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Abstract: Overdispersion is a common problem in count data 

that can lead to inaccurate parameter estimates in Poisson 

regression models. Quasi-Poisson and negative binomial 

regressions are often used to address overdispersion but have 

limitations, especially with small samples. The Conway-

Maxwell Poisson (CMP) regression model, an extension of the 

Poisson distribution, effectively addresses both overdispersion 

and underdispersion, even with limited data, due to additional 

parameters that better control data dispersion. The Infant 

Mortality Rate (IMR) is a critical public health indicator, 

reflecting healthcare quality and broader social, economic, and 

environmental factors. Accurate IMR estimation is essential for 

evaluating health policies. This study aims to (1) identify 

overdispersion in IMR data from South Sulawesi, (2) model 

IMR using CMP regression, and (3) identify factors influencing 

IMR. The dataset includes IMR, Low Birth Weight (LBW), 

diarrhea, asphyxia, pneumonia, and exclusive breastfeeding. 

Analysis showed significant overdispersion with a ratio of 

4.639, making CMP the optimal model with an AIC of 186.845. 

Significant factors identified were LBW, asphyxia, pneumonia, 

and exclusive breastfeeding. These findings advance statistical 

methodologies for count data analysis and offer a more accurate 

approach to evaluating public health policies, supporting efforts 

to reduce infant mortality in South Sulawesi Province. 

 

1. INTRODUCTION  

Poisson regression is a statistical method used to model discrete count data, such as 

the number of events occurring within a specific time or space interval, where the dependent 

variable follows a Poisson distribution (Amin et al., 2022; Aswi et al., 2022; Sundari & 

Sihombing, 2021; Winata, 2023). A key assumption of Poisson regression is equidispersion, 

meaning that the variance equals the mean (Ambarwati et al., 2020; Rahayu, 2021; 

Rahmadeni & Sari, 2018). However, this assumption is frequently violated in practice, 

particularly in public health data, leading to overdispersion (where the variance exceeds the 

mean) or underdispersion (where the variance is less than the mean) (Jao et al., 2022; 

Koerniawan et al., 2020; Ulfa et al., 2021). Overdispersion can arise due to factors such as 

mailto:wahidah.sanusi@unm.ac.id


46 Oktaviana (Conway-Maxwell Poisson Regression Modeling) 

outliers, model misspecification, correlation among individual responses, or population 

clustering (Afri, 2017). Applying Poisson regression to overdispersed data can result in 

underestimated standard errors, invalid confidence intervals, and erroneous statistical 

inferences (Kamalja & Wagh, 2021; Rahayu, 2021). These issues highlight the necessity for 

more robust methods to model discrete data with varying dispersion patterns. Consequently, 

this study emphasizes addressing the limitations of Poisson regression, particularly in the 

context of overdispersed data, to achieve more accurate parameter estimates and valid 

conclusions. 

The central issue addressed in this study is overdispersion in the Infant Mortality 

Rate (IMR) data for South Sulawesi, where the rate remains above the national average. IMR 

is a critical health indicator reflecting the quality of maternal and child health services in a 

region (Jao et al., 2022). In Indonesia, the IMR stands at 30 per 1,000 live births, making it 

the fifth highest globally (Alfahmi, 2023). In 2020, the IMR in South Sulawesi was reported 

by BPS to be 17 per 1,000 live births, which is higher than the national average of 11 per 

1,000 live births. This elevated rate underscores the need for more effective interventions to 

reduce IMR in the region. This study aims to analyze the factors influencing IMR in South 

Sulawesi using Conway-Maxwell Poisson (CMP) regression, a model that offers greater 

flexibility in handling overdispersion compared to traditional regression models. The 

application of CMP regression is anticipated to provide a more nuanced understanding of 

the factors contributing to the high IMR in South Sulawesi. The findings from this study are 

expected to support the development of more effective health policies to reduce IMR in the 

region. 

