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Abstract: Dramatic computation growth encourages big data 

era, which induces data size escalation in various fields. Apart 

from huge sample size, cases arise high-dimensional data having 

more feature size than its samples. High-computing power 

compels the usage of modern approaches to deal with this 

typical dataset, while in practice, common logistic regression 

method is yet applied due to its simplicity and explainability. 

Applying logistic regression on high-dimensional data arises 

multicollinearity, overfitting, and computational complexity 

issues. Logistic Regression Ensemble (Lorens) and Ensemble 

Logistic Regression (ELR) are the logistic-regression-based 

alternative methods proposed to solve these problems. Lorens 

adopts ensemble concept with mutually exclusive feature 

partitions to form several subsets of data, while ELR involves 

feature selection in the algorithm by drawing part of features 

based on probability ranking value. This paper uncovers the 

effectiveness of Lorens and ELR applied to high-dimensional 

data classification through simulation study under three 

different scenarios, i.e., with feature size variation, for 

imbalanced high-dimensional data, and under multicollinearity 

conditions. Our simulation study reveals that ELR outperforms 

Lorens and obtains more stable performance over different 

feature sizes and imbalanced data settings. On the other hand, 

Lorens achieves more reliable performance than ELR on a 

simulation study with a multicollinearity issue. 

 

1. INTRODUCTION  

The rapid growth of computational power emerges effortless mechanism on 

collecting and storing data digitally. More advanced and efficient computing technology 

benefits agile systems to store a huge number of new instances into a database instantly 

(Thudumu, et al., 2020). This enhancement influences on rapid sample size growth in a 

dataset (Gao, et al., 2017). Employing more samples inherently reinforces parameter 

estimation in a statistical model. Natural asymptotic approximation on statistics manages the 

condition when the sample size approximates infinity. In this case, data distribution would 

approach Gaussian distribution for which most of the statistical approaches assume. 

However, in some conditions under fixed sample size, data size can continuously grow 

through the number of features. For example, data that naturally have limited cases to record, 

e.g., gene-expression (Alon, et al., 1999; Bhattacharjee & Meyerson, 2003; Sotiriou, et al., 
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2003), drug-discovery problem (Widhianingsih, et al., 2020), microarray-data (Haghighi, et 

al., 2022; Kuswanto, et al., 2018), and rare cases in biology (Johnstone & Titterington, 2009), 

is more probably to be observed intensely. Accordingly, features in a dataset exceed its 

sample size. In addition, difficult and expensive data collection compels the collector to 

prioritize getting more information on a few samples than obtaining numerous observations. 

Using too many features in learning a model is most critical for data with a small 

sample size (Hua, et al., 2005). Advance computation system insists subtle modern 

techniques (Gao, et al., 2017; Li, et al., 2021; Xu, et al., 2023), including Bayesian approach 

(Annest, et al., 2009; Wang, et al., 2013), to handle this problem. However, in practice, 

traditional statistical approaches are yet practical for their simplicity and explainability, 

although implementing typical statistical approaches, e.g., logistic regression, on high-

dimensional data can yield an unsatisfied model. There usually occur four common issues. 

First, logistic regression solutions on high-dimensional data are not unique due to few 

samples involved in parameter estimation. Second, it turns out that the multicollinearity 

issue, which refers to a high correlation, occurs on several couples of features. Increasing 

feature size could also multiply the probability of multicollinearity issues occurring in a 

dataset. Third, an overfitting model is prone to exist when the feature size exceeds the sample 

size (Ayesha, et al., 2020). During model training, an overfitting model can be detected when 

the performance of training data is significantly higher than when it is applied on a validation 

(or test) set. Moreover, overfitting can happen if the model is too complex. High 

dimensionality of training data contributes to the high complexity of the trained model 

(Romero, et al., 2010). Lastly, an elevated complexity model is computationally costly in 

obtaining the estimates of model parameters (Ayesha, et al., 2020). 

Obtaining favorable data from high-dimensional description is critical for some 

reasons, especially to cope with the curse of dimensionality implying to the issues (Ayesha, 

et al., 2020; Destrero, et al., 2009). The well-known solutions are feature extraction and 

selection. Redundant and irrelevant components can be removed by transforming the original 

features to new defined features by feature extraction techniques. In this fashion, the new 

feature set preserves most information of the original dataset. On the other hand, feature 

selection picks part of features that are most relevant and meaningful to a particular problem 

(Bolon-Canedo, et al., 2016). In this way, meaningless data containing noise and redundant 

information are accordingly eliminated. 

