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Abstract:  Spatial extreme value (SEV) is a statistical technique 

for modeling extreme events at multiple locations with spatial 

dependencies between locations. High intensity rainfall can 

cause disasters such as floods and landslides. Rainfall modelling 

is needed as an early detection step. SEV was developed from 

the univariate Extreme Value Theory (EVT) method to become 

multivariate. This work uses the SEV approach, namely the 

Max-stable process, which is an extension of the multivariate 

EVT into infinite dimensions. There are 4 Max-stable process 

models, namely Smith, Schlater, Brown Resnik, and Geometric 

Gaussian, which have the Generalized Extreme Value (GEV) 

distribution. This study models extreme rainfall, using rainfall 

data in the city of Semarang. This research was carried out by 

modeling data using the Geometric Gaussian model. This 

method is developed from the Smith and Schlater model, so this 

model can get better modeling results than the previous model. 

The maximum extreme rainfall prediction results for the next 

two periods are Semarang climatology station 129.30 mm3, 

Ahmad Yani 121.40 mm3, and Tanjung Mas 111.00 mm3. The 

result from this study can be used as an alternative for the 

government for early detection of the possibility of extreme 

rainfall. 

 

1. INTRODUCTION  

Rainfall is measured based on the height limit of rainwater that collects in a place 

with a flat cross-section, which does not decrease, infiltrate, and also does not flow (BMKG, 

2014). Conditions are said to be extreme if the intensity of rainfall reaches 100 mm3. High 

and unpredictable rainfall often results in floods, landslides, and crop failures. Semarang is 

one of the cities that has had a relatively high negative impact due to the occurrence of too 

high an intensity of rain. The north coast route which passes through the city of Semarang, 

has many industries which are one of the main drivers of the economy in the city of Semarang 

and the surrounding area. If a flood disaster occurs on the route, it will cut off access to the 

distribution of goods and services. This has a wide and large impact on the city of Semarang, 

this reason is enough to be the basis for the need to make a model that can study and predict 

rainfall in the city of Semarang. It is hoped that there are anticipatory steps that can be made, 

intending to minimize the negative impact. The branch of statistics that studies extreme 

phenomena and data is Extreme Value Theory (EVT). 
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Spatial Extreme Value (SEV) is a statistical tool for modeling extreme events across 

multiple locations with dependencies. Detailed studies on the use of spatial extreme have 

also been performed by Ribatet (2013), Davison (2015), and Huser (2016). This study uses 

SEV with a Max-stable process approach, which is an extension of multivariate EVT into an 

infinite dimension. One of the models utilized in the Max-stable procedure is the Smith 

model, which was introduced by Smith in 1990. This model was tested in England in cases 

of extreme rain intensity. Schlather in 2002 put forward the Schlather Model which is a SEV 

model, using a Max-stable process based on a Gaussian random field. Subsequent 

developments used the Brown-Resnick process principle proposed by Brown and Resnick 

in 1977, which became known as the Brown-Resnick Model (Kabluchko, 2009). The 

combination of the Smith and Schlather models produces a new model called the Geometric 

Gaussian Model introduced by Davison et al. (2010).  

In general, all MSP models have Generalized Extreme Value (GEV) distribution. 

Gaussian geometric modeling is often used to model extreme events such as extreme heat, 

extreme snow and extreme rainfall in countries that have four seasons. The application of 

this method in Indonesia, which only has two seasons, is likely to be more effective because 

the rainy season period is longer and the pattern of rainy season data can be better captured 

by the SEV method.  This study uses rainfall data in the city of Semarang, then extreme data 

are chosen using block maxima. The fundamental idea of the block maxima is that the 

extreme data is chosen from the maximum data in each time periods block. In the next phase, 

the extreme data are modeled using geometric Gaussian models to determine parameter 

estimates. Hakim's research (2021) concerning the Geometric Gaussian Model on sea wave 

height data, found that the performance of this method is quite good. This method was 

developed from the Smith and Schlater model. Return level in the Geometric Gaussian 

Model is used to estimate the amount of extreme rainfall. 
 

