZINB and HNB have the best 

accuracy compared to the Poisson Regression, Negative Binomial (NB), ZIP, and Hurdle 

Poisson (HP) models. Yang et al. (2017) examined sick days in the State of Rhode Island, 

United States of America, comparing the ZIP, ZINB, HP, and HNB regression models. The 

results show that the ZINB and HNB regression models produce better performance than 

that of the other regression models. 

The regression model that can overcome overdispersion is Negative Binomial 

regression, Zero Inflated Poisson (ZIP). Other models used to overcome the problem of 

overdispersion with excessive zero values are the Hurdle Negative Binomial (HNB), Zero 

Inflated Negative Binomial (ZINB), Hurdle Poisson (HP) models. The aim of this research 

is to compare the Hurdle Poisson (HP) regression model, the Negative Binomial 

Regression model, the Zero Inflated Poisson (ZIP) Regression model, the Zero Inflated 

Negative Binomial (ZINB) Regression model and the Hurdle Negative Binomial (HNB) 

model with AIC criteria (Akaike's Information Criterion) as the best model criteria. In 

addition, this study also aims to determine what variables affect the overdispersion and 

excess zero data. 

Seluma Regency has the fifth highest percentage of residents who have health out 

of 10 districts in Bengkulu Province with a value of (24.19%) meaning that there are 

24.19% of the population of Seluma Regency who experience health complaints so that 

daily activities or activities are disrupted.  

 

2. LITERATURE REVIEW 

2.1. Poisson Regression 

Poisson regression is part of the regression analysis used to describe the 

relationship between the 𝑌 variable with the Poisson distribution and the independent 

variable 𝑋. The probability function of the Poisson distribution with the parameter 𝜇 where 

𝜇 is the average of an event per unit time and 𝑡 is a certain time period. The probability 

density function is 
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𝑓𝑌(𝑦 ;  𝜇) =   {
𝑒−𝜇 𝜇𝑦

𝑦!
, 𝑦 = 0, 1, 2, …

0 , other
  (1) 

where 𝜇 is the average number of successes over a certain period of time or area.  

2.2. Overdispersion  

Overdispersion is a situation where the average value is greater than the variance 

value. According to Hardin and Hilbe (2008) overdispersion can occur due to data outliers, 

missing data observations in the explanatory variables, errors in determining the link 

function, correlations between observations, or transformations in the explanatory 

variables.  

The test statistics used is  

(ф̂) =
deviance 

𝑛−𝑝
      (2) 

where the deviance = 𝐷 = 2∑ (𝑦𝑖𝑙𝑜𝑔
𝑦𝑖
𝜇𝑖
− (𝑦𝑖 − 𝜇𝑖))

𝑛
𝑖=1  

𝐷 is the deviation value, 𝑦𝑖 is the value of the response variable from the 𝑖-th observation, 

𝜇𝑖 is the average of the 𝑖-th cases in the Poisson Regression model, 𝑛 is the number of 

observations and 𝑝 is the number of parameters. 

2.3. Excess zero   

The problem in Poisson regression is excess zeros (Winkelmann, 2008). According 

to Winkelmann (2008) data with a large proportion of zero values when compared to other 

data values will result in precision in decision making. 

Excess zero tests can be calculated using (Broek, 1995) 

𝑋𝑐𝑎𝑙
2 =

(𝑛0 − 𝑛�̂�0)
2

𝑛�̂�0(1 − �̂�0) − 𝑛�̅��̂�0
2 (3) 

with 𝐻0 there is no excess zero in the data, H1 there is excess zero in the data,  

�̅� = �̂� is the average of count data, 𝑛0 and 𝑛 are the number of zero data and the number of 

observations consecutively. Note that �̂�0 = 𝑒𝑥𝑝(−�̂� ). Reject 𝐻0 whenever 𝑋𝑐𝑎𝑙
2 > 𝑋1;𝛼

2 . 

2.4. Negative Binomial Regression (NB Regression) 

According to Hilbe (2011), NB regression is an applied model of GLM because NB 

regression is a family of exponential distributions. The response variable in the NB 

regression is assumed to follow the NB distribution. Let Y be the NB distribution, then the 

probability function is 

𝑃(𝑌) = (
𝑦 + 𝑘 − 1

𝑦
) 𝑝𝑘(1 − 𝑝)𝑦  

=
(𝑦 +  𝑘 − 1)

(𝑘 − 1)! 𝑦!
𝑝𝑘(1 − 𝑝)𝑦,      𝑦 = 0, 1, 2, …  (4) 

where 𝑘 is the number of successful events, 𝑦 is the number of failed events before the 𝑘-th 

successful event occurs, 𝑝 equals the probability of success and (1 − 𝑝) is the probability 

of failure.  