To deal with high-dimensional data issues, ensemble method is one of alternatives 

that can be adopted. Generally, the concept of an ensemble can be implemented in various 

cases, e.g., time series (Suhartono, et al., 2012), regression modeling (Shu & Burn, 2004), 

and Bayesian modeling (Duan, et al., 2007). Ensemble principals basically carry out a 

collection of several classification models to obtain desired output (Dietterich, 2000). The 

ensemble method obtains target predictions necessarily by computing the aggregation of 

tentative outputs from several base models. Accordingly, we can expect more preferably 

classification performance, especially if the base models are weak in predicting target 

features (Rokach, 2010). Furthermore, the ensemble approach can address the instability of 

parameter estimations for classification models (Buhlmann, 2012). 

Two logistic regression extensions elaborated with the ensemble-based method are 

Logistic Regression Ensemble (Lorens) (Lim, 2007) and Ensemble Logistic Regression 

(ELR) (Zakharov & Dupont, 2011). Both methods are an ensemble-based method that 

principally works with logistic regression as the base model. Lorens algorithm partitions the 

input data into several subspaces with no overlapping features so that the number of features 

on each subspace is less than the sample size. Each subspace emerges as an input of the base 
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model, in this case, logistic regression, and the desired output is then decided by average 

probability value or majority voting of predictions from entire base models. On the other 

hand, ELR is designed with different principal. The ensemble concept of ELR is induced to 

enhance the base model in an iterative manner. Also, feature selection (Ayesha, et al., 2020; 

Ray, et al., 2021) is incorporated into this advancement during model training to form the 

compact technique in dealing with high-dimensional data. Therefore, employing a 

repetitious algorithm in ELR would consistently generate a single model. The last model 

obtained from training ELR model is assumed as the optimal one, then it is used to perform 

prediction to the validation (or test) set. 

This paper compares the effectiveness of both methodologies under desired 

conditions. Some existing work of simulation studies evaluate some important approaches, 

e.g., SMOTE (Synthetic Minority Over-Sampling Technique) (Chawla, et al., 2002), for 

high-dimensional data with imbalanced classes (Blagus & Lusa, 2013; Lin & Chen, 2013), 

investigate typical techniques for dimensionality reduction on high-dimensional data (Chung 

& Keles, 2010), and explore imputation methods presence in high-dimensional data (Deng, 

et al., 2016). This article involves the simulation study with different schemes, including the 

feature size, balance ratio of the classes, and multicollinearity issues in the dataset. Model 

performance is measured and analyzed by evaluation criteria of classification to show the 

effectiveness under several conditions of the simulation study. Thus, this paper contributes 

in: (1) accommodating simulation study of high-dimensional data with various schemes, (2) 

implementation of Lorens and ELR under various conditions, (3) uncovering the 

effectiveness of ensemble-based methods constructed by logistic regression technique to 

high-dimensional data.  

 

2. LITERATURE REVIEW 

2.1. Logistic Regression 

Logistic regression is one of the well-known statistical methods that handle 

classification problems for data with categorical target features. Suppose that matrix 𝑿 

denotes a data of 𝑝 features with size 𝑛 × 𝑝 with 𝒙𝒊 = {𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝}
𝑇
 for 𝑖 = 1, 2, … , 𝑛 

and vector 𝒚 with size 𝑛 × 1 contains target feature. For binary problem with target feature 

𝒚 = {0, 1}, logistic regression is denoted by 𝜋(𝒙𝑖) = 𝜋(𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑝) = 𝑃(𝑦𝑖 = 1|𝒙𝒊) =

1 − 𝑃(𝑦𝑖 = 0|𝒙𝒊), with 0 ≤ 𝜋(𝒙𝒊) ≤ 1. If Class 0 acts as a class reference, the probability 

function of 𝑦𝑖 = 0 is expressed by Equation (1) 

𝑃(𝑦𝑖 = 0|𝒙𝒊) =
1

1 + 𝑒−(𝛽0+𝒙𝒊
𝑻𝜷)

 (1) 

while the probability function for 𝑦𝑖 = 1 can be calculated by Equation (2) 

