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Abstract: The categorization of the Low-Income Community 

category is based on the poverty indicators in the 

Multidimensional Poverty Index, including the dimensions of 

health, education, and living standards. The Proxy Means Test 

(PMT) can estimate household income or consumption by 

taking into account household conditions that are readily 

observable and cannot be manipulated. This method offers the 

advantage of being capable of determining both the poverty 

level of a household and the household's characteristics based 

on asset ownership and socio-demographic conditions. This 

study aims to estimate per capita consumption using OLS, 

Robust, Quantile, LASSO, and Ensemble methods. The 

application of these methods is intended to address various 

issues, including the presence of outlier data, multicollinearity, 

and uncertainties. The results indicate that none of the four 

methods used achieved the highest accuracy based on the MSE, 

MAE, and sMAPE criteria. Consequently, employing an 

ensemble model becomes essential to accommodate the element 

of uncertainty present in these four models. The application of 

the ensemble method is not only as a comparison between the 

models, but also as a means to capture the uncertainty contained 

in each model 

 

1. INTRODUCTION  

Surabaya City is currently making concerted efforts to alleviate poverty and enhance 

the welfare of its residents. In 2020, the poverty rate in Surabaya City stood at 5.02 percent, 

marking a 0.51 percent increase from the previous year (BPS, 2021). One of the initiatives 

undertaken by the Surabaya City government is the establishment of a poverty alleviation 

program tailored to the specific characteristics of impoverished households. 

For the determination of poor household targets, the Surabaya City Government has 

used the Proxy Means Test (PMT) method (Surabaya Mayor Regulation Number 58 of 

2019). The PMT method has been adopted by the National Team for the Acceleration of 

Poverty Reduction (TNP2K) in selecting poor households receiving social assistance or 

programs since 2005. The PMT method can estimate household income or consumption by 

considering household conditions that are observable and cannot be manipulated. This 

method has the advantage of being able to determine the poverty level of a household, as 

well as the characteristics of the household according to asset ownership and socio-

demographic conditions. Furthermore, appropriate programs for poverty alleviation can be 
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determined. The PMT method was developed based on regression analysis. Several studies 

were conducted regarding PMT in Surabaya City such as Fitri, 2019; Prabeswari, 2019; 

Malta, 2019; and Harfianto, 2021. The regression methods used are multiple regression, 

quantile regression, robust ridge regression, tree regression, and Least Absolute Shrinkage 

and Selection Operator (LASSO). In the process of preparing the regression model, there are 

several problems including the presence of outlier data and multicollinearity, so the model 

prepared can accommodate these problems.  

The accuracy of the models that have been used is quite diverse, including multiple 

regression, quantile regression, and robust ridge. Each of the methods used still has an error, 

in other words, there is still an element of uncertainty. The modeling process depends on 

uncertainty. The process of modeling household expenditure predictions is complex, 

accommodating many components that need to be considered. The problem that is often 

faced is how the uncertainty can be quantified into a model by considering the sources of 

uncertainty. This can be solved with a combination of prediction models commonly referred 

to as ensemble models. The basic idea of this model combination is that each model has a 

different ability to capture data patterns (Zhang, 2003). Several studies examining 

combination models, including those by Blanc & Setzer (2016) using two models forecast, 

Peng et al. (2017) using Outlier Robust Extreme Learning Machine and Time-varying 

Mixture Copula Function , and Wang et al. (2016) using Ensemble Empirical Mode 

Decomposition and GA-BP neural network, have indicated that the combination method 

enhances the accuracy of prediction results. This research focuses on the application of the 

ensemble method to reduce variance and error in predicting the upcoming per capita 

consumption as well as capturing the element of uncertainty in the prediction model.  

 

2. LITERATURE REVIEW 

2.1. Ordinary Least Square Regression 

Regression analysis is one of the techniques in statistics that is used to determine the 

relationship between several variables and predict a response variable (Kutner et al., 2004). 

Regression analysis can be interpreted as a statistical method that explains the relationship 

pattern (model) between two or more variables. 

The model representing the relationship between the response variable (y) and the 

predictor variables (X) is shown in Equation (1) (Montgomery et al., 1992).  

𝒚(𝑛×1) = 𝑿(𝑛×(𝑘+1))𝜷((𝑘+1)×1) + 𝜺(𝑛×1) (1) 

Thus, the estimated value of �̂� is �̂� = 𝒃 = (𝑿𝑇𝑿)−1𝑿𝑇𝒚, where 𝜺 is an error vector of size 

(n1) with normal distribution, no autocorrelation and homoscedasticity assumption, 𝒚 is a 

vector of response variables of size (n×1), 𝑿 is a matrix of predictor variables of size 

(n×(k+1)) and β is a vector of regression parameters of size ((k+1)×1). 

