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Abstract: In structural equation modeling (SEM), it is usually 

assumed that all observations follow only one model. This 

becomes irrelevant if the observations contain natural groups, 

each of which has a different SEM model. Mukid et al (2002) 

have proposed the partial least squares-modified fuzzy 

clustering method (PLSMFC) as a way to find groups of 

observations and at the same time estimate the parameters of the 

SEM model. This research aims to understand the performance 

of the PLSMFC method in finding groups of observations 
characterized by different forms of structural equation models. 

The goal was achieved by conducting a simulation study 

involving factors such as SEM model specification and number 

of clusters. The procedure used is to force the generated data 

into a different number of segments. The segment validity 

measures used are the fuzziness performance index (FPI) and 

normalized classification entropy (NCE). The correct number of 

segments is indicated by the smallest FPI and NCE values. 

Based on simulation studies, it is known that the PLSMFC 

method can detect segments accurately, especially if the size of 

the segments used to reallocate observations is larger than the 

number of segments used to generate the data. 

 

1. INTRODUCTION  

Structural Equation Modeling (SEM) has become a statistical tool that is widely used 

to investigate the relationship between latent variables, especially for social research (Aktepe 

et al., 2015; Gokarna et al., 2022; Chuah et al, 2021; Hidayat et al., 2018; Otok et al., 2018). 

The application of SEM usually assumes that a set of data only follows a model. In certain 

cases, this assumption may not be met. The existence of "natural" groups in the data structure 

is the cause of failed efforts to "fit" a model. If the existence of groups in this population is 

ignored, universal solutions may not be appropriate and will provide inaccurate and/or 

inadequate results (Lamberti et al., 2016). Unfortunately, conventional clustering techniques 

for manifest variables or latent variable scores do not take into account the relationship 

between latent variables at all. On the other hand, the local model (each group) obtained by 

cluster analysis of the latent variable scores will give rise to group average differences in the 

latent variables but not necessarily different SEM models. The same method performed on 

manifest variables will most likely not produce different and well-separated models, both in 
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terms of model parameters and latent variable mean scores. In addition, the clustering 

procedure may present some theoretical problems as traditional cluster analysis assumes 

independence between variables, whereas SEM is based on the assumption that latent or 

manifest variables are correlated (Vinzi et al., 2008). 

Several researchers have proposed various segmentation techniques in the context of 

SEM to overcome the heterogeneity in this model, for example, finite mixture SEM (Jedidi 

et al., 1997), finite mixture PLS (Hahn et al., 2002), response based unit segmentation PLS 

(REBUS PLS) (Vinzi et al., 2008), hierarchical bayesian SEM (Ansari et al., 2014), PLS 

Iterative Reweighted Regression Segmentation (PLS-IRRS) (Schlittgen et al., 2016 ) and 

PLS-SEM-KM (Fordellone & Vichi, 2020). Furthermore, a segmentation method based on 

the PLS genetic algorithm (PLS-GAS), which uses guided random search to find an optimal 

solution in a complex search space, was proposed by Ringle et al. (2013).  

A fuzzy approach for segment discovery according to the PLS SEM model has also 

been studied (Mukid et al., 2022). There are several reasons to adopt a fuzzy clustering 

approach. Firstly, the fuzzy clustering algorithm is interesting in the context that the 

proposed method is compatible with the optimization procedure of distribution-free PLS 

methods. Second, due to the difficulty of identifying clear boundaries between segments in 

real-world problems, partial classification from fuzzy clustering appears more attractive than 

deterministic classification such as K-means. Third, fuzzy clustering algorithms are 

computationally more efficient because of the dramatic changes in segment membership 

values (McBratney & Moore, 1985). Fourth, fuzzy clustering is less affected by local 

optimality problems (Heiser & Groenen, 1997). Reviews of the performance of several 

segmentation methods in the context of PLS-SEM have also been carried out with the 

conclusion that there is no universal method that can be used for all cases (Sarstedt, 2008; 

Sarstedt et al., 2022). 

This research examines the partial least squares-modified fuzzy clustering 

(PLSMFC) method proposed by Mukid et al (2022) through a simulation study. The main 

goal of this simulation study is to understand how well the method is at finding the right 

number of segments. 