𝑃(𝑦𝑖 = 1|𝒙𝒊) =
𝑒(𝛽0+𝒙𝒊

𝑻𝜷)

1 + 𝑒(𝛽0+𝒙𝒊
𝑻𝜷)

=
1

1 + 𝑒(𝛽0+𝒙𝒊
𝑻𝜷)

 (2) 

Parameter estimation of logistic regression can be calculated numerically using the Newton-

Raphson method with Equation (3) 

{�̂�0, �̂�}
𝑡∗ = {�̂�0, �̂�}

𝑡∗−1
− 𝑯

ℓ(�̂�0,�̂�)
−1 {�̂�0, �̂�}

𝑡∗−1
𝛁ℓ{�̂�0, �̂�}

𝑡∗−1
 (3) 

where 𝑡∗ denotes the index during the estimation iteration. Vector 𝜵ℓ(𝜷) and matrix 𝑯ℓ(�̂�)
−1  

represent gradient vector and Hessian matrix of ln-likelihood function ℓ(𝛽0, 𝜷) =
∑ 𝑦𝑖 ln 𝜋(𝑥𝑖) + (1 − 𝑦𝑖) ln(1 − 𝜋(𝑥𝑖))𝑛

𝑖=1 , respectively.  
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Binary logistic regression is prone to overfitting, which can lead to exploding 

parameter estimation {�̂�0, �̂�} when training the model. Overfitting also can induce sensitive 

prediction values. In this case, a small shift of parameter estimation can lead to a significant 

change in prediction value. This indicates high instability of the prediction obtained by 

binary logistic regression (Zakharov & Dupont, 2011). Accordingly, an additional term is 

added to the objective function, as in Equation (4), to regularize the parameter during the 

estimation of a logistic regression model. For average loss function 𝐿(𝛽0, 𝜷) =
1

𝑛
∑ 𝑓 (𝑦𝑖(𝛽0 + 𝑥𝑖

𝑇𝜷))𝑛
𝑖=1 , the extended objective function of Logistic Regression is 

formulated as follows 

min
𝛽0,𝜷

ℒ(𝛽0, 𝜷) + 𝑅(𝜷) (4) 

where 𝑅(𝜷) denotes regularization term. Notation 𝑅(𝜷) can be replaced by ‖𝜷‖1 =
∑ |𝛽𝑗|

𝑝
𝑗=1  for 𝐿1-norm (Tibshirani, 1996) and ‖𝜷‖2

2 = ∑ 𝛽𝑗
2𝑝

𝑗=1  for 𝐿2-norm (Hoerl & 

Kennard, 2000). Alternatively, a combination of 𝐿1- and 𝐿2-norm, or elastic net 

regularization (Zou & Hastie, 2005), can also substitute 𝑅(𝜷) by ∑
1

2
(1 − 𝛼)𝛽𝑗

2 + 𝛼|𝛽𝑗|𝑝
𝑗=1 , 

where 𝛼 ∈ [0, 1] denotes the term to control the trade-off between two regularization factors. 

2.2. Logistic Regression Ensemble (Lorens) 

The Lorens algorithm is proposed based on CERP (Classification by Ensembles from 

Random Partitions) principle (Ahn, et al., 2007). The main concept of CERP is to combine 

the collection of weak models to achieve better performance. Commonly, when the number 

of features exceeds the sample size, typical data treatments like feature reduction are 

conducted to avoid any issues during parameter estimation and to prevent poor model. 

However, Lorens overlooks feature reduction by partitioning data into smaller subsets. These 

subsets have independent features (See Figure 1). In this fashion, the feature size of each 

subset can be arranged not to exceed the sample size. More formally, suppose that 𝜣 denotes 

feature space, Lorens partitions the data into 𝑚 independent and balance subspaces 
{𝜃1, 𝜃2, … , 𝜃𝑚}. The base model, e.g., logistic regression, is trained using feature partitions 

so that there exist combinations of 𝑚 models to decide the final prediction of Lorens later. 

So, Lorens does not require feature selection since it already accommodates all features in 

the dataset. Moreover, partitioning the features can also cut the correlation between 

classification models (Lim, et al., 2009). The final output of Lorens could be obtained by 

averaging the prediction probability value or majority voting of the entire base models. 