According to McCullagh and Nelder (1989), an approach for overdispersion 

calculated data can use NB regression, because the NB regression is a mixed Poisson-
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Gamma distribution. Let 𝑦|𝜇 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜇)  and 𝜇 ~ 𝐺𝑎𝑚𝑚𝑎 (𝛼 , 𝛽). Then the 

probability mass function of the mixed Poisson-Gamma distribution is  

𝑃(𝑦|𝛼, 𝛽) = ∫ Poisson (𝑦|𝜇)
∞

0
 . Gamma (𝜇|𝛼 , 𝛽) 𝑑𝜇    

=  ∫
𝑒−𝜇𝜇−𝑦

𝑦!

∞

0

 .
1

Г(𝛼)𝛽𝛼
𝜇𝛼−1𝑒𝑥𝑝 (−

𝜇

𝛽
)𝑑𝜇  

=  
Г(𝑦 + 𝛼)

𝑦! Г(𝛼)
(

1

1 + 𝛽
)
𝛼

(1 −
1

1 + 𝛽
)
𝑦

 (5) 

where Г(𝛼) is the Gamma function of the number of successful occurrences. The 

parameter values of the Poisson-Gamma mixed distribution to form the NB regression 

model are expressed in the form 𝜇 = 𝛼𝛽 and 𝑘 = 1/𝛼, so that the mean and variance can 

be written as 𝐸(𝑌) = 𝜇 and 𝑉(𝑌) = 𝜇 + 𝑘𝜇2, with k dispersion parameters, so the 

probability mass function of NB is 

𝑝(𝑦, 𝜇, 𝑘) =
Г (𝑦 +

1
𝑘
)

Г (
1
𝑘
) 𝑦!

(
1

1 + 𝑘𝜇
)

1
𝑘
(

𝑘𝜇

1 + 𝑘𝜇
)
𝑦

, 𝑦 = 0, 1, 2, … (6) 

As 𝑘 → 0, then  𝑉(𝑌) → 𝜇 so that the NB distribution will approach Poisson regression 

where the variance and mean values are the same 𝐸(𝑌) = 𝑉(𝑌) = 𝜇 , and if 𝑘 > 0 the 

variance value will exceed the mean value or it is called overdispersion,  𝑉(𝑌) >
𝐸(𝑌) (Greene, 2008). 

2.5. Hurdle Poisson Regression (HPR) 

HP regression is used to model count data with equidispersion or overdispersion 

conditions. The Hurdle model is able to overcome cases of excess zeros by dividing them 

into two models:  

1. Binary data with a zero or positive value, this data will be interpreted using a logit 

model 

2. Data with a positive value will be interpreted using truncated models  

Suppose 𝑘1 = 0 is the opportunity value when the response variable (𝑌) = 0 and 

𝑘2(𝑦), with 𝑦 = 1, 2, … is the opportunity function when the response variable (𝑌) is 

positive (Saffari et al., 2012), then the probability density function is  

𝑃(𝑌𝑖 = 𝑦) = {
𝑘1(0) , 𝑦 = 0

(1 − 𝑘1(0))𝑘2(𝑦) ,   𝑦 = 1, 2, … 
 (7) 

Suppose 𝑌𝑖, 𝑖 = 1, 2, …𝑛 are response variables with non-negative count data and 

𝑌𝑖 = 0 are response variables with excess zero values that the usual Poisson regression 

model cannot handle, so the distribution of Hurdle Poisson regression (Saffari, et al., 

2012),  

 that is 𝑃(𝑌𝑖 = 𝑦𝑖) = {
1 − 𝜋𝑖 ,  𝑦𝑖 = 0

(𝜋𝑖)
𝑒−𝜇𝑖𝜇𝑖

𝑦𝑖

(1−𝜋𝑖)𝑦𝑖!
,   𝑦𝑖 > 0 
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where 0 < 𝜋𝑖 < 1 and  𝜋𝑖 = 𝜋𝑖(𝑥𝑖), so that logit model with 𝑗-th variable as a response 

variable, that is 𝜋𝑖 =
exp(∑ 𝑧𝑖𝑗𝛿𝑗

𝑝
𝑗=1 )