2. MAX-STABLE PROCESS (MSP) 

2.1. Definition 

Suppose the set of indexes {𝑌𝑖(𝑥)}𝑥∈𝑋, 𝑖 = 1, 2, . . . , 𝑛    are 𝑛 independent replications 

of a continuous stochastic process. Suppose that given a continuous function where 𝑎𝑛(𝑥) >
0 and 𝑏𝑛(𝑥) ∈ 𝑅 so that: 

𝑌(𝑥) = lim
𝑛→∞

max𝑖=1
𝑛 𝑌𝑖(𝑥) − 𝑏𝑛(𝑥)

𝑎𝑛(𝑥)
; 𝑛 → ∞, 𝑥 ∈ 𝑋 (1) 

the limit process 𝑌(𝑥) is said to be a Max-Stable Process, if in equation 1 the limit value 

exists (de Haan, 1984). If 𝑎𝑛(𝑠) = 𝑛, 𝑏𝑛(𝑠) = 0 then 𝑌(𝑥) is also a simple MSP. Max-Stable 

Process has two main properties. First, the marginal distribution in dimension one follows the 

Generalized Extreme Value distribution 𝑌~𝐺𝐸𝑉(𝜇, 𝜎, 𝜉), with the probability density 

function defined as follows:  

𝑓(𝑦; 𝜇, 𝜎, 𝜉) = exp {− [1 + 𝜉 (
𝑦 − 𝜇

𝜎
)]

+

 −  
1
𝜉
} , −∞ < 𝜇, 𝜉 < ∞, 𝜎 > 0  

The second characteristic is that for k - dimensions, the marginal distribution follows 

the Multivariate Extreme Value Distribution (Yasin et al, 2019). The parameters obtained 

based on the GEV probability density function are used to transform Y(x) into the Frechet 

margin using the function in Equation 2.  
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{𝑍(𝑥)}𝑥∈𝑋 = {1 +
𝜉(𝑥)(𝑌(𝑥) − 𝜇(𝑥))

𝜆(𝑥)
}
+

1
𝜉(𝑥)

𝑥∈𝑋

 (2) 

where {𝑍(𝑥)}𝑥∈𝑋is a Max-Stable Process. Process Z is also a Max-Stable Process, with 

parameters 𝜇(𝑥), 𝜉(𝑥), and, and 𝜆(𝑥) > 0 is a continuous function (Padoan et al. 2010). The 

Geometric Gaussian model uses a dependency structure, 𝑊𝑖(𝑥) = exp (𝜎𝜀(𝑥) −
𝜎2

2
), with 

extremal coefficient 𝜃(ℎ) following Equation 3 research article from Xu and Genton (2016). 

Then the Z model equation as follows: 

𝑍(𝑥) = max
𝑖

𝜉𝑖 exp (𝜎𝜀(𝑥) −
𝜎2

2
) , 𝑥 ∈ 𝑋 (3) 

The standard Gaussian process is denoted 𝜀𝑖, 𝜌(ℎ) is a correlation function, the value 

𝜀(0) = 0 and the bivariate Cumulative Distribution Function (CDF) of this model refers to 

the bivariate Smith model, stated by Equation (4) 

𝑃𝑟[𝑍(𝑥1) ≤ 𝑧1, 𝑍(𝑥1) ≤ 𝑧2] 

= exp [−
1

𝑧1
Φ(

𝑎

2
+

1

𝑎
log

𝑧2

𝑧1
) −

1

𝑧2
Φ(

𝑎

2
+

1

𝑎
log

𝑧1

𝑧2
)] 

(4) 

CDF normal standard is denoted by Φ and   𝑎=𝜎√2(1 − 𝜌(ℎ))  (Davison et al., 

2010). This changes Equation 4 to Equation 5: 