 
Figure 1. Lorens Algorithm with CERP-based Concept 

2.3. Ensemble Logistic Regression (ELR) 

ELR improves logistic regression by combining regularization strategy and feature 

selection altogether using an iterative ensemble approach for the high-dimensional dataset. 

ELR integrates 𝐿2-norm regularization to obtain a sparse and stable model. To tackle the 

difficulty in modeling high-dimensional data, ELR performs feature selection by drawing 𝑛 
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features among total 𝑝 features. ELR selects these features by generating probability 

measures from a ranking method, e.g., 𝑡-test ranking combined with quality measure and 

parameter estimation of the trained model. The t-test ranking can be calculated based on 

Equation (5) 

𝑡𝑗 =
𝜇𝑗0

−𝜇𝑗1

√
𝜎𝑗0

2

𝑚0
+

𝜎𝑗1
2

𝑚1

  
(5) 

The mean expression value of feature 𝑗 for examples of class 0 (𝑚0) is denoted as 𝜇𝑗0
, and 

for examples of class 1 (𝑚1), it is denoted as 𝜇𝑗1
. Correspondingly, the standard deviations 

for these groups are represented as 𝜎𝑗0
 and 𝜎𝑗1

. This probability is then updated in every 

iteration according to Equation (6) 

𝑝𝑟𝑜𝑏𝑗,𝑡 =
1

𝑧
(𝑝𝑟𝑜𝑏𝑗,𝑡−1 + 𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ∙ 𝛽𝑗

2∙𝑠𝑖𝑔𝑛(𝑞𝑢𝑎𝑙𝑖𝑡𝑦)
)  (6) 

where 𝑡 = 1, 2, … denotes the iteration index, and 𝑧 is a normalized constant to manage the 

updated probability remains in the range [0, 1]. A relative quality measure is obtained from 

the difference of BCR values, more formally formulated as  

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 = log(1 + 𝐵𝐶𝑅𝑡 − 𝐵𝐶𝑅̅̅ ̅̅ ̅̅
𝑡−1)  (7) 

The 𝑡-test ranking initialize probability measures of entire input features 𝑝𝑟𝑜𝑏𝑗,0. The ELR 

algorithm specifies convergent criteria based on BCR or Balanced Classification Rate, see 

Equation (8).  

𝐵𝐶𝑅 =
1

2
(

𝑇𝑃

𝑃𝐴
+

𝑇𝑁

𝑁𝐴
)  (8) 

According to confusion matrix of classification prediction in Table 1, BCR is formally 

defined as the basically an average value of sensitivity and specificity measures, with total 

positive class 𝑃𝐴 = 𝑇𝑃 + 𝐹𝑁 and total negative class 𝑁𝐴 = 𝐹𝑃 + 𝑇𝑁.  

Table 1. Confusion Matrix of Classification 

 Prediction Positive Negative 

Actual 
Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

Steps in ELR is provided in Algorithm 1. 

Algorithm 1. Ensemble Logistic Regression 

Input Learning sample and target feature (𝑿, 𝒚) 

Require Regularization parameter 𝜆 

Output Vector 𝒑𝒓𝒐𝒃 ∈ [0,1] 
1: Initialize 𝒑𝒓𝒐𝒃 based on 𝑡-test ranking calculation 

2: Initialize BCR̅̅ ̅̅ ̅̅ = 0.5 

3: Repeat  
4:  Split learning sample into training and validation set 

5:  Draw 𝑛 out of 𝑝 features at random according to 𝒑𝒓𝒐𝒃 

6:  Estimate parameters of L2-norm LR model 

7:  Compute BCR of model on validation set by Equation (8) 

8:  Compute quality measurement by Equation (7) 

9:  For each 𝑗 among the 𝑛 sampled features do 

10:   Update 𝒑𝒓𝒐𝒃 by Equation (6) 

11:  Update average BCR̅̅ ̅̅ ̅̅  

12: Until no significant change of BCR̅̅ ̅̅ ̅̅  
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BCR value determines the sign of the relative quality with the following condition. If 

𝑞𝑢𝑎𝑙𝑖𝑡𝑦 > 𝐵𝐶𝑅𝑡−1 then 𝑠𝑖𝑔𝑛(𝑞𝑢𝑎𝑙𝑖𝑡𝑦) = +1, otherwise 𝑠𝑖𝑔𝑛(𝑞𝑢𝑎𝑙𝑖𝑡𝑦) = −1. The 

obtained quality from this step is then used to update the 𝒑𝒓𝒐𝒃 values based on Equation 

(6). ELR trains the model iteratively until the average BCR or BCR̅̅ ̅̅ ̅̅  value approximates to a 

constant, for example until the change less than 10-5. 