2.2. Robust Regression  

At the point when the observations y in a linear regression model 𝒚 = 𝜲𝜷 + 𝛆 are 

normally distributed, the  least squares method performs well in the sense that it produces an 

estimate  𝜷 that has good statistical properties. However, when observations follow a non-

normal distribution, especially observations that do not have longer or heavier tails than 

normal, the least squares method may not be appropriate (Pratiwi et al., 2018). There are 

three classes of problems that can use robust techniques (Chen, 2002), namely: 1) Problems 

with outliers in the y (response) variable, 2) Problems with outliers contained in variable x 

(leverage point), 3) Problems with outliers contained in both y (response) and x (predictor) 

variables.  
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2.3. Robust M Estimation Method 

M-estimation is recognized as a straightforward approach in robust regression. The 

basic idea is to minimize the objective function as in Equation (2) (Pratiwi et al., 2018) 

∑ 𝜌(𝑒𝑖
∗)𝑛

𝑖=1 = ∑ 𝜌 (
𝒆𝒊

�̂�
)𝑛

𝑖=1 = ∑ 𝜌 (𝒚𝒊 −
𝒆𝒊

�̂�
)𝑛

𝑖=1   (2) 

The value of �̂�  (the scale of the robust estimate) is obtained through iteration 

�̂� = 𝑚𝑒𝑑𝑖=1
𝑛 |𝑦𝑖 − 𝑋𝑖

(𝑙−1)
|/𝛽0    

where 𝑙 (𝑙 = 1,2, … ) is an iteration. 𝛽0 = Φ
−1(0,75) and Φ−1 is the inverse of the standard 

normal cumulative function. 𝜌(𝑒𝑖
∗) is the symmetric function of the residuals or the function 

that contributes each residual to the objective function. 𝜓 = 𝜌′ with 𝜓 the derivative of 𝜌. 

𝜓(. ) is the effect function used in deriving the weights. Given a weighting function 𝑤𝑖 =
𝜓𝑒𝑖

∗

𝑒𝑖
∗  into Equation (3) 

∑ 𝑤𝑖(
𝑦𝑖−𝑿𝒊𝑏

�̂�
)𝑋𝑖

𝑛
𝑖=1 = 0  (3) 

Equation (3) is denoted in matrix form as Equation (4). 

𝑿𝑻𝑾𝑿𝒃 = 𝑿𝑻𝑾𝒚  (4) 

Equation (4) is referred to as weighted least squares that minimize ∑ 𝑤𝑖(𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 . 

Weighted least squares can be employed for calculating the estimation of M, resulting in the 

parameter estimation presented in Equation (5). 

�̃�𝑴 = (𝑿
𝑻𝑾𝑿)−𝟏𝑿𝑻𝑾𝒚  (5) 

The weights in M estimation depend on the residuals and coefficients. To address 

this issue, an iterative procedure known as Iteratively Reweighted Least Squares (IRLS) is 

necessary. In this research, Tukey Bisquare is employed to estimate the parameters. The 

general forms of the objective function, influence function, and weight function for Tukey 

Bisquare are delineated in Table 1 (Khan et al., 2021).  

Table 1. Objective Function, Effect Function and Weighting 

Function for M-Tukey Bisquare Estimation 

Tukey Bisquare Method 

Objective 

Function 
𝜌𝐵(𝑒

∗) = {

𝑘2

6
[1 − 〈1 − (

𝑒𝑖
∗

𝑟
)

2

〉3] , 𝑓𝑜𝑟 |𝑒𝑖
∗| ≤ 𝑟

𝑟2/6    , 𝑓𝑜𝑟  |𝑒𝑖
∗| > 𝑟

 

Effect Function 𝜓𝐵(𝑒
∗) = {𝑒𝑖

∗ 〈1 − (
𝑒𝑖
∗

𝑟
)

2

〉2  𝑓𝑜𝑟 |𝑒𝑖
∗| ≤ 𝑟

0    , 𝑓𝑜𝑟  |𝑒𝑖
∗| > 𝑟

 

Weighting 

Function 
𝜓𝐵(𝑒

∗) = {〈1 − (
𝑒𝑖
∗

𝑟
)

2

〉2  𝑓𝑜𝑟 |𝑒𝑖
∗| ≤ 𝑟

0    , 𝑓𝑜𝑟  |𝑒𝑖
∗| > 𝑟

 