1+exp(∑ 𝑧𝑖𝑗𝛿𝑗
𝑝
𝑗=1

)
.  Truncated Poisson models can be written, log(𝜇𝑖) =

∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1  or  𝜇𝑖 = exp(∑ 𝑥𝑖𝑗𝛽𝑗

𝑝
𝑗=1 ).                                              

2.6. Zero-Inflated Poisson Regression (ZIPR) 

Jansakul & Hinde (2002) stated that if Yi is an independent random variable with a 

ZIP distribution, then the zero value in the observation is assumed to appear in two ways 

that are appropriate for separate states. Taufan et al. (2012) stated that the parameter 

estimation of the Zero-Inflated Poisson regression uses the Maximum Likelihood 

Estimation (MLE) method, and the ln likelihood function equation is 

𝑃(𝑌𝑖 = 𝑦𝑖) 

= {
∑ ln (𝑒𝑋𝑖

𝑇𝛾 + exp (−𝑒𝑋𝑖
𝑇𝛽)) − ∑ ln (1 + 𝑒𝑋𝑖

𝑇𝛾)𝑛
𝑖=1

𝑛
𝑖=1 ,   𝑦𝑖 = 0

∑ (𝑋𝑖
𝑇𝛽)𝑦𝑖

𝑛
𝑖=1 − 𝑒𝑋𝑖

𝑇𝛽 −∑ ln (1 + 𝑒𝑋𝑖
𝑇𝛾) − ∑ ln 𝑦𝑖

𝑛
𝑖=1

𝑛
𝑖=1 ! ,    𝑦𝑖 > 0 

    
(8) 

2.7. Zero Inflated Negative Binomial Regression (ZINBR) 

Zero Inflated Negative Binomial (ZINB) regression is a model formed from a 

mixed Poisson and Gamma distribution, with its probability density function, Hilbe (2011), 

namely 𝑓(𝑦|𝛼, 𝛽) =
Γ(𝑦+𝛼)

𝑦!Γ(𝛼)
(

1

1+𝛽
)
𝛼

(1 −
1

1+𝛽
)
𝑦

, 𝑦 = 0, 1, 2, … with the mean and variance 

of the Negative Binomial distribution is 𝐸[𝑌] = 𝛼𝛽 and V[𝑌] = 𝛼𝛽 + 𝛼𝛽2.  

Garay & Hashimoto (2011) states that the first state of the ZINB regression is called 

the zero state with probability 𝑝𝑖 and the observation results are zero, and the second state 

is called the negative binomial state with probability (1 − 𝑝𝑖) and has a Negative Binomial 

distribution where the mean μ with 0 ≤ 𝑝𝑖 ≤ 1, so the probability density function is: 

𝑃(𝑌𝑖 = 𝑦𝑖) =

{
 
 

 
 𝑝

𝑖
+ (1 − 𝑝

𝑖
) (

1

1+𝑘𝜇𝑖

)

1
𝑘⁄

,  𝑦𝑖 = 0

(1 − 𝑝
𝑖
)

Γ(𝑦+
1

𝑘
)

Γ(
1

𝑘
)Γ(𝑦𝑖+1)

(
1

1+𝑘𝜇𝑖

)

1
𝑘⁄

(
𝑘𝜇𝑖

1+𝑘𝜇𝑖

)
𝑦𝑖

,   𝑦𝑖 = 1, 2, 3, … 

  (9) 

with the assumption that 𝜇𝑖 and 𝑝𝑖 depend on 𝑥𝑖 and 𝑧𝑖 variables, so that the model of 

ZINBR is divided into two:  

1. Discrete data model for 𝜇𝑖 
ln(𝜇𝑖) =𝑥𝑖

𝑇𝛽, 𝜇𝑖 ≥ 0, 𝑖 = 1, …𝑛. where 𝑥𝑖 is a variable matrix that contains different 

sets of experimental factors related to the probability of a negative binomial mean in a 

negative binomial state. 

2. Zero-Inflation Model for 𝑝𝑖  

 logit (𝑝𝑖) = ln (
𝑝𝑖

1−𝑝𝑖
) =𝑥𝑖

𝑇𝛾,         0 ≤ 𝑝𝑖 ≤ 1, 𝑖 = 1, …𝑛  

where 𝑥𝑖 is a variable matrix that contains different sets of experimental factors 

associated with zero state probabilities. 