 

3. MATERIAL AND METHOD  

Simulation data generation considers some aspects, i.e., number of features (V), 

imbalance ratio of classes (B), and multicollinearity (M). Simulation data to analyze the 

effect of feature size on high-dimensional data is generated under univariate feature and 

balanced data. In this scheme, feature dimension increases based on the ratio of sample and 

feature size 𝑛: 𝑝 over the scenarios. Generated features accommodate two categories, 

discrete and continuous data with 1:4 proportion, respectively. The sample size is fixed to 

100 data for each feature. This simulation arranges discrete features to follow binomial 

distribution 𝑥𝑑 ∼ 𝐵(𝜃) with 𝜃 = 0.8 and continuous variables to conform with univariate 

normal distribution 𝑥𝑐 ∼ 𝑁(𝜇, 𝜎2) with 𝜇 = 0.5 and 𝜎2 = 0.8. Secondly, the simulation 

scenario to analyze the effect of imbalanced data consists of various class ratio levels. This 

scheme regularly generates 100 samples and 500 features. For a total of 500 features, the 

partitions involve 100 discrete and 400 continuous features without the multicollinearity 

effect. The distribution setting of simulation data is identical to the first scenario. A 

simulation study to analyze the effect of multicollinearity generates data using four 

scenarios. The first scenario generates features without multicollinearity for balanced data. 

Secondly, generated data contains no multicollinear features for imbalanced data. Then, the 

last two scenarios generate features with multicollinearity for balanced and imbalanced data, 

respectively. In this simulation study, the feature size is fixed into 200 features, with 50 

discrete and 150 continuous features. For imbalanced data, the adjustment of the target 

feature is 20 and 80 for Class 0 and Class 1, respectively. Multivariate features are generated 

specifically for continuous data based on multivariate normal distribution with mean vector 

𝜇 ∼ 𝑁(1,1) and covariance matrix 𝜮. The covariance of the multivariate normal distribution 

is generated from a random correlation matrix 𝑹 following the procedure in (Joe, 2006). This 

correlation matrix is then multiplied by the random variances of all features 𝝈𝑹𝝈𝑇 to form 

covariance matrix 𝜮 (Qiu & Joe, 2020). Finally, binary target feature is generated based on 

Equation (2) with 𝑦 ∼ 𝑁(0, 𝜎2) for random variance 𝜎2. The logistic regression parameters 

𝛽0 and 𝛽 are set up from normal distribution with 𝜇 = 0 and 𝜎 ∼ 𝑁(5,1). The threshold to 

determine the target feature is fixed from class ratio 𝑛𝑦𝑖
= 1/𝑛. 

Since our simulation studies also include analyzing the effect of imbalance on the 

models, we evaluate the trained models using AUC (Area Under the Curve). When used with 

balanced data, AUC performs similarly to accuracy measures; however, it offers more 

reliable and unbiased results when applied to imbalanced data (Prastyo, et al., 2023). AUC 

measures the area under the ROC (Receiver Operating Characteristic) curve by comparing 

the true positive rate TPR = TP/(TP+FN) = 𝛼 and false positive rate FPR = FP/(FP+TN) = 

1 − 𝛾 across different cut-off thresholds. When the decision threshold varies, the AUC can 

be calculated using trapezoidal integration, formulated as in Equation (9) 

𝐴𝑈𝐶 = ∑ ((1 − 𝛾𝑖Δ𝛼) +
1

2
(Δ(1 − 𝛾)Δ𝛼))𝑖   (9) 

where Δ(1 − 𝛾) = (1 − 𝛾𝑖) − (1 − 𝛾𝑖−1) and Δ𝛼 = 𝛼𝑖 − 𝛼𝑖−1 (Bradley, 1997). 
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Table 2. AUC Score Comparison of Lorens and ELR with 95% CI on 

Feature Size Variation Scenario 

Scenario Ratio 

(𝑛: 𝑝) 

Discrete 

(𝑝𝑑) 