2.4. Quantile Regression   

Quantile regression is one of the development methods of linear regression, which 

can be properly used to overcome the deviation of the homogeneity assumption in linear 

regression where the residual data gets bigger and becomes inhomogeneous due to the 

presence of outlier data. This condition can be indicated by the shape of the data which is no 

longer symmetrical due to the presence of outliers. Then, the simple regression method using 

the average in estimating the model parameters is no longer appropriate, so the quantile 

regression method is used (Amédée-Manesme et al., 2020). Suppose Y is a random variable 

with distribution function 𝐹𝑌 and quantiles (𝜏) ∈ (0,1) can be expressed as 𝐹𝑌(𝑦) = 𝐹(𝑦) =
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𝑃(𝑌 ≤ 𝑦) and the inverse function is denoted as 𝑄𝑌(𝜏) = 𝐹𝑌
−1(𝜏) = 𝑖𝑛𝑓{𝑦: 𝐹𝑌(𝑦) ≥ 𝜏}. If 

Y is a known function of X, its probability functions are expressed as 𝐹𝑌|𝑋(𝑦) and 𝑄𝑌|𝑋(𝜏). 

The linear model of the quantile regression equation of the probability function can be 

denoted as Equation (6) (Hong et al., 2019). 

𝑄𝑌|𝑋(𝜏) = 𝛼(𝜏) + 𝛽(𝜏)𝑥  (6) 

The quantile regression model, when the X variable is a binary category can be expressed in 

Equation (7) 

𝑄𝑌|𝐷(𝜏) = 𝛼(𝜏) + 𝛿(𝜏)𝐷  (7) 

where D denotes the categorical variable, with D = 1 as the category under study and D = 0 

as a control. The generalized conditional quantile regression equation 𝑄𝑌|𝑋(𝜏) in Equation 

(6) can be explained as in Equation (8). 

𝑦𝑖 = 𝛽𝜏0 + 𝛽𝜏1𝑥1𝑘 +⋯+ 𝛽𝜏𝑘𝑥𝑖𝑘 + 𝜀𝜏𝑖 , 𝑖 = 1,2,⋯ , 𝑛  (8) 

where 𝑦𝑖 is response variable with i-th observation, 𝑥𝑖𝑘 is k-th predictor variable and i-th 

observation, 𝛽𝜏𝑘 is parameters at the 𝜏(0,1) quantile with the k-th variable and 𝜀𝜏𝑖 is random 

residuals of the regression model at the 𝜏-th quantile and i-th observation 

2.5. Quantile Regression Parameter Estimation  

In classical OLS regression, the parameters are estimated by minimizing the sum of 

squared residuals, whereas in quantile regression, they minimize the absolute sum of 

residuals, commonly known as the Least Absolute Deviation (LAD). The quantile weights 

are determined by τ, defined as τ if the residual value is greater than or equal to zero and 1-

τ for residuals less than zero (Biswas et al., 2017). The estimated value of parameter β from 

the τ-th quantile regression can be obtained by Equation (9) and (10). 

�̂�(𝜏) = min
𝛽
{𝜏 ∑ |𝒚 − 𝒙𝑻𝜷| + (1 − 𝜏)∑ |𝒚 − 𝒙𝑻𝜷|𝑛

𝑖=1;𝑦<𝑥
𝑛
𝑖=1;𝑦>𝑥 }  (9) 

�̂�(𝜏) = argmin
𝛽

∑ 𝜌𝜏(𝜀𝑖)
𝑛
𝑖=1   (10) 

for 𝜌𝜏(𝜀𝑖) = {
𝜏𝜀𝑖 if 𝜀𝑖 ≥ 0

(𝜏 − 1)𝜀𝑖 if 𝜀𝑖 < 0
 (11) 

where 𝜌𝜏(𝜀) is referred to as the loss function, that is the multiplication between the residuals 

and the quantile weights of τ. The LAD method to obtain an estimate  of Equation (10) or 

(11) is done by minimizing the loss function. The solution cannot be obtained analytically 

but is obtained numerically using the simplex method, interior point method, or smoothing 

method. On the other hand, the estimation of quantile regression parameters with X variable 

being a binary category, can be estimated by solving as follows (Buhai, 2004). 

(�̂�𝜏, �̂�𝜏) =
argmin

(𝛼, 𝛽)∑ 𝜌𝜏(𝑦𝑖 − 𝛼 − 𝛿𝐷𝑖)
𝑛
𝑖=1

  (12) 

for {
�̂�𝜏 = 𝐹𝑚

−1(𝜏)     

𝛿𝜏 = 𝐺𝑛
−1(𝜏) − 𝐹𝑚

−1(𝜏) 
 (13) 

where 𝑮𝒏 and 𝑭𝒎 represent the empirical distribution functions of the categorical and control 

variables, based on n and m observations respectively. 