 

2. LITERATURE REVIEW 

2.1. Partial Least Squares – Modified Fuzzy Clustering for SEM 

The segmentation method studied in this research is a combination of the PLS method 

and modified fuzzy clustering. Each method has a different role. The PLS method is used to 

estimate SEM parameters and the fuzzy c-means method is used to find segments of the 

observations. The PLSMFC method (Mukid et al., 2022) is an alternative to finding data 

segments where each segment is characterized by different SEM models. To achieve this 

goal, the objective function used is the total weighted sum of squared errors which is as 

follows: 

𝐹 = ∑ ∑ ∑ 𝑢𝑐𝑛
2 𝜁𝑗∗𝑐𝑛

2𝑁
𝑛=1

𝐶
𝑐=1

𝐽∗

𝑗∗=1 + ∑ ∑ ∑ ∑ 𝑢𝑐𝑛
2 𝜀�̂�𝑐𝑘𝑗𝑛

2𝑁
𝑛=1

𝐶
𝑐=1

𝐾𝑗

𝑘𝑗=1
𝐽𝑅
𝑗=1   (1) 

+∑ ∑ ∑ 𝑢𝑐𝑛
2𝑁

𝑛=1
𝐶
𝑐=1

𝐽𝐹
𝑗=1 𝛿𝑗𝑐𝑛

2    

where 𝐽∗ is the number of endogenous latent variables, 𝐽𝑅 is the number of latent variables 

measured using the reflexive model, 𝐽𝐹 is the number of latent variables measured using the 

formative model, and ∑ 𝑢𝑐𝑛
𝐶
𝑐=1 = 1, for each 𝑛 = 1, 2, … ,𝑁. 𝜁𝑗∗𝑐𝑛

2  is the residual of the inner 

model corresponding to the nth observation, the 𝑗∗-th endogenous latent variable in the 𝑐-th 
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cluster. 𝜀�̂�𝑘𝑗𝑐𝑛
2  is the residual of the outer model for the reflexive measurement model at the 

nth observation in the kth indicator, the 𝑗-th latent variable in cluster 𝑐. 𝛿𝑗𝑐𝑛
2  is the residual of 

the outer model for the formative measurement model at the nth observation in the 𝑐-th 

cluster associated with the 𝑗-th latent variable.  Equation (1) is a modified version of the 

objective function of fuzzy clusterwise regression (Jajuga, 1986; Wedel & Steenkamp, 

1989). We use m = 2 as a fuzzifier parameter. Equation (1) can be expressed as vector and 

matrix notation, 

𝐹 = ∑ ∑ (𝐔c�̂�c𝑗∗)
𝑇
𝐔c�̂�c𝑗∗

𝐶
𝑐=1

𝐽∗

𝑗∗=1 + ∑ ∑ ∑ (𝐔c�̂�cj𝑘𝑗
)
𝑇

𝐔c�̂�cj𝑘𝑗

𝐶
𝑐=1

𝐾𝑗

𝑘𝑗=1
𝐽𝑅
𝑗=1   (2) 

+∑ ∑ (𝐔c�̂�cj)
𝑇
𝐔c�̂�cj

𝐶
𝑐=1

𝐽𝐹
𝑗=1    

where �̂�c𝑗∗ =

[
 
 
 
 
𝜁c𝑗∗1

𝜁c𝑗∗2

⋮
𝜁c𝑗∗𝑁]

 
 
 
 

 , �̂�cj𝑘𝑗
=

[
 
 
 
 
𝜀ĉj𝑘𝑗1

𝜀ĉj𝑘𝑗2

⋮
𝜀ĉj𝑘𝑗𝑁]

 
 
 
 

 , �̂�cj =

[
 
 
 
 
𝛿cj1

𝛿cj2

⋮
𝛿cjN]

 
 
 
 

 , 𝐔𝑐 = [

𝑢𝑐1 0 0 0
0 𝑢𝑐2 0 0
0 0 ⋱ 0
0 0 0 𝑢𝑐𝑁

] 

The Lagrange function containing a constraint ∑ 𝑢𝑐𝑛 − 1 = 0𝐶
𝑐=1  can be expressed as 

𝐹∗ = ∑ ∑ [(𝛈𝑗∗ − 𝛈→𝑗∗�̂�𝑗∗𝑐)
𝑇
𝐔𝑐

𝑇]𝐶
𝑐=1

𝐽∗

𝑗∗=1 [𝐔𝑐(𝛈𝑗∗ − 𝛈→𝑗∗�̂�𝑗∗𝑐)]  (3) 