Research on addressing overdispersion and underdispersion in Poisson regression 

has explored various models, such as Zero-Inflated Poisson (ZIP) regression (Putri et al., 

2022) and Hardle Poisson (Aswi et al., 2022). CMP regression are recognized as effective 

approaches for handling overdispersion (Afri, 2017). Models such as ZIP, Quasi, CMP 

(Hayati et al., 2018), and Poisson-Tweedie (Nasution et al., 2022) demonstrate that CMP 

regression is particularly adept at managing overdispersion. Comparisons of CMP regression 

with Negative Binomial and Generalized Poisson models have shown CMP to be superior 

in handling overdispersion (Hayati et al., 2018). Further comparisons between COM-Poisson 

regression and Poisson regression have also highlighted the superiority of COM-Poisson in 

addressing overdispersion (Radam & Hameed, 2023). 

The CMP regression model extends the Poisson regression framework to better 

handle both overdispersion and underdispersion in discrete data (Afri, 2017; Hayati et al., 

2018). It incorporates two main parameters: the regression parameter (β) and the dispersion 

parameter (ν), which provides increased flexibility compared to other models like 

Generalized Poisson and Negative Binomial (Sellers & Premeaux, 2021). CMP regression 

facilitates more accurate modeling in scenarios where variance does not equal the mean, thus 

offering an advantage over traditional regression models. Previous studies have indicated 

that CMP regression yields lower deviance, Akaike Information Criteria (AIC), and 

Bayesian Information Criteria (BIC) values compared to Generalized Poisson and Negative 

Binomial models, making it a preferred choice for handling overdispersion (Afri, 2017; 

Hayati et al., 2018; Nasution et al., 2022). Given its interpretive advantages and flexibility 

across diverse discrete data conditions, CMP regression is highly recommended for 

analyzing factors affecting the dependent variable, especially in cases involving complex 

data variability (Afri, 2017; Hayati et al., 2018; Radam & Hameed, 2023). 

This research is undertaken to address the limitations of Poisson regression in 

managing overdispersion within the IMR data for South Sulawesi, which exceeds the 
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national average. Due to its limitations in handling overdispersion, Poisson regression may 

lead to biased parameter estimates and inaccurate conclusions (Kamalja & Wagh, 2021; 

Rahayu, 2021). Therefore, this study will employ the CMP regression model, which has been 

shown to be more adaptable and effective in addressing various forms of data dispersion, 

including overdispersion and underdispersion (Afri, 2017; Hayati et al., 2018; Nasution et al., 

2022). By utilizing the CMP model, the study aims to achieve more accurate parameter 

estimates and provide a comprehensive understanding of the factors influencing IMR in 

South Sulawesi. This research is expected to contribute not only to advancements in 

statistical analysis methods but also to the formulation of targeted health policies aimed at 

reducing IMR through evidence-based strategies (Jao et al., 2022; Prahutama et al., 2017; 

Yasril et al., 2022). 

 

2. LITERATURE REVIEW 

2.1. Poisson Regression 

Poisson regression is a generalised linear model (GLM) to model the functional  

relationship between the dependent variable, which is numeric data, and the independent 

variables, which can be numeric or categorical data (Amin et al., 2022). The Poisson 

regression model (Arum et al., 2022) is defined using a function of the dependent mean (𝜇𝑖) 
which can be written as follows. 

𝑙𝑜𝑔 𝜇𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 = 𝑿𝑇𝜷 (1) 

The connecting function used in the Poisson regression model is the log connecting 

function, because the function can be ensured that all values are positive. The connecting 

function is a function used to connect 𝜇𝑖 with linear predictors. Estimation of Poisson 

regression model parameters (Tendriyawati et al., 2023) can be done using the Maximum 

Likelihood Estimation (MLE) method with the probability function (log-likelihood) used is 

as follows. 

𝑙𝑛 𝐿(𝜷|𝑦𝑖) = ∑[𝑦𝑖𝒙𝒊
𝑻𝜷 − 𝑒𝒙𝒊

𝑻𝜷 − 𝑙𝑛⁡(𝑦!)],⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 1, 2, 3, …  (2) 

In Poisson regression modeling, the response variable (Y) is assumed to follow a Poisson 

distribution and must satisfy the characteristics of this distribution. The goodness-of-fit for 

Poisson regression is assessed using the Chi-Square test if the p-value is less than the 

significance level (α), typically set at 0.1, the data is considered to be Poisson distributed. 

Additionally, the Poisson regression model requires that the assumption of equidispersion 

be met, which stipulates that the variance of the dependent variable should equal its mean 

(Ambarwati et al., 2020). 