2.6. LASSO Regression 

The Least Absolute Shrinkage and Selection Operator (LASSO) method was first 

introduced by Tibshirani in 1996. LASSO shrinks the regression coefficients of predictor 

variables that have a high correlation with the errors, to exactly zero or close to zero 

(Tibshirani, 1996). The general LASSO equation is formulated as (Zhao & Yu, 2006). 
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𝒀∗∗ = 𝑿∗∗𝜷∗ + 𝜺∗∗  (14) 

with  𝒀∗∗ is response variable vector of size (n × 1), 𝑿∗∗ is matrix of predictor variables of 

size (𝑛 ×  (𝑘 + 1)), 𝜷∗ is the vector of LASSO coefficients of size ((𝑘 +  1) ×  1), and 𝜺∗∗ 
is error vector of size (𝑛 ×  1). 

The estimation of LASSO coefficients uses quadratic programming with inequality 

constraints. LASSO estimation is obtained from Equation (15) 

�̂�𝑙𝑎𝑠𝑠𝑜 = argmin⏟    
𝛽

{∑ (𝑦𝑖 − 𝛽0 − ∑ 𝛽𝑗𝑥𝑖𝑗
𝑘
𝑗=1 )

2𝑛
𝑖=1 }  (15) 

Under the condition that ∑ |𝛽𝑗| ≤ 𝑡
𝑘
𝑗=1 . The value of 𝑡 is a tuning parameter that controls the 

shrinkage of the LASSO coefficient with 𝑡 ≥ 0. According to Tibshirani (1996), if 𝑡 < 𝑡0 

with 𝑡0 = ∑ |�̂�𝑗|
𝑘
𝑗=1  it will cause the coefficient to shrink close to zero or exactly at zero, so 

that LASSO will have a role as variable selection. However, if 𝑡 > 𝑡0 then the LASSO 

coefficient estimator gives the same results as the least squares estimator method. 

2.7. LASSO Regression Parameter Estimation Using CDA 

Coordinate Descent Algorithm (CDA) is a model selection method where the 

algorithm can be modified and implemented into the LASSO Regression model (Hastie et 

al., 2016). Coordinate Descent performs well and quickly in solving the problem since each 

coordinate minimization can be done quickly and the relevant equations can thus be updated 

as we select variables (Friedman et al., 2007). The concept of the CDA algorithm in LASSO 

is optimizing the parameters separately and then optimizing the variables that are not optimal 

until they are optimal. Optimization is performed on a grid value λ, ranging from 𝜆𝑚𝑎𝑥 to 

𝜆𝑚𝑖𝑛 as a tuning parameter in controlling the LASSO regression coefficients. The calculation 

steps using the CDA algorithm are as follows: 

1. Standardize the data to have a mean value of 0 and a variance of 1. 

2. Initialize all 𝛽𝑗 = 0 and the loop is then run until convergence where the coefficient 

values are stable and do not change. Each coefficient is updated, and the soft-

thresholding operator is applied. 

3. Calculating LASSO simple least squares regression coefficients 𝛽𝑗
∗ =

1

𝑛
∑ 𝑥𝑖𝑗𝑟𝑖𝑗
𝑛
𝑖=1  with 

𝑟𝑖𝑗 = 𝑦𝑖 − ∑ 𝑥𝑖𝑝𝛽𝑝𝑝≠𝑗 . 𝛽𝑗
∗ is the LASSO regression parameter value. 

4. Update the value of 𝛽𝑗
∗ by soft thresholding up to the optimum. 

2.8. Ensemble Model 

The fundamental concept behind the ensemble method is to combine several outputs 

from forecasting methods. Ensemble model can reduce the risk of overfitting thanks to the 

diversity of single model (Mohammed & Kora, 2023) and capture the uncertainty contained 

in each model  This technique is prediction methods, especially in climate prediction. There 

are two main steps to building an ensemble. The first step is to create a membership of the 

ensemble and then combine the output of the ensemble members to produce a new ensemble 

output (Lusia & Suhartono, 2013). The two methods  most  commonly used in ensembles 

are averaging and stacking (Jafarzadeh et al., 2021; Lu et al., 2023). 