+ ∑ ∑ ∑ [(𝐱𝑗𝑘𝑗
− 𝛈𝑗�̂�𝑗𝑘𝑗𝑐

)
𝑇

𝐔𝑐
𝑇] [𝐔𝑐 (𝐱𝑗𝑘𝑗

− 𝛈𝑗�̂�𝑗𝑘𝑗𝑐
)]𝐶

𝑐=1
𝐾𝑗

𝑘𝑗=1
𝐽𝑅
𝑗=1   

+∑ ∑ [(𝛈𝑗 − 𝐗𝑗�̂�𝑗𝑐)
𝑇
𝐔𝑐

𝑇] [𝐔𝑐(𝛈𝑗 − 𝐗𝑗�̂�𝑗𝑐)]
𝐶
𝑐=1

𝐽𝐹
𝑗=1 + 𝜆(∑ 𝑢𝑐𝑛 − 1𝐶

𝑐=1 )    

Estimation of parameters in the inner model is obtained through the first derivative of 𝐹∗ at 

�̂�𝑗∗𝑐.  
𝜕𝐹∗

𝜕�̂�𝑗∗𝑐
= 0 ; for certain 𝑗∗ and 𝑐. 

�̂�𝑩 = [𝐘→𝒋∗
𝑻 𝐕𝒄𝐘→𝒋∗]

−𝟏
[𝐘→𝒋∗

𝑻 𝐕𝒄𝐲𝒋∗] (4) 

where 𝐕𝑐 =

[
 
 
 
𝑢𝑐1

2 0 0 0

0 𝑢𝑐2
2 0 0

0 0 ⋱ 0
0 0 0 𝑢𝑐𝑁

2 ]
 
 
 

 

Estimation of parameters in the outer model for the reflexive measurement model is 

obtained through  
𝜕𝐹∗

𝜕𝝀𝑗𝑘𝑗�̂�
̂ = 0; for certain 𝒋, 𝑘, and 𝒄. 

�̂�𝑗𝑘𝑗𝑐
= [𝐲𝑗

𝑇𝐕𝑐𝐲𝑗]
−1

[𝐲𝑗
𝑇𝐕𝑐𝐱𝑗𝑘𝑗

]; 𝑘𝑗 = 1,2, … , 𝐾𝑗 (5) 

Estimation of parameters in a formative measurement model is obtained through 
𝜕𝐹∗

𝜕𝚲𝑗�̂�
= 0; 

for certain 𝑗 and 𝑐. 

�̂�𝑗𝑐 = [𝐗𝑗
𝑇𝐕𝑐𝐗𝑗]

−1
[𝐗𝑗

𝑇𝐕𝑐𝐲𝑗] (6) 

The fuzzy membership value is updated by using a formula in equation (7). The formula is 

obtained by first deriving 𝐹∗ at 𝑢𝑐𝑛 and then equalizing it to zero,  
𝜕𝐹∗

𝜕𝑢𝑐𝑛
= 0, for certain 𝑛 

and 𝑐. 
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𝑢𝑐𝑛 = [∑ [
[∑ 𝜁𝑛𝑗∗𝑐

2𝐽∗
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𝑗∗=1 + ∑ ∑ 𝜀�̂�𝑗𝑘𝑗𝑐
∗

2𝐾𝑗
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𝐽
𝑗=1 + ∑ 𝛿𝑛𝑗𝑐∗

2𝐽
𝑗=1 ]

]

𝐶

𝑐∗=1

]

−1

 (7) 

Minimization of the objective function in equation (1) to find SEM model in several 

segments is carried out using the following algorithm: 

1. Set the number of segment 𝐶, and the initial membership value 𝑢𝑐𝑛 

2. Estimate the weights and scores of latent variables using the PLS algorithm 

3. Estimate the path and loading coefficients in the 𝑐-th segment using equations (4), (5), 

and (6). 