Continuous 

(𝑝𝑐) 
Lorens ELR 

V0 1:1 20 80 0.690 ± 0.013 0.844 ± 0.028 

V1 1:5 100 400 0.782 ± 0.028 0.722 ± 0.028 

V2 1:10 200 800 0.490 ± 0.034 0.677 ± 0.025 

V3 1:15 300 1200 0.465 ± 0.045 0.687 ± 0.041 

V4 1:20 400 1600 0.493 ± 0.093 0.738 ± 0.023 

V5 1:25 500 2000 0.408 ± 0.052 0.678 ± 0.039 

V6 1:30 600 2400 0.512 ± 0.063 0.720 ± 0.039 

V7 1:35 700 2800 0.579 ± 0.056 0.741 ± 0.051 

V8 1:40 800 3200 0.516 ± 0.086 0.713 ± 0.054 

V9 1:45 900 3600 0.499 ± 0.067 0.738 ± 0.030 

V10 1:50 1000 4000 0.435 ± 0.097 0.713 ± 0.041 

 

4. RESULTS AND DISCUSSION 

Lorens requires feature partitions to run the algorithm. The maximum number of 

features in each subspace is determined based on the amount of data involved in training 

base model. For all scenarios, we fix 25 features for each partition to run the Lorens 

algorithm. For example, in scenario with 1:1 for feature and sample size, there are four 

partitions to train Lorens’ base model. Furthermore, we use 10 replications to obtain the final 

prediction. 

A simulation study to find out the effect of feature size in high-dimensional data 

when using Lorens and ELR is shown in Figure 2(a). The graphs show that ELR is more 

stable for the two main scenarios than Lorens. In a scenario with the lowest dimension, ELR 

achieves 0.84 AUC score, while ELR just makes 0.69 AUC score. This indicates that for 

common data without high-dimensional problems or when feature size is equal to sample 

size 𝑝 = 𝑛 ELR exceeds Lorens performance. Along with the increment of feature size, ELR 

performance decreases significantly only when data size ratio 1:5. For the rest scenarios, 

ELR can maintain its AUC score of around 0.7 with low variation. Compared to ELR, Lorens 

obtained a more significant performance reduction over the scenarios. For the first two 

comparable AUC score to ELR. However, it reduces quite far to around 0.5 scores for the 

rest scenarios with higher variation than ELR. It indicates that Lorens model tends to perform 

random prediction in data with large feature sizes. More detailed results are revealed in Table 

2. It shows that the 95% CI (Confidence Interval) of ELR is more stable than Lorens over 

the increasing feature size scenarios. 

  

(a) (b) 

Figure 2.  AUC Score Comparison of Lorens and ELR in A Simulation Study to Analyze 

(a) The Effect of Feature Size and (b) The Effect of Imbalanced Data 
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The second scenario to analyze the effect of imbalanced data on high-dimensional 

data for Lorens and ELR performance is shown in Figure 2(b). The line graph practically 

shows that ELR obtains stable AUC value, while Lorens performance deteriorates upon a 

higher imbalanced ratio of the binary target feature. More specifically, for balanced data 

represented by Scenario B0, Lorens, and ELR yield a model with close performance. It is 

like Scenario B2 when the balanced ratio between Class 0 and 1 reaches 2:3. Hereafter, 

Lorens performance starts being unstable with high fluctuation until reaching the least AUC 

score at the last scenario B8, which consists of an imbalanced data ratio 1:9 for Class 0 and 

Class 1, respectively. It is interestingly shown in Table 3 that 95% CI of Lorens has a slower 

increasing trend than ELR. ELR performs stability in AUC score, but its 95% CI jumps 

significantly into a wider range along the schemes from Scenario B0 to B8. 

Table 3. AUC Score Comparison of Lorens and ELR with 95% CI 

on Imbalanced Data Scenario 

Scenario Ratio Class 0 Class 1 Lorens ELR 

B0 1:1 50 50 0.705 ± 0.007 0.731 ± 0.028 

B1 1:1.22 45 55 0.627 ± 0.015 0.753 ± 0.061 

B2 1:1.5 40 60 0.730 ± 0.018 0.727 ± 0.046 

B3 1:1.86 35 65 0.598 ± 0.025 0.725 ± 0.094 

B4 1:2.33 30 70 0.570 ± 0.025 0.739 ± 0.093 

B5 1:3 25 75 0.515 ± 0.030 0.773 ± 0.086 

B6 1:4 20 80 0.597 ± 0.033 0.757 ± 0.104 

B7 1:5.67 15 85 0.620 ±0.039 0.794 ± 0.121 

B8 1:9 10 90 0.400 ± 0.017 0.725 ± 0.137 

Furthermore, we show the progression of BCR value when training ELR on the first 

two main scenarios. Figure 3(a) reveals obvious improvements with rough fluctuation for all 

scenarios during preliminary iterations. It subsequently varies steadily, converging into a 

constant. This visualization clearly shows that low-dimension data yields the highest average 