1. Averaging. Using the averaging method, the output of the ensemble is obtained by 

averaging the ensemble member's output. Suppose N is the number of members in the 

ensemble, Equation 16 is obtained as follows: 

𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =
1

𝑁
∑ �̂�𝑁
𝑁
𝑛=1 , 𝑛 = 1,2, … , 𝑁  (16) 
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2. Stacking. Stacking or stacked generalization is a generalized method of using a 

combination of higher-level models and lower-level models to achieve higher prediction 

accuracy. The global result of the ensemble can be calculated using the equation: 

𝑦𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∑ 𝐶𝑘�̂�𝑘
𝑁
𝑘=1   (17) 

Breiman (1996), proposes to minimize the function G to be able to provide a better 

generalization of the model, which is 

𝐺 = ∑ [𝑦𝑡 − ∑ 𝐶𝑘�̂�𝑘
𝑁
𝑘=1 ]2𝑛

𝑡=1   (18) 

by using the constraints ∑ 𝐶𝑘 = 1
𝑁
𝑘=1  and 0 ≤ 𝐶𝑘 ≤ 1 

 

3. MATERIAL AND METHOD  

3.1. Data and Variable  

The data employed obtained from the 2018-2019 National Socio-Economic Survey 

(SUSENAS) conducted by the Central Statistics Agency. The research variables comprise 

response variables (y) and predictor variables (X). The response variable is per capita 

consumption in Surabaya City. The predictor variables are delineated in Table 2. 

Table 2. Research Variable 

Variable Description 

𝑦 Per capita Consumption 

𝑋1 Car Ownership 

𝑋2 Refrigerator Ownership 

𝑋3 Motorcycle Ownership 

𝑋4 Computer Ownership 

𝑋5 Home Phone Ownership 

𝑋6 Ownership of Gas Cylinders of 5,5 kg or more 

𝑋7 Air Conditioner (AC)  Ownership  

𝑋8 Water Heater Ownership 

𝑋9 Gold Ownership 

𝑋10 Boat Ownership 

𝑋11 TV Ownership 

𝑋12 Land Ownership 

𝑋13 Fuel for Cooking: Electricity 

𝑋14 Cooking Fuel: > 3 kg gas, 3 gas, town gas 

𝑋15 Source of Drinking Water: Branded Bottled Water 

𝑋16 Source of Drinking Water: Refill Water 

𝑋17 Source of Drinking: Tap 

𝑋18 Number of Households Members 

𝑋19 Tenure Status of Occupied Residential Building: Owned 

𝑋20 Tenure Status of Occupied Residential Building: Contract/Rent 

𝑋21 Tenure Status of Occupied Residential Building: Rent-free 

𝑋22 Tenure Status of Occupied Residential Building: Office 

𝑋23 Log Floor Area per Capita 

𝑋24 Number of households that have attended school 

𝑋25 Number of households in which members have completed primary school 

𝑋26 Number of households with members who have completed D1/D2/D3 education levels 

𝑋27 Number of households with members who have completed S1/S2/S3 education levels 

𝑋28 Number of households in which members have completed high school 
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𝑋29 Number of households with members who have completed junior high school 

𝑋30 Number of households with members currently attending primary school. 

𝑋31 Number of Households Currently attending junior high school 

𝑋32 Number of households with members holding D1/D2/D3 qualifications  

𝑋33 Number of households with members holding S1/S2/S3 education qualifications 

𝑋34 Number of individuals currently attending senior high school 

𝑋35 Number of households engaged in wholesale and retail trade, as well as the repair and 

maintenance of cars and motorcycles. 

𝑋36 Number of Households Employed in Accommodation and Food and Beverage Services 

𝑋37 Number of Households Working in Industry 

𝑋38 Number of Households Working in Education 

𝑋39 Number of Households Working in Transportation and Warehousing 

𝑋40 Widest Floor Type: Marble/Granite/Ceramic, Parquet/Vinyl/Tapestry 

𝑋41 Broadest Floor Type: Tile/Seal/Brasso 

𝑋42 Broadest Floor Type: Wood/board, Cement/red brick 

𝑋43 Widest Wall Type: Wall 

𝑋44 Widest Wall Type: Wood/Board  

𝑋45 Toilet Type: Private with Swan Neck Toilet Type 

𝑋46 Toilet Type: Private with Slab Toilet Type 

𝑋47 Number of Households with Disease 

𝑋48 Number of Households with Health Coverage 

𝑋49 Main Source of Lighting: PLN 

𝑋50 The Widest Type of Roof is Concrete 

𝑋51 The Widest Type of Roofing Tile 

𝑋52 The Widest Roof Type is Asbestos 

𝑋53 Fecal Landfill: Septic Tank 

𝑋54 Place of Final Disposal of Feces: Hole in the Ground, Rice Field, River 

𝑋55 Number of Working Households 

3.2. Step of Analysis 

The PMT analysis steps for estimating per capita consumption are as follows: 

1. Preprocess the SUSENAS data by aggregating individual units into household units for 

analysis. Establish the response variable as household consumption per capita and 

include predictor variables such as asset ownership, education, and health. 