4. Calculate the residual of the inner model and outer model in the 𝑐-th segment 

5. Update the fuzzy membership value for the 𝑛-th observation in the 𝑐-th cluster using 

equation (7) 

6. Calculate the objective function in the equation (1) 

7. Calculate FPI and NCE using equations (8) and (9) 

8. Repeat steps 1 to 7 for a different number of segments 

9. Determine the optimal number of segments based on FPI and NCE values 

2.2. Segment Validity Measures 

In fuzzy clustering, a measure called segment validity (Bezdek, Ehrlich, & Full, 

1984) is used to examine the status of separate segments. Based on synthetic data analysis, 

it can be concluded that the Fuzziness Performance Index (FPI) and Normalized 

Classification Entropy (NCE) are the most useful segment validity measures for fuzzy 

clustering. The FPI formula is as follows: 

𝐹𝑃𝐼 = 1 −
𝐶 × 𝑃𝐶 − 1

𝐶 − 1
 (8) 

where PC is the Partition Coefficient which is defined by 

𝑃𝐶 =
1

𝑁
∑ ∑ 𝑢𝑐𝑛

2𝐶
𝑐=1

𝑁
𝑛=1    

where 𝑪 is the number of clusters. The formula for NCE is as follows: 

𝑁𝐶𝐸 =
𝑃𝐸

𝑙𝑜𝑔𝐶
 (9) 

where PE is Partition Entropy which is defined by 

𝑃𝐸 = −
1

𝑁
∑ ∑ 𝑢𝑐𝑛𝑙𝑜𝑔𝑢𝑐𝑛

𝐶
𝑐=1

𝑁
𝑛=1    

The smaller the FPI or NCE value, the better the cluster formed at separating objects from 

each other. 

 

3. MATERIAL AND METHOD  

This section discusses the simulation design and the results obtained from the 

simulation studies carried out. A simulation study was conducted to evaluate the 

performance of the PLSMFC method. Specifically, this simulation aims to find out how good 

this method is at finding the right number of segments. 
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3.1. Simulation Design 

The simulation design considers two factors including the number of segments and 

model specifications. Table 1 below is a list of factors and levels examined in this simulation 

study. The SEM model specifications considered consist of two forms, namely model 1 and 

model 2. Model 1 refers to the SEM model where the measurement model for latent variables 

is reflective while model 2 refers to the SEM model where the measurement model for latent 

variables is reflective and formative. The path diagram of the SEM model used in this 

simulation looks like in Figure 1 and Figure 2. The loading coefficients for the number of 

segments 2 and 3 are set to be the same, both in model 1 and model 2. The loading and path 

coefficients can be seen in Table 2. In general, this study involved 22 = 4 combinations. 

Each combination will be replicated 100 times. 

Table 1. Factor and Levels in Simulation Study 

No Factor Level 

1 SEM Specification 1. Model 1 

    2. Model 2 

2 Number of Segment 1. Number of Segment 2 

    2. Number of Segment 3 

 

Table 2. Loading and Path Coefficient in Each Segment 

True Parameter Segment 1 Segment 2 Segment 3 

𝜆11 0.50 0.65 0.80 

𝜆12 0.55 0.70 0.85 

𝜆13 0.60 0.75 0.90 

𝜆21 0.50 0.65 0.80 

𝜆22 0.55 0.70 0.85 

𝜆23 0.60 0.75 0.90 

𝜆31 0.50 0.65 0.80 

𝜆32 0.55 0.70 0.85 

𝜆33 0.60 0.75 0.90 

𝜆41 0.50 0.65 0.80 

𝜆42 0.55 0.70 0.85 

𝜆43 0.60 0.75 0.90 

𝜆51 0.50 0.65 0.80 

𝜆52 0.55 0.70 0.85 

𝜆53 0.60 0.75 0.90 

𝛽21 0.50 0.70 0.90 

𝛽31 0.50 0.70 0.90 

𝛽41 0.50 0.70 0.90 

𝛽51 0.50 0.70 0.90 

In this research, parameters in the SEM model in each segment are set as in Table 2. If the 

number of segments is two, then the SEM model parameters in each segment are as in 

columns 1 and 2, whereas if the number of segments is three, then the model parameters 

SEM in each segment are as in columns 1, 2, and 3.   
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3.2. Data Generation Proccess 

This section explains the data generation process for model 1 and model 2. The 

specifications for model 1 and model 2 have different data generation methods. 

3.2.1. Data Generation for Model 1 

Synthetic data for model 1 were generated by following the following procedure: 

1) Generate score of exogenous latent variable for 𝜂2, 𝜂3, 𝜂4, and 𝜂5 from N(0, 1).  

2) Generate 𝜁1 from Normal(0, 0.05).  