𝐸(𝑌) = 𝑉𝑎𝑟(𝑌) = 𝜆  (3) 

2.2. Multicollinearity 

The multicollinearity test is used to detect the degree of correlation between 

independent variables in the regression model (Fox, 2016). The occurrence of 

multicollinearity can be seen from the tolerance value. Another test that can be used to see 

multicollinearity is Variance Inflation Factor (VIF). The VIF formula is as follows. 

𝑉𝐼𝐹𝑘 =
1

1−𝑅𝑘
2 ,⁡⁡⁡⁡⁡𝑘 = 1, 2, 3, …  (4) 

𝑅𝑘 is the Pearson correlation coefficient for the k-th independent variable, which measures 

the correlation between the k-th independent variable and the other independent variables in 

the model. 1 − 𝑅𝑘
2 is the denominator in the VIF formula, indicating the proportion of 

variance in the k-th independent variable that is not explained by its relationship with the 
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other independent variables. k denotes a specific variable among all considered independent 

variables. 

Based on the formula presented in Equation (4), the VIF value can be determined if 

the correlation coefficient (R) is provided, as shown in Table 1. From the simulation results 

of the R and VIF values, it is evident that an independent variable is considered to have no 

multicollinearity if its VIF value is less than 3 (VIF < 3). 

Table 1. Simulation of R and VIF Values 

No R VIF No R VIF 

1 0.50 1.33 14 0.87 4.11 

2 0.55 1.43 15 0.88 4.43 

3 0.60 1.56 16 0.89 4.81 

4 0.65 1.73 17 0.90 5.26 

5 0.70 1.96 18 0.91 5.82 

6 0.75 2.29 19 0.92 6.51 

7 0.80 2.78 20 0.93 7.40 

8 0.81 2.91 21 0.94 8.59 

9 0.82 3.05 22 0.95 10.26 

10 0.83 3.21 23 0.96 12.76 

11 0.84 3.40 24 0.97 16.92 

12 0.85 3.60 25 0.98 25.25 

13 0.86 3.84 26 0.99 50.25 

2.3. Overdispersion Test 

Overdispersion refers to a condition where the variance of the dependent variable 

exceeds its mean, which can impair the accuracy of parameter estimates in Poisson 

regression by causing the standard errors of these estimates to be underestimated (Rahayu, 

2020; Sellers & Premeaux, 2021). This condition can arise from several factors, including 

an excess of zero values in the dependent variable data (Dewanti et al., 2016; Rahayu, 2021), 

correlations among dependent observations, clustering within the population, and the 

omission of relevant variables, all of which can introduce bias into the estimation of the 

effect of independent variables (Afri, 2017). Overdispersion is typically detected when the 

dispersion parameter 0 ≤ 𝑣 < 1 in the CMP distribution (λ,⁡v) conforms to the specified 

equation (Sellers & Premeaux, 2021): 

𝐸(𝑌) ≈ 𝜆
1

𝜈 −
𝜈−1

2𝜈
  (5) 

𝑉𝑎𝑟(𝑌) ≈
1

𝜈
𝜆
1

𝜈   (6) 

Furthermore, overdispersion can be assessed through Pearson’s chi-square and the 

dispersion ratio deviance, where a dispersion ratio greater than 1 indicates the presence of 

overdispersion. 

2.4. Conway-Maxwell Poisson (CMP) Regression  

The CMP regression model has the flexibility to model data with various levels of 

dispersion or in this case when there is overdispersion and underdispersion (Afri, 2017; 

Hayati et al., 2018; Nasution et al., 2022). If the dependent variable (Y) follows the CMP (λ, 

v) distribution then the probability mass function is as follows: 

𝑃(𝑌; 𝜆, 𝜈) =
𝜆𝑦

(𝑦!)𝜈𝑍(𝜆:𝜈)
,⁡⁡⁡⁡⁡𝑦 = 0,1, 2, …  (7) 
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where λ is the averaging parameter, and ν is an dispersion parameter that controls the 

dispersion (or variability) in the distribution, 𝑦 the count variable, which can take non-

negative integer values (0, 1, 2, ...), 𝑍(𝜆: 𝜈) normalizing constant or partition function for 

the CMP distribution, ensuring the total probability sums to 1. 