2. Develop a regression model by employing four regression approaches, namely OLS 

regression, Robust regression, Quantile regression, and LASSO regression. The four 

methods are expected to overcome infringements of linear regression assumptions such 

as multicollinearity, autocorrelation and heteroscedasticity. 

3. Create an ensemble model by combining the four regression approaches using an 

averaging method, as described in Equation 16. 

4. Acquire the model for estimating household consumption expenditure. 

 

4. RESULTS AND DISCUSSION 

4.1. PMT Model  

The construction of the PMT model to estimate per capita consumption utilizes four 

approaches: OLS, Robust, Quantile, and LASSO regression. The outcomes of the per capita 

consumption model estimation from each of these methods are presented below: 
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1. OLS Regression Model  
�̂�𝑂𝐿𝑆 = 13.615 + 0.258𝑥1 + 0.067𝑥2 + 0.051𝑥3 + 0.147𝑥4 + 0.041𝑥5 + 0.175𝑥6 

+0.123𝑥7 + 0.248𝑥8 + 0.093𝑥9 − 0.067𝑥10 + 0.035𝑥11 + 0.047𝑥12 − 0.286𝑥13 
−0.291𝑥14 − 0.266𝑥15 + 0.136𝑥16 + 0.099𝑥17 − 0.197𝑥18 + 0.211𝑥19 + 0.263𝑥20 
+0.190𝑥21 + 0.190𝑥22 + 0.259𝑥23 + 0.015𝑥24 + 0.004𝑥25 + 0.047𝑥26 + 0.053𝑥27 

+0.040𝑥28 + 0.031𝑥29 − 0.020𝑥30 − 0.011𝑥31 − 0.089𝑥32 + 0.115𝑥33 + 0.012𝑥34 

+0.005𝑥35 + 0.028𝑥36 − 0.009𝑥37 − 0.087𝑥38 + 0.007𝑥39 + 0.022𝑥40 − 0.007𝑥41 

−0.110𝑥42 + 0.067𝑥43 + 0.067𝑥44 − 0.075𝑥45 − 0.015𝑥46 − 0.007𝑥47 − 0.011𝑥48 

+0.137𝑥49 + 0.179𝑥50 + 0.159𝑥51 + 0.147𝑥52 + 0.016𝑥53 − 0.005𝑥54 + 0.073𝑥55 

2. Robust Regression Model  
�̂�𝑅𝑂𝐵 = 13.551 + 0.256𝑥1 + 0.076𝑥2 + 0.062𝑥3 + 0.137𝑥4 + 0.053𝑥5 + 0.168𝑥6 

+0.132𝑥7 + 0.205𝑥8 + 0.085𝑥9 − 0.034𝑥10 + 0.049𝑥11 + 0.037𝑥12 − 0.286𝑥13 
−0.313𝑥14 + 0.298𝑥15 + 0.180𝑥16 + 0.136𝑥17 − 0.194𝑥18 + 0.165𝑥19 + 0.201𝑥20 
+0.126𝑥21 + 0.132𝑥22 + 0.243𝑥23 + 0.017𝑥24 + 0.002𝑥25 + 0.051𝑥26 + 0.040𝑥27 

+0.038𝑥28 + 0.018𝑥29 − 0.019𝑥30 − 0.005𝑥31 − 0.096𝑥32 + 0.097𝑥33 + 0.028𝑥34 

+0.013𝑥35 + 0.035𝑥36 − 0.002𝑥37 − 0.062𝑥38 + 0.020𝑥39 + 0.000𝑥40 − 0.086𝑥41 

−0.122𝑥42 + 0.070𝑥43 + 0.086𝑥44 − 0.102𝑥45 − 0.040𝑥46 − 0.006𝑥47 − 0.010𝑥48 

+0.248𝑥49 + 0.182𝑥50 + 0.155𝑥51 + 0.150𝑥52 + 0.036𝑥53 + 0.036𝑥54 + 0.067𝑥55 

3. Quantile Regression Model  
�̂�𝑄𝑈𝐴 = 13.408 + 0.222𝑥1 + 0.060𝑥2 + 0.044𝑥3 + 0.153𝑥4 + 0.052𝑥5 + 0.173𝑥6 

+0.144𝑥7 + 0.203𝑥8 + 0.056𝑥9 − 0.005𝑥10 + 0.042𝑥11 + 0.014𝑥12 − 0.286𝑥13 
−0.307𝑥14 + 0.274𝑥15 + 0.142𝑥16 + 0.077𝑥17 − 0.193𝑥18 + 0.218𝑥19 + 0.226𝑥20 
+0.160𝑥21 + 0.163𝑥22 + 0.259𝑥23 + 0.012𝑥24 + 0.005𝑥25 + 0.029𝑥26 + 0.040𝑥27 