𝑃𝑟[𝑍(𝑥1) ≤ 𝑧1, 𝑍(𝑥1) ≤ 𝑧2] = exp

[
 
 
 

−
1

𝑧1
Φ

(

 
𝜎√2(1 − 𝜌(ℎ))

2
+

1

𝜎√2(1 − 𝜌(ℎ))

log
𝑧2

𝑧1

)

  

−
1

𝑧2
Φ

(

 
𝜎√2(1 − 𝜌(ℎ))

2
+

1

𝜎√2(1 − 𝜌(ℎ))

log
𝑧1

𝑧2

)

 

]
 
 
 

 (5) 

2.2. Geometric Gaussian Model 

The CDF of geometric Gaussian is expressed by Equation (6)   

𝐹 (𝑧(𝑥𝑖), 𝑧(𝑥𝑗)) = exp

[
 
 
 

−
1

𝑧(𝑥𝑖)
Φ

(

 
𝜎√2(1 − 𝜌(ℎ))

2
+

1

𝜎√2(1 − 𝜌(ℎ))

log
𝑧(𝑥𝑗)

𝑧(𝑥𝑖)

)

   

−
1

𝑧(𝑥𝑗)
Φ

(

 
𝜎√2(1 − 𝜌(ℎ))

2
+

1

𝜎√2(1 − 𝜌(ℎ))

log
𝑧(𝑥𝑖)

𝑧(𝑥𝑗)

)

 

]
 
 
 

 (6) 

where 𝑧(𝑥𝑖) and 𝑧(𝑥𝑗) state the i-location and j-location in the Frechet margin, also 

included in Max-Stable Process. 𝜌(ℎ) is the correlation function for Schlather models, 

including Cauchy, Whittle-Matern, Bessel, and Powered Exponential, and h is the Euclidean 
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distance between two locations. Bivariate Geometric Gaussian PDF is obtained by 

simplifying Equation 6 into Equation 7 as follows: 

𝐹(𝑧(𝑥𝑖), 𝑧(𝑥𝑗)) = exp [−
Φ(𝑤(ℎ))

𝑧(𝑥𝑖)
−

Φ(𝑣(ℎ))

𝑧(𝑥𝑗)
] (7) 

Where 𝑤(ℎ) =
𝑎(ℎ)

2
+

1

𝑎(ℎ)
log

𝑧(𝑥𝑗)

𝑧(𝑥𝑖)
 𝑤(ℎ) =

𝑎(ℎ)

2
+

1

𝑎(ℎ)
log

𝑧(𝑥𝑖)

𝑧(𝑥𝑗)
 

 𝑎(ℎ) =  𝜎√2(1 − 𝜌(ℎ))  

Therefore, the bivariate PDF form for the Geometric Gaussian model is  

𝐹(𝑧(𝑥𝑖), 𝑧(𝑥𝑗)) = exp [−
Φ(𝑤(ℎ))

𝑧(𝑥𝑖)
−

Φ(𝑣(ℎ))

𝑧(𝑥𝑗)
]  

× [
Φ(𝑤(ℎ))

𝑧2(𝑥𝑖)
+

𝜑(𝑤(ℎ))

𝑎(ℎ)𝑧2(𝑥𝑖)
−

𝜑(𝑣(ℎ))

𝑎(ℎ)𝑧(𝑥𝑖)𝑧(𝑥𝑗)
 

×
Φ(𝑤(ℎ))

𝑧2(𝑥𝑗)
+

𝜑(𝑤(ℎ))

𝑎(ℎ)𝑧2(𝑥𝑗)
−

𝜑(𝑣(ℎ))

𝑎(ℎ)𝑧(𝑥𝑖)𝑧(𝑥𝑗)
 

 

+
𝑣𝜑(𝑤(ℎ))

𝑎2(ℎ)𝑧2(𝑥𝑖)𝑧(𝑥𝑗)
+

𝑣𝜑(𝑤(ℎ))

𝑎2(ℎ)𝑧(𝑥𝑖)𝑧2(𝑥𝑗)
] (8) 

The process of estimating the parameters of Equation 8 is carried out using Maximum 

Pairwise Likelihood Estimation (MPLE), then the function is made into the form of the 

likelihood function, then makes the first derivative based on each parameter and equates to 

zero. Equations resulting from these derivatives are not closed form. The process of 

calculating the parameter estimates is continued with the optimization of the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. Spatial GEV model, written in Equation 9. 