The variance equation in Equation 6 can address different dispersion conditions: it 

accommodates equidispersion when (𝑣 = 1), overdispersion when (0 ≤ 𝑣 < 1) and the 

underdispersion when (𝑣 > 1) (Sellers & Premeaux, 2021). The normalization constants for 

the CMP distribution are as follows: 

𝑍(𝜆: 𝜈) =
𝑒𝑥𝑝(𝜈𝜆

1
𝜈)

𝜆
𝜈−1
2𝜈 (2𝜋)

𝜈−1

2√𝜈

  (8) 

For the CMP model, the commonly used link function is log-link, which is the same as the 

Poisson model. Using log-link, the CMP model can be written as: 

𝑙𝑜𝑔 𝜆𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝛽3𝑥3𝑖 = 𝑿𝑇𝜷  (9) 

where 𝜆𝑖 = The mean parameter of the CMP distribution for the i-th observation, predicted 

by the regression model; 𝑥𝑖 = Predictor vector for the i-th observation; 𝛽 = Vector of 

regression coefficients. 

In the CMP regression model, parameter estimation can be done by the maximum 

likelihood method. The likelihood function of the CMP distribution function is as follows: 

𝐿(𝜷; 𝒚, 𝑿) = ∏
exp⁡(𝑿𝒊𝜷)

𝑦𝑖exp⁡(𝑿𝒊𝜷)
𝜈−1
2𝜈 (2𝜋)

𝜈−1

2√𝜈

(𝑦𝑖!)
𝜈𝑒𝑥𝑝(𝜈(𝑿𝒊𝜷)

1
𝜈)

𝑛
𝑖=1   (10) 

where 𝐿(𝜷; 𝒚, 𝑿) = Likelihood function of the CMP distribution given parameters 𝛽, data 𝑦, 

and predictors X; 𝜷 = Vector of regression coefficients; 𝑦𝑖 = Observed count for the i-th 

observation; 𝑿𝒊 = Vector of predictors for the i-th observation; 𝑦𝑖! = Factorial of 𝑦𝑖raised to 

the power of 𝑣; 2𝜋 = Constant factor involving pi. 
 

To assess the significance of parameters in the CMP model, a statistical test is 

conducted using p-values. This test evaluates whether the observed results significantly 

differ from the expected results under the null hypothesis. A parameter is deemed significant 

if the p-value is less than the chosen significance level, typically set at 0.1 (10%). 

2.5. Previous research and novelty of the CMP Regression model 

The CMP regression model extends the traditional Poisson regression framework to 

effectively address both overdispersion and underdispersion in discrete data. Studies have 

shown that CMP outperforms models such as the Generalized Poisson and Negative 

Binomial, providing lower values of deviance, AIC, and BIC, particularly in the presence of 

overdispersed data (Afri, 2017; Hayati et al., 2018; Radam & Hameed, 2023). Unlike Poisson 

regression, which assumes equidispersion, CMP introduces both a regression parameter (β) 

and a dispersion parameter (ν), offering greater flexibility in modeling count data. 

The novelty of this research lies in the application of the CMP model to analyze infant 

mortality rate (IMR) data in South Sulawesi, a context in which it has not yet been applied. 

This study aims to fill this gap by evaluating the CMP model's effectiveness in handling 

overdispersion in IMR data from this region and identifying key factors influencing IMR. 

Ultimately, this research seeks to enhance the understanding of CMP in health data contexts 

and provide valuable insights for reducing IMR in South Sulawesi. 
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3. MATERIAL AND METHOD  

3.1. Data Source 

The data used in this study were the number of Infant Mortality Rate (IMR) in each 

district/city, the number of Low Birth Weight (LBW), the number of infants with exclusive 

breastfeeding, asphyxia, diarrhea and pneumonia in infants in 24 districts/cities of South 

Sulawesi Province in 2022. Data were obtained directly from the South Sulawesi Provincial 

Health Office. 

3.2. Research Variables 

The description of the research variables is described in Table 2. 

Table 2. Description of the Research Variables 

Variables Operational Definitions 

IMR (Y) 
The number of IMR in each district/city in South 

Sulawesi. 

LBW (X1) 
Number of babies born with low birth weight in 

each district/city in South Sulawesi. 

Asphyxia (X2) 
Number of asphyxia babies per district/city in 

South Sulawesi. 

Pneumonia (X3) 

Number of infants with acute lung infection, 

namely pneumonia, per district/city in South 

Sulawesi. 