+0.021𝑥28 + 0.010𝑥29 − 0.025𝑥30 + 0.000𝑥31 − 0.095𝑥32 + 0.127𝑥33 + 0.043𝑥34 

+0.023𝑥35 + 0.056𝑥36 − 0.013𝑥37 − 0.062𝑥38 + 0.022𝑥39 + 0.085𝑥40 − 0.022𝑥41 

−0.042𝑥42 + 0.095𝑥43 + 0.152𝑥44 − 0.112𝑥45 − 0.076𝑥46 − 0.005𝑥47 − 0.006𝑥48 

+0.268𝑥49 + 0.211𝑥50 + 0.172𝑥51 + 0.174𝑥52 + 0.038𝑥53 + 0.012𝑥54 + 0.069𝑥55 

4. LASSO Regression Model 
�̂�𝐿𝐴𝑆 = 13.772 + 0.258𝑥1 + 0.060𝑥2 + 0.051𝑥3 + 0.146𝑥4 + 0.040𝑥5 + 0.174𝑥6 

+0.124𝑥7 + 0.248𝑥8 + 0.093𝑥9 − 0.066𝑥10 + 0.035𝑥11 + 0.048𝑥12 − 0.286𝑥13 
−0.291𝑥14 + 0.219𝑥15 + 0.089𝑥16 + 0.052 − 0.196𝑥18 + 0.183𝑥19 + 0.235𝑥20 
+0.161𝑥21 + 0.161𝑥22 + 0.258𝑥23 + 0.014𝑥24 + 0.004𝑥25 + 0.047𝑥26 + 0.052𝑥27 

+0.040𝑥28 + 0.031𝑥29 − 0.020𝑥30 − 0.011𝑥31 − 0.087𝑥32 + 0.115𝑥33 + 0.012𝑥34 

+0.005𝑥35 + 0.028𝑥36 − 0.009𝑥37 − 0.086𝑥38 + 0.007𝑥39 + 0.024𝑥40 − 0.076𝑥41 

−0.010𝑥42 + 0.051𝑥43 + 0.065𝑥44 − 0.073𝑥45 − 0.012𝑥46 − 0.007𝑥47 − 0.011𝑥48 

+0.140𝑥49 + 0.095𝑥50 + 0.075𝑥51 + 0.063𝑥52 + 0.015𝑥53 − 0.005𝑥54 + 0.073𝑥55 

4.2. Estimation Results of Per Capita Consumption by Method Used 

Upon acquiring the estimated model, the subsequent step involves conducting 

statistical tests to ascertain whether there exists an average difference between the estimated 

per capita consumption value from the formed model (ŷ) and the observed per capita 

consumption value (SUSENAS) (y). Figure 1 depicts overlapping intervals between the 

observed (y) and estimated (ŷ) values of the five models. This suggests that the average 

observed data (SUSENAS) aligns with the estimated results derived from the five models.  

This result is corroborated by conducting a test for differences in the mean values 

between the five models and the observed values. Testing the difference in mean values with 

the following null hypothesis (H0): there is no mean difference between the observed value 

(y) and the estimated result (ŷ) and alternative hypothesis (H1): there is a mean difference 

between the observed value (y) and the estimated result (�̂�). Decision: Reject H0 if the p-

value < α=0.05.  
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Figure 1. Interval Plot of 95% Median Value Estimation Results of PMT Model 

Table 3 demonstrates that there is no discrepancy in the mean values of the estimated 

per capita consumption between the five models and the observed values. Alternatively, the 

estimation results obtained from the four models, namely OLS regression, Quantile 

regression, Robust regression, and LASSO regression, can be integrated into an Ensemble 

model. Figure 2 demonstrates that the distribution of observed data (y) and estimated values 

(ŷ) tend to align closely. Figure 3 illustrates that the observed variable, denoted as y, and the 

estimated variable, denoted as ŷ, exhibit a data distribution with no significant shift, as their 

curve shapes are nearly identical. Likewise, the ensemble model curve, derived from the 

averaged combination of four models, closely approximates the observed values (y). It is 

imperative to evaluate the new PMT model to ascertain whether its performance surpasses 

that of the previous PMT model. Evaluation can be carried out by assessing the estimation 

errors in comparison to the actual data, utilizing the MSE (Mean Square Error), MAE (Mean 

Absolute Error), and sMAPE (Symmetric Mean Absolute Percentage Error) criteria. The 

best model is identified as the one that exhibits the smallest values for MSE, MAE, and 

sMAPE. 