𝐺𝐸𝑉(𝜇(𝑠), 𝜎(𝑠), 𝜉(𝑠)) (9) 

Each parameter, namely the location parameter 𝜇(𝑠), the scale parameter 𝜎(𝑠), and 

the shape parameter 𝜉(𝑠), is formed following the multiple regression model, then adding 

spatial elements, namely latitude and longitude as location coordinates. This form is known 

as the Trend Surface model, which is defined in Equation 10. 

�̂�(𝑠) = 𝛽𝜇,0 + 𝛽𝜇,1 longitude(𝑠) + 𝛽𝜇,2 latitude(𝑠) (10) 

�̂�(𝑠) = 𝛽𝜎,0 + 𝛽𝜎,1 longitude(𝑠) + 𝛽𝜎,2 latitude(𝑠)  

𝜉(𝑠) = 𝛽𝜉,0  

The parameters µ, σ, and ξ were estimated using MPLE based on the Probability 

Distribution Function (PDC) of the Gaussian Geometric model. Selection of the best model 

uses the Takeuchi Information Criterion (TIC) based on a combination of trend surface 

models. 

TIC is defined by the following equation: 

𝑇𝐼𝐶 = −2ℓ𝑝(�̂�) + 2𝑡𝑟 {𝐻(�̂�)
−1

𝐽(�̂�)} (11) 
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where, ℓ𝑝(�̂�) = ∑ ∑ ∑ ln (𝑓(𝑢𝑗𝑖, 𝑢𝑘𝑖; �̂�))𝑚
𝑘=𝑗+1

𝑚−1
𝑗=1

𝑛
𝑖=1  is the ln pseudo-likelihood 

function and is the number of parameters to be estimated. The smallest TIC value indicates 

the best model. 
 

3. MATERIAL AND METHOD  

The rainfall data used comes from the Meteorology, Climatology, and Geophysics 

Agency of Semarang City, with several measurement posts in Semarang City. These points 

are the Semarang Climatology Station, Tanjung Mas, and Ahmad Yani. The data period 

starts from September 1991 to August 2022. The calculation process is carried out using 

algorithm from Dombry et al. (2013) and Ribatet et al, (2015), with the following steps: 

1. Using Block Maxima to determine data with extreme categories. If there is no rain at all 

during a certain time, the data will be represented with a value of 0 

2. GEV distribution check  

3. Calculate univariate parameter estimates �̂�(𝑠), �̂�(𝑠), and 𝜉(𝑠) for each post/location. 

4. Transform to Frechet margin units. 

5. Make several combinations of trend surface models and select the best one with minimal 

TIC criteria. 

6. Calculate the value of �̂�(𝑠), �̂�(𝑠), and 𝜉(𝑠) for each location 

7. Calculating return level values for extreme rainfall predictions 

 

4. RESULTS AND DISCUSSION 

As initial information, extreme values have been taken from 10197 data for each rain 

post in Semarang City, 100 training data and 20 testing data have been obtained. Semarang 

City experiences rain with the highest daily average intensity of 6.3631 mm/day, which is at 

the point of the Ahmad Yani Station. The Summary of Semarang City Rainfall starts from 

September 1991 to August 2022 is presented in Table 1. During this time interval, the city 

of Semarang experienced the highest rainfall with 276 mm3 and was included in an extreme 

event. 