BCR value on almost all iterations with quite a big difference. This indicates that high-

dimensional data affect model performance shown by the significant descent of average BCR 

in the subsequent scenarios. Interestingly, high escalation of feature size does not affect ELR 

performance to decrease even more. Accordingly, ELR benefits stability and robustness for 

feature size variation in high-dimensional data. 

  

(a) (b) 

Figure 3.  Average BCR Progression of ELR Training Iterations in A Simulation Study 

with (a) Various Feature Size and (b) Imbalanced Data 
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(a) (b) 

Figure 4.  AUC Score Comparison of Lorens and ELR in Simulation Study under 

Multicollinearity Issue on (a) Balanced and (b) Imbalanced Data 

Similarly, the progression of ELR on training the model under imbalanced data 

scenarios is shown in Figure 3(b). It exhibits that the high imbalance ratio of the target feature 

notably affects the ELR model. In a scenario containing balanced data, ELR has positive 

progression, moving from a low to a higher level and then reaching 0.65 of the average BCR 

value. Secondly, data, with imbalance ratio 1:1.22 consisting of low imbalanced data, carries 

out reasonable progression, although the average BCR falls into 0.55. Subsequently, the 

increasing imbalanced ratio can hurt the ELR model training process, reaching an 

unfavorable performance of 0.50 from originally around 0.90 of the average BCR value. It 

indicates that at the beginning of training iterations, ELR can predict minority classes. 

However, ELR performance fades, approaching 0.5 when the trained model ignores the 

minority class and predicts the majority class for nearly all samples. 

In the multicollinearity scenario, we compare Lorens and ELR with two conditions, 

i.e., on balanced data and on imbalanced data. As shown in Figure 4, ELR obtains better 

AUC value in all schemes. However, it is obvious that multicollinearity slightly weakens 

ELR performance in either balanced or imbalanced data. On the other hand, AUC score of 

Lorens rises quite significantly for the scenario under imbalanced data. Table 4 shows that 

Lorens results on shorter 95% CI, which means that although on balanced data it yields 

decreasing AUC score, overall, Lorens obtains more consistent performance than ELR. This 

is reasonable due to the feature partitions used in Lorens. Splitting data features into several 

mutually exclusive subspaces benefits eliminating multicollinearity issues in high-

dimensional data that is absent in the ELR algorithm. 

Table 4. AUC Score Comparison of Lorens and ELR with 95% 

CI for Scenario under Multicollinearity Issue 

Multicollinearity Balance Ratio Lorens ELR 

No 1:1 0.661 ± 0.018 0.813 ± 0.036 

No 1:4 0.613 ± 0.019 0.778 ± 0.109 

Yes 1:1 0.637 ± 0.007 0.742 ± 0.038 

Yes 1:4 0.698 ± 0.014 0.753 ± 0.132 

 

5. CONCLUSION 

The implementation of logistic regression on high-dimensional data can lead to 

challenges that may adversely affect model performance. Several methods have been 

proposed, such as Lorens and ELR, that are designed based on ensemble approaches in a 
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different fashion. The Lorens algorithm is designed based on the CERP concept, while ELR 

brings about the iterative algorithm of the ensemble method. This paper compares the 

effectiveness of those approaches on high-dimensional data through a simulation study. 

Simulation data are generated under three main scenarios: (1) with different feature sizes, 

(2) for imbalanced data, and (3) under a multicollinearity problem. Our simulation study on 

various feature-size scenarios reveals that ELR obtains better and more stable performance 

than Lorens. In the second scenario, ELR outperforms Lorens with steady performance. 

However, the imbalanced class ratio increment leads to a wider confidence interval of ELR 

performance. Lastly, under the multicollinearity condition, Lorens defeats ELR as it yields 

more reliable performance in both balanced and imbalanced data settings. 
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