Diarrhea (X4) 
Number of infants with diarrhea per district/city in 

South Sulawesi. 

Exclusive 

breastfeeding (X5) 

Number of exclusively breastfed infants per 

district/city in South Sulawesi. 

3.3. Research Procedure 

The CMP regression model was used to model IMR data in South Sulawesi with 

overdispersion conditions. The steps taken are as follows: (a) Exploration of IMR data 

through description and distribution test; (b) Building the IMR data model formulation using 

Poisson regression; (c) Identifying the assumption of equidispersion in the Poisson 

regression model; (d) If overdispersion occurs, select a model as a solution to handling 

overdispersion, where in this research the CMP regression model is used; (e) Perform 

multicollinearity test using VIF; (f) Estimating parameters with the MLE method to 

maximize the Likelihood function of CMP then modeling the data using the CMP regression 

model; (g) Assess parameter significance using p-values and select the best model based on 

the smallest AIC and parameter standard errors; (h) Interpretation of the results of the best 

CMP regression model. 

 

4. RESULTS AND DISCUSSION 

This study investigates secondary data on IMR, with IMR as the dependent variable 

(Y), and examines the impact of various predictor factors including (LBW), asphyxia, 

diarrhea, pneumonia, and exclusive breastfeeding. The analysis is conducted across 24 

districts and cities in South Sulawesi Province for the year 2022. 
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Table 3. Statistics Descriptive 

Variables Minimum Maximum Mean Variance Standard Deviation 

𝑌 8.00 167.00 46.54 1288.17 35.89 

𝑋1 2.00 66.00 15.71 209.52 14.47 

𝑋2 1.00 27.00 9.13 35.24 5.94 

𝑋3 0.00 6.00 0.88 1.85 1.36 

𝑋4 0.00 9.00 0.88 3.59 1.90 

𝑋5 2.35 3.68 3.18 0.09 0.31 
 

Table 3 presents the average IMR as 46.54 deaths per 1,000 live births, with the 

highest rate recorded at 167 in Makassar and the lowest at 8 in Bantaeng. The average value 

for variable 𝑋1 (LBW) is 15.71, while variable 𝑋2 (asphyxia) has an average of 9.13. The 

data for variables 𝑋3 (pneumonia) and 𝑋4 (diarrhea) exhibit identical mean and minimum 

values. Additionally, variable 𝑋5 (exclusive breastfeeding) has an average of 3.18. 

 

 

 

Figure 1. Histogram and Boxplot of IMR Data 

The histogram and boxplot of the IMR data initially indicated deviations from a normal 

distribution and the presence of an outlier in Makassar city. Asymmetry, or skewness, 

signifies deviations from a normal distribution, which can impact the validity of statistical 

tests and the generalizability of results. Outliers, such as the one in Makassar, can 

disproportionately influence statistical measures, leading to skewed interpretations and 

potentially misleading conclusions. To address the influence of this outlier, a re-analysis was 

performed excluding data from Makassar city.  

Table 4. Statistics Descriptive Data Without Makassar City 

Variables Minimum Maximum Mean Variance Standard Deviation 

𝑌 8.00 82.00 41.30 658.49 25.66 

𝑋1 2.00 30.00 13.52 99.07 9.95 

𝑋2 1.00 27.00  8.78 33.90 5.82 

𝑋3 0.00 6.00 0.82 1.87 1.37 

𝑋4 0.00 9.00 0.91 3.71 1.92 

𝑋5 2.35 3.68 3.18 0.09 0.31 

The results of the analysis, excluding data from Makassar city, are presented in Table 

4. These results reveal that variable 𝑋5 (exclusive breastfeeding) retains similar 

characteristics, whereas variables 𝑋1 (LBW), 𝑋2 (asphyxia), 𝑋3 (pneumonia), dan 𝑋4 

(diarrhea) exhibit differences. For the IMR data without Makassar city, the maximum rate is 

82 deaths per 1,000 live births in Sinjai, and the minimum remains at 8 in Bantaeng. The 

histogram and boxplot in Figure 2 demonstrate that, in the absence of Makassar city data, 

the IMR data no longer displays outliers and aligns with a Poisson distribution. This 

adjustment ensures that the analysis reflects a more representative distribution of the data, 
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thereby enhancing the reliability of the findings regarding the impact of predictor factors on 

IMR. 