Table 3. Hypothesis Testing of Mean y and �̂� PMT Model 

Hypothesis t-test p-value Summary 

�̂�𝑂𝐿𝑆 vs 𝑦 -1.73 0.084 The calculated mean of the OLS model does not demonstrate 

a statistically significant difference from the observed values. 

�̂�𝑅𝑜𝑏𝑢𝑠𝑡 vs 𝑦 -0.59 0.557 The calculated mean of the Robust model does not show a 

statistically significant difference from the observed values.  

�̂�𝑄𝑢𝑎𝑛𝑡𝑖𝑙vs 𝑦 -0.50 0.619 The calculated mean of the Quantile model does not exhibit a 

statistically significant difference from the observed values.  

�̂�𝐿𝑎𝑠𝑠𝑜 vs 𝑦 -1.00 0.315 The calculated mean of the LASSO model does not display a 

statistically significant difference from the observed values. 

�̂�𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 vs 𝑦 -0.96 0.339 The calculated mean of the ensemble does not exhibit a 

statistically significant difference from the observed values.  

 

Figure 2. Comparison of Distribution Spread of y and ŷ PMT Data 
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Figure 3. Distribution of PMT Model Estimation Results 
Table 4. Model Evaluation 

Model Evaluation 
Methods 

OLS Robust Quantile LASSO Ensemble 

MSE 0.145 0.146 0.147 0.144 0.145 

MAE 0.286 0.284 0.284 0.285 0.284 

sMAPE 0.996% 0.989% 0.986% 0.991% 0.988% 

Table 4 indicates that the MSE of LASSO regression yields the smallest error value. 

However, in terms of the MAE criterion, Robust regression, Quantile regression, and the 

Ensemble model display the smallest error values. Regarding the sMAPE criterion, Quantile 

regression exhibits the smallest error value. Based on the model evaluation, none of the 

models exhibits the highest accuracy in estimating per capita consumption within this 

research. Generally, there is no absolute best model in the proxy mean test (Houssou et al., 

2007; Kidd & Wylde, 2011), thus it is necessary to combine models to capture all the 

information contained in a model. The application of the ensemble method is not only as a 

comparison between models, but also as a means to capture the uncertainty contained in each 

model (Tran et al., 2020; Vrugt & Robinson, 2007).  

4.3. Determination of Household Groups by Per Capita Consumption 

The determination of a household's decile placement relies on the per capita 

expenditure distribution derived from SUSENAS data, as illustrated in Table 5. This decile 

classification is established using SUSENAS data, which divides the data range into ten 

groups. Deciles 1 to 4 encompass the spectrum of families within the low-income family’s 

category, each having a per capita expenditure limit of less than or equal to IDR 1,267,774. 

Table 5. Clustering of Decile Intervals 

Decile Mean Minimum Maximum  Decile Mean Minimum Maximum 

1 607.315 327.345 726.499  6 1.612.409 1.504.389 1.725.220 

2 811.955 726.678 887.798  7 1.860.208 1.726.857 2.007.693 

3 980.394 890.706 1.070.339  8 2.201.284 2.008.856 2.408.431 

4 1.164.783 1.071.472 1.267.774  9 2.763.869 2.409.232 3.273.881 

5 1.376.767 1.268.020 1.503.450  10 6.016.971 3.279.403 80.906.952 

 

5. CONCLUSION 

The conclusion drawn from the results and discussion is that the optimal approach 

for estimating per capita consumption involves employing an ensemble model, which 
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comprises a combination of OLS regression, robust regression, quantile regression, and 

LASSO regression. The category of families falling within the low-income family’s 

classification comprises those with a per capita expenditure limit of less than or equal to IDR 

1,267,774. In other words, this range of families, characterized by these expenditure limits, 

can serve as a reference for the Surabaya City Government when devising assistance 

programs or social initiatives for the impoverished population of Surabaya City. Future 

research suggestions may involve the exploration of additional variables or factors that could 

serve as indicators for categorizing low-income families in Surabaya City, thereby enhancing 

the precision and accuracy of the results. 
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