 

 

Figure 1. Maxima Block Illustration 

The process of univariate estimation of the parameters 𝜇(𝑠), 𝜎(𝑠), and 𝜉(𝑠), starts 

Table 1. Summary of Semarang City Rainfall 

Measurement Post 

Average 

(mm3/day) 

Standard 

Deviation 

(mm3/day) 

Minimum 

(mm3/day) 

Maximum 

(mm3/day) 

Semarang Climatology Station 6.3103 15.6117 0 276.0000 

Ahmad Yani 6.3631 15.5508 0 255.3000 

Tanjung Mas 5.8502 14.6602 0 246.6000 
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from the extreme data from the Maxima Block process and then calculates them based on 

the GEV PDF model using the MLE estimation method. The Maxima Block process takes 

the highest data from each block in a certain time as an extreme value, as illustrated in Figure 

1. If there is no rain at all during a certain time, the data will be represented with a value of 

0.  

Table 2 presents the results of univariate parameter estimates 𝜇(𝑠), 𝜎(𝑠), and 𝜉(𝑠).  

Table 2. Univariate GEV Parameter Estimation 

Measurement Post �̂�(𝑠) �̂�(𝑠) 𝜉(𝑠) 

Semarang Climatology Station 60.27 32.30 0.03 

Ahmad Yani 59.65 31.13 0.05 

Tanjung Mas 56.32 28.52 -0.03 

The parameters obtained in Table 2 are used to transform rainfall data, obtained from 

the block maxima process into Frechet margins using the Z transformation with the formula 

Equation 2. The best trend surface model refers to equation 10, selected with the criterion of 

the smallest TIC value, namely 2537.104. The following best trend surface models: 

�̂�(𝑠) = 4.52 + 0.5𝑣(𝑠) 

�̂�(𝑠) = 2.48 + 0.21𝑣(𝑠) 

𝜉(𝑠) = 0.98 

Then the calculation of the parameter estimation of the geometric Gaussian model in 

Equation 8 is obtained using the MPLE method. The parameter estimates obtained are 

μ̂(s),   σ̂(s), and ξ̂(s) for each measurement post location. Parameter estimates for each 

location are listed in Table 3. 

Table 3. Multivariate GEV Parameter Estimation 

Measurement Post �̂�(𝑠)  �̂�(𝑠) 𝜉(𝑠) 

Semarang Climatology Station 1.0021 1.0018 0.9703 

Ahmad Yani 1.0040 1.0034 0.9703 

Tanjung Mas 1.0213 1.0090 0.9703 

Return level is a calculation of rainfall threshold predictions based on a period. Rainfall 

prediction in this study for the next 1-year  and 2-year periods with p = 5%. The process of 

calculating the return level requires a period of 𝑇 =
1

𝑝
 or 𝑝 =

1

𝑇
 . Results Predicted rainfall 

based on the value of the return level with a probability of exceeding 1. Table 6 displays the 

magnitude of the estimated maximum rainfall in the next 1-year and 2-year periods. 

Table 6. Return Level Prediction 

Period 

Return level 

Semarang Climatology 

Station 
Ahmad Yani Tanjung Mas 

1-year 102.42 98.30 89.80 

2-year 129.30 121.40 111.00 

The SMAPE value is used to measure the performance of the model. Rainfall data 

divided into training (80%) and testing (20%), obtained a SMAPE value of 16.31% which is 

included in the good criteria. 
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5. CONCLUSION 

The maximum extreme rainfall prediction results for the next two periods at the 

Semarang climatology station are 129.30 mm3, at Ahmad Yani Station are 121.40 mm3, and 

at Tanjung Mas are 111.00 mm3. This model is quite good with the SMAPE value of 16.31. 

The Max-stable process model in this study gives quite good results for predicting the short 

period. However, when it is used to forecast the long period, the prediction tends to get bigger 

and resulting in a decrease in the level of accuracy.  
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