 

 

Figure 2. Histogram and Boxplot of IMR Data Without Makassar City 

To build a Poisson regression model, previously the Poisson distribution test was 

carried out on dependent variable. Based on the results of descriptive analysis, the dependent 

variable follows the Poisson distribution. Data is said to be Poisson distributed if the p-value 

> α with a significance level (α) of 0.1. From the test results, it is found that the data is 

Poisson distributed. Then the parameter estimation of the Poisson regression model is carried 

out using the R studio software. The results of the Poisson regression model parameter 

estimation are shown in Table 5. 

Table 5. Parameter Estimation of Poisson Regression Model 

Variables Parameter Estimation Std. Error p-value 

 Intercept (𝛽0) 1.314218 0.481427 0.006337 

𝑋1 BBLR (𝛽1) 0.030768 0.005575 3.40e-08 

𝑋2 Asphyxia (𝛽2) 0.028866 0.007058 4.32e-05 

𝑋3 Pneumonia (𝛽3) 0.083957 0.024966 0.000772 

𝑋4 Diarrhea (𝛽4) 0.018389 0.015081 0.222698 

𝑋5 Exclusive breastfeeding (𝛽5) 0.469224 0.159022 0.003171 

Based on the parameter estimation results presented in Table 5, it is evident that one 

parameter, specifically 𝛽4, is insignificant, as indicated by a p-value greater than the 

significance level α. In contrast, the remaining parameters are statistically significant, each 

with p-value < 𝛼. The Poisson regression model can be expressed as follows: 

𝑙𝑜𝑔 𝜇 = 1.314218 + 0.030768𝑋1 + 0.028866𝑋2 + 0.083957𝑋3 

+0.018389𝑋4 + 0.469224𝑋5  

Subsequent analysis involved testing for overdispersion in the IMR data. 

Overdispersion testing can be conducted by comparing the variance to the mean of the 

dependent variable. Specifically, if the variance 𝑉𝑎𝑟(𝑌) of the dependent variable exceeds 

its mean 𝐸(𝑌), overdispersion is present. As shown in Table 4, it can be seen that  

𝑉𝑎𝑟(𝑌) = 658.49 > 𝐸(𝑌) = 41.30 

This indicates that the IMR variable (Y) exhibits overdispersion. Additionally, 

overdispersion can be assessed using the Pearson chi-square test and the dispersion ratio 

obtained from the R Studio software analysis. A dispersion ratio > 1 signifies overdispersion. 

According to the results presented in Table 6, these findings confirm that the IMR variable 

(Y) is experiencing overdispersion. 

Poisson regression is not suitable for use as a predictive model in this context due to 

its failure to meet the assumption of equidispersion. Consequently, the CMP regression 

model is employed for the subsequent analysis to model the IMR data in South Sulawesi. 
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Table 6.  Overdispersion Test Results 

Test Estimation 
Pearson's Chi-Squared 78.869 
Dispersion ratio 4.639 
p-value <0.001 

The CMP regression model extends the Poisson regression model by incorporating 

two parameters: the regression parameter (𝛽) and the dispersion parameter (𝜈). This model 

is well-suited for handling IMR data exhibiting overdispersion. A key criterion for a robust 

regression model is the absence of multicollinearity among the independent variables (X). 

Multicollinearity was assessed for the factors influencing IMR events in South Sulawesi for 

the year 2022. Using the VIF test, as shown in Table 7, all independent variables (X) had 

VIF values < 3, indicating no significant multicollinearity among them. Therefore, the results 

of the multicollinearity assessment confirm that all independent variables are suitable for 

inclusion in the regression model. 

Table 7.  VIF Value Independent Variable 

Variables VIF 

LBW (X1) 2.89 

Asphyxia (X2) 2.10 

Pneumonia (X3) 1.09 

Diarrhea (X4) 1.32 

Exclusive breastfeeding (X5) 1.61 

CMP regression modeling was conducted by including all five independent variables (X), 

given the absence of multicollinearity among them. The parameter estimates for the CMP 

regression model, aimed at analyzing the IMR data and its influencing factors, are presented 

in Table 8. Only those variables with a p-value < α=0.1, were included in the model, 

indicating their statistical significance and relevance to the analysis. 