3) Compute score of  endogenous latent variable 𝜂1 based on the inner model  

𝜂1 = 𝛽21𝜂2 + 𝛽31𝜂3 + 𝛽41𝜂4 + 𝛽51𝜂5 + 𝜁1 

4) Generate 𝜀11, 𝜀12, and 𝜀13 from distribution Normal(0, 0.05)  

5) Compute score of indicators 𝜂1 using formula 

𝑥11 = 𝜆11𝜂1 + 𝜀11 

𝑥12 = 𝜆12𝜂1 + 𝜀12 

𝑥13 = 𝜆13𝜂1 + 𝜀13 

6) Generate 𝜀21, 𝜀22, and 𝜀23 from distribution Normal(0, 0.05)  

7) Compute score of indicators 𝜂2 using formula 

𝑥21 = 𝜆21𝜂2 + 𝜀21 

𝑥22 = 𝜆22𝜂2 + 𝜀22 

𝑥23 = 𝜆23𝜂2 + 𝜀23 

8) Generate 𝜀31, 𝜀32, and 𝜀33 from distribution Normal(0, 0.05)   

9) Compute score of indicators 𝜂3 using formula 

𝑥31 = 𝜆31𝜂3 + 𝜀31 

𝑥32 = 𝜆32𝜂3 + 𝜀32 

𝑥33 = 𝜆33𝜂3 + 𝜀33 

10) Generate 𝜀41, 𝜀42, and 𝜀43 from distribution Normal (0,0.05)  

11) Compute score of indicators 𝜂4 using formula 

𝑥41 = 𝜆41𝜂4 + 𝜀41 

𝑥42 = 𝜆42𝜂4 + 𝜀42 

𝑥43 = 𝜆43𝜂4 + 𝜀43 

12) Generate 𝜀51, 𝜀52, and 𝜀53 from distribution Normal(0,0.05)  

13) Compute score of indicators 𝜂5 using formula 

𝑥51 = 𝜆51𝜂5 + 𝜀51 

𝑥52 = 𝜆52𝜂5 + 𝜀52 

𝑥53 = 𝜆53𝜂5 + 𝜀53 

3.2.2. Data Generation for Model 2 

The simulation data for model 2 has a different data generation procedure from model 

1 because model 2 contains a mixed measurement model between reflective and formative. 

Simulation data from model 2 are obtained by the following procedure: 

1) Generate score of indicators 𝑥21, 𝑥22, and 𝑥23 from distribution Normal(0,1) 

2) Generate 𝜁2 from distribution Normal(0,0.05) 

3) Compute score of exogenous latent variable 𝜂2 using formula 

𝜂2 = 𝜆21𝑥21 + 𝜆22𝑥22 + 𝜆23𝑥23 + 𝜁2 

4) Generate score of indicators 𝑥31, 𝑥32, and 𝑥33 from distribution Normal(0,1) 

5) Generate 𝜁3 from distribution Normal(0,0.05) 

6) Compute score of exogenous latent variable 𝜂3 using formula 

𝜂3 = 𝜆31𝑥31 + 𝜆32𝑥32 + 𝜆33𝑥33 + 𝜁3 
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7) Generate score of exogenous latent variable for 𝜂4 and 𝜂5 from distribution Normal(0, 

1).  

8) Generate 𝜁1 from distribution Normal(0,0.05).  

9) Compute score of  endogenous latent variable η1 based on the inner model  

𝜂1 = 𝛽21𝜂2 + 𝛽31𝜂3 + 𝛽41𝜂4 + 𝛽51𝜂5 + 𝜁1 

10) Generate 𝜀11, 𝜀12, dan 𝜀13 from distribution Normal(0; 0.05)  

11) Compute score of indicators 𝑥11, 𝑥12, and 𝑥13 using formula 

𝑥11 = 𝜆11𝜂1 + 𝜀11 

𝑥12 = 𝜆12𝜂1 + 𝜀12 

𝑥13 = 𝜆13𝜂1 + 𝜀13 

 

 
Figure 1. Path Diagram for Model 1 
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Figure 2. Path Diagram for Model 2 

 

4. RESULTS AND DISCUSSION 

In previous research, Mukid et al. (2022) carried out a simulation to see the 

performance of the PLSMFC method in its ability to reallocate observations to the right 

segments. In this simulation, the influence of five factors was examined for their influence 

on the ability to return the observation to its original segment. Unfortunately, the simulation 

study did not examine PLSMFC's ability to find the right number of segments. This section 

explains the performance of the PLSMFC method to recover the correct number of segments. 