2.8. Hurdle Negative Binomial Regression (HNBR) 

The HNB regression model is used for the dependent variable in the form of count 

data and has more zero values than other values (excess zero) and experiences 

overdispersion (Desjardins, 2013). The HNB model uses a two-part approach (two-part 

model), namely the first part estimates a zero-value dependent variable called the Hurdle 
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model and the second part estimates a non-negative round-valued dependent variable 

called the truncated model (Saffari, Adnan and Greene, 2012). Suppose 𝑦𝑖 (𝑖 = 1, 2, … 𝑛) is 

a response variable in the form of count data (𝑦
𝑖
= 1, 2, …𝑛), then the probability function 

of the HNB regression model is 

𝑃(𝑌𝑖 = 𝑦𝑖) = {

 𝜋𝑖 ,  𝑦𝑖 = 0

(1−𝜋𝑖)

1−(
𝑘

𝜇+𝑘
)
𝑘

Г(𝑦+𝑘)

Г(𝑦+1)Г(𝑘)
 (

𝑘

𝜇+𝑘
)
𝑘

(1 −
𝑘

𝜇+𝑘
)
𝑦

,   𝑦𝑖 > 0 
  (9) 

where 𝜋𝑖 is the opportunity for the first state, namely the emergence of a zero state and the 

probability (1 − 𝜋𝑖) for the second negative binomial state with 0 < 𝜋𝑖 < 1. μi is the 

average of the negative binomial distribution with 𝜇𝑖 > 0 and 𝑘 is the dispersion parameter 

that does not depend on the independent variable with 𝑘 > 0. 

The value of 𝜋𝑖 and 𝜇𝑖 depends on the explanatory variables which can be defined 

as follows: 

𝜋𝑖 = (
𝑒𝒙𝑖
𝑇𝛅

1+𝑒𝒙𝑖
𝑇𝛅
)  and  𝜇𝑖 = 𝑒𝒙𝑖

𝑇𝜷 
 

so that the model for the connecting function logit and log is expressed as follows:  

logit (𝜋𝑖) = log (
𝜋𝑖

1 − 𝜋𝑖
)  =  𝒙𝑖

𝑇𝛅 ;  𝑖 =  1, 2, . . , 𝑛  

logit (𝜋𝑖) = log (
𝜋𝑖

1−𝜋𝑖
)  =  𝒙𝑖

𝑇𝜹 ;  𝑖 =  1, 2, . . , 𝑛 , so that  𝜋𝑖 =
𝑒 𝒙𝒊

𝑻𝜹

1+𝑒 𝒙𝒊
𝑻𝜹

 , for the value 𝜇𝑖 is 

log( 𝜇𝑖) = 𝒙𝑖
𝑇𝜷 , 𝜇𝑖 = 𝑒𝒙𝑖

𝑇𝜷.  

For the hurdle model, the link function is logit (𝜋𝑖) = 𝛿0 + ∑ 𝑥𝑖𝑗
𝑝
𝑗=1 𝛿𝑗   where 𝑖 =

1, 2, … 𝑛 and 𝑗 = 1, 2, … 𝑝. The link function for Truncated Negative Binomial Model is 

log(𝜇𝑖) = �̂�0 + ∑ 𝑥𝑖𝑗
𝑝
𝑖=1 �̂�𝑗 where 𝑖 = 1, 2, … 𝑛 and  𝑗 = 1, 2, … 𝑝. 

2.9. Morbidity  

 The concept of Statistics Indonesia in the Statistical Referral System (SIRUSA) 

Morbidity is defined as disturbances to physical or mental conditions, including accidents, 

or other things that disrupt daily activities. The morbidity rate has a more important role 

than the mortality rate, because if the morbidity rate is high it will result in death so that the 

mortality rate is high as well as the high morbidity value of an area indicates the poor 

health of the population in that region and vice versa. The lower the morbidity value 

indicates the health of the population in the region better. 

 

3. RESEARCH METHODS 

3.1. Data   

The data used in this study is regarding morbidity obtained from the activities of 

the March 2021 National Socioeconomic Survey (Susenas), which is the number of days of 

disruption to health due to health complaints.  

3.2. Variable  

The variables used in this study were the number of days of health disturbance due 

to health complaints (𝑌) with the data from the March 2021 National Socio-Econimic 
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Survey (Susenas) Produced by the BPS of Seluma Regency, Bengkulu Province and the 

predictor variables are  Gender (𝑋1), Education (𝑋2), Marital Status (𝑋3), Work (𝑋4). 