Tabel 8. Parameter Estimation of CMP Regression Model 

Variabel Parameter Estimasi Std. Error p-value 

 Intercept (𝛽0) 0.3447 0.2602 0.1851 

𝑋1 BBLR (𝛽1) 0.0094 0.0043 0.0282 

𝑋2 Asphyxia (𝛽2) 0.0089 0.0047 0.0583 

𝑋3 Pneumonia (𝛽3) 0.0260 0.0158    0.0994 

𝑋4 Diarrhea (𝛽4) 0.0056 0.0085 0.5114 

𝑋5 Exclusive breastfeeding (𝛽5) 0.1522 0.0488 0.0018 

Table 8 presents the results of the parameter estimation for the CMP regression 

model. It indicates that only the variable 𝑋4, representing diarrhea, has a p-value greater than 

the significance level (α = 0.1), suggesting that it does not have a significant effect on the 

incidence of IMR in South Sulawesi. In contrast, the variables LBW (X1), asphyxia (𝑋2), 
pneumonia (𝑋3), and exclusive breastfeeding (𝑋5) each have p-values < 𝛼, indicating that 

these variables significantly influence the incidence of IMR in South Sulawesi for the year 

2022. The CMP regression model, with an AIC value of 186.845, demonstrating its 

suitability for modeling IMR data. CMP regression model that achieves the best fit, as 

indicated by the lowest AIC value from the parameter estimation, is as follows. 

𝑙𝑜𝑔 𝜆 = 0.3447⁡ + 0.0094⁡𝑋1 + 0.0089⁡𝑋2 + 0.0260𝑋3 + 0.0056⁡𝑋4 + 0.1522𝑋5 
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Based on the CMP regression model, each additional infant with LBW (X1) increases 

the incidence of IMR by exp (0.0094)=1.0094 times. Similarly, the incidence of IMR rises 

by exp(0.0089)=1.0089  times for each additional infant with asphyxia (X2). For infants with 

pneumonia (X3), the incidence of IMR increases by exp(0.0260)=1.0263 times.  

Exclusive breastfeeding (X5) is associated with a exp (0.1522)=1.1644 times higher 

incidence of IMR, indicating a significant association between exclusive breastfeeding and 

increased infant mortality. The association of exclusive breastfeeding with a higher 

incidence of IMR might seem surprising, as many studies emphasize the health benefits of 

exclusive breastfeeding. However, the findings of this study are consistent with research by 

Putri et al (2022). Several factors may explain this counterintuitive outcome. In regions with 

poor overall health conditions, mothers who breastfeed exclusively may face challenges such 

as malnutrition, inadequate hygiene, or limited access to healthcare, all of which can 

heighten infant mortality risk, irrespective of breastfeeding practices. Furthermore, infants 

with pre-existing health issues, such as low birth weight, may have a higher risk of mortality, 

regardless of whether they are exclusively breastfed. Mothers may attempt to exclusively 

breastfeed these vulnerable infants, but their underlying health conditions could still result 

in increased mortality. 

This study employs the CMP regression model to analyze IMR in South Sulawesi, 

effectively addressing the issue of overdispersion that traditional Poisson regression cannot 

resolve. The CMP model was selected for its superior capability in managing overdispersion 

compared to Poisson or negative binomial regression models. Prior research, including 

studies by Afri (2017), Fitri et al. (2021), and Radam & Hamed (2023), has validated the 

effectiveness of the CMP model in similar contexts. This study advances existing research 

by incorporating an analysis of additional factors such as LBW, asphyxia, pneumonia, and 

exclusive breastfeeding. It utilizes a more suitable CMP model and a broader set of variables, 

offering enhanced insights into the determinants of IMR and highlighting the critical roles 

of LBW and exclusive breastfeeding in mitigating IMR in South Sulawesi. 

 

5. CONCLUSION 

This study employed the CMP regression model to analyze the IMR in South 

Sulawesi, effectively addressing the issue of overdispersion that traditional Poisson 

regression cannot handle. The CMP model identified LBW, asphyxia, pneumonia, and 

exclusive breastfeeding as significant factors influencing IMR, while diarrhea was found to 

be non-significant. These results corroborate previous research and underscore the necessity 

of focusing on these key factors to mitigate IMR. Future research should continue to utilize 

the CMP model and investigate additional variables such as access to healthcare services and 

socio-economic factors.  
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