3.3. Data Analysis  

Data analysis uses R software (R Core Team, 2021), with the following steps: (1) 

Conduct descriptive analysis on research variables; (2) Overdispersion and under 

dispersion testing. If the data occurs overdispersion, then proceed to see whether the 

variable (𝑌) has an excess zero or not by looking at the proportion of its zero value; (3) 

Estimation of Poisson regression parameters, Negative Binomial regression, Hurdle 

Poisson regression, Zero Inflated Negative Binomial (ZINB), and Hurdle Negative 

Binomial (HNB) based on the smallest AIC value; (4) Identify variables that have a 

significant effect. 

 

4. RESULT AND DISCUSSION 

Seluma Regency is administratively included in the Bengkulu Province area. 

Seluma Regency is geographically located on the West Coast of Sumatra, which is at the 

latitude coordinates of 03°49´55.66"S - 04°1´40.22"S and longitude 101°17´27.57"E - 102° 

59´40.54"E. Seluma Regency has an altitude between 0 until more than 1,000m above sea 

level. Seluma Regency is also included in the Bukit Barisan Hills which extends to the 

northwest - southeast with an altitude difference of about 300 m. 

Excess zero testing is done by using the zero.test function in the vcdExtra 

package in the R program, with the null hypothesis H0, namely there is no excess zero in 

the data and H1, namely there is an excess zero. Based on the test results, the p-value is 

2.22e-16 so that H1 is accepted, which means that there is an excess zero in the data. 

Meanwhile, checking for overdispersion is done by dividing the deviation value by the 

degree of freedom. The result is that the dispersion value is 5.33 (> 1) meaning that the 

data has overdispersion. This indicates a violation of the assumptions that must be met 

when applying the Poisson regression model. 

Table 1.  AIC Comparison 

Model  AIC  

Poisson Regression 3025.113 

Negative Binomial Regression (NBR) 1646.871 

Hurdle Poisson Regression (HPR) 1929.574 

Zero Inflated Poisson Regression 

(ZIPR) 1929.055 

Zero Inflated Negative Binomial 

Regression (ZINBR) 1620.609 

Hurdle Negative Binomial Regression 

(HNBR) 1621.434 

Based on the smallest AIC criterion (Table 1), it is found that the best model to use 

for the data used and experiencing overdispersion and access zero is the Zero Inflated 

Negative Binomial Regression (ZINBR), with the equation 

1. The discrete data model for 𝜇�̂� 

𝜇�̂� = exp(−0.77806 + 0.32191 𝑋1 + 0.08922𝑋2 + 1.52144𝑋3 − 0.56362𝑋4) 
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2. Zero Inflated Model (𝑝𝑖) is  

p̂i = 
exp(−0.77806 + 0.32191 X1 − 0.08922  X2 + 1.52144  X3 − 0.56362  X4)

1 + exp(−0.77806 + 0.32191 X1 − 0.08922  X2 + 1.52144  X3 − 0.56362  X4)
 

Based on the results of the equation then  

1. Variables that significantly affect on the count model include the marital status variable 
(𝑋3), where people with marital status have a number of days of impaired health 

exp(1.52144) = 4.57881 times longer than people who have not married. The next 

variable that has a significant influence is work (𝑋4). People who have worked have 

fewer days of health problems exp(−0.56362) = 0.56914 than people who do not 

work. These estimates use other variables Gender (X1) and Education (𝑋2) also in the 

model. 

2. For the zero inflation data model (pi) the variable that has a significant effect is the 

marital status variable (𝑋3), with the interpretation that married people have fewer days 

of health problems exp(−3.28128) = 0.03758 times less of unmarried people, 

meaning that the number of days of disruption to health for unmarried people is 

26.60975 longer than for married people. The next variable that affects the number of 

days of health disturbance is work (𝑋4). People who have jobs have an influence of 

exp(2.10121) = 8.17604 longer than people who do not have jobs. These estimates 

using other variables Gender (𝑋1) dan Education (𝑋2) also in the model. 

 

5. CONCLUSION 

From the comparison of the AIC values of the Poisson regression model, the 

Negative Binomial Regression, the ZINB Regression and the HNB Regression model, it 

shows that the AIC value of the ZINB regression model is the smallest, namely 1620,609. 

Based on this, it can be concluded from the four regression models used in this study, the 

ZINB Regression model is best used to model data on the number of days of disruption of 

daily activities due to health complaints in Seluma District which contain overdispersion 

and excess zero. 

The variables that affect the number of days of disruption of daily activities due to 

health complaints in Seluma District in the ZINB Regression model with the Negative 

Binomial with log model (log model) are marital status and work status variables. 

Meanwhile, the ZINB regression uses the logit model using predictors of marital status and 

work variables. 
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