The procedure used is to force the generated data into a different number of segments. In this 

research, the data generated uses scenarios of two and three segments. If initially the data is 

generated based on a scenario with several segments of two, it will be forced to enter several 

segments of three. If initially the data is generated based on a scenario with several segments 

of three, it will be forced to enter several segments of two or four. 

The criteria for determining that the PLSMFC method can find the right number of 

segments is to look at the FPI and NCE values as in equations (8) and (9). The FPI or NCE 

value from the number of segments used to generate data will be compared with the FPI or 

NCE value obtained from the other number of segments. If the FPI or NCE value of the data 

generated from segment number two and re-entered into segment number two is smaller than 

the FPI or NCE value when entered into several segments of three, then the PLSMFC method 
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is said to be able to find the correct number of segments. Likewise, if the FPI or NCE value 

of data generated from three segments and re-entered into three segments is smaller than the 

FPI or NCE value when entered into two or four segments, the PLSMFC method is said to 

be able to find the correct number of segments. 

Table 3. Average of FPI and NCE from Number of Segments Two and Three  

(Data Generated from The Number of  Segment Two) 

Model 

Allocated to The Number 

of  Segment Two 

Allocated to The Number of  

Segment Three 

FPI NCE FPI NCE 

Model 1 0.6591* 0.7143* 0.8028 0.8127 

Model 2 0.8605* 0.8875* 0.9153 0.9209 
*) the smallest value when compared with the corresponding segment validity 

measures in different scenarios 

Table 3 is the average FPI and NCE values obtained from the number of segments 

two and three where the data was generated from the number of segments two. In Model 1, 

the data generated from several segments of two and reinserted into the number of segments 

two has an FPI value of 0.6591 and an NCE value of 0.7143. Meanwhile, the data generated 

from segment number two and entered into segment number three has an FPI value of 0.8028 

and an NCE value of 0.8127. The FPI and NCE values from the data scenario that is 

generated from the number of segments two and re-entered into the number of segments two 

are smaller than the FPI and NCE values from the data scenario that is generated from the 

number of segments two and re-entered into the number of segments three. Therefore, it can 

be concluded that in Model 1, the PLSMFC method can find the correct number of segments. 

In Model 2, the data generated from several segments of two and by the PLSMFC 

method placed back into the number of segments two has an FPI value of 0.8605 and an 

NCE value of 0.8875. Meanwhile, the data generated from segment number two and placed 

into segment number three has an FPI value of 0.9153 and an NCE value of 0.9209. The FPI 

value from the data scenario that is generated from two segments and placed back into two 

segments is smaller than the FPI value from the data scenario that is generated from two 

segments and placed into three segments. The NCE value from the data scenario that is 

generated from two segments and placed back into two segments is smaller than the NCE 

value from the data scenario that is generated from two segments and placed into three 

segments. Therefore, based on the simulation study, it can be concluded that in model 

specification 2, the PLSMFC method can find the number of segments correctly. 

Table 4. Average of FPI and NCE from Number of Segments Two and Three                   

(Data Generated from Number of Segments Three) 

Model 

Allocated to The Number 

of  Segment Two 

Allocated to The Number of  

Segment Three 

FPI NCE FPI NCE 

Model 1 0.6590* 0.7151* 0.7328 0.7536 

Model 2 0.8009* 0.8370* 0.8367 0.8513 
*) the smallest value when compared with the corresponding validity measure in 

different scenarios 

Table 4 is the average FPI and NCE values obtained from the number of segments 

two and three where the data was generated from the number of segments three. In Model 1, 

the data generated from the number of segments three and put back into the number of 
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segments three has an FPI value of 0.7328 and an NCE value of 0.7536. Meanwhile, the data 

generated from segment number three and entered into segment number two has an FPI value 

of 0.6590 and an NCE value of 0.7151. The FPI and NCE values from the data scenario that 

is generated from the number of segments three and re-entered into the number of segments 

three are greater than the FPI and NCE values from the data scenario that is generated from 

the number of segments three and re-entered into the number of segments two. Therefore, it 

can be concluded that based on the simulation study in model specification 1, the PLSMFC 

method is unable to find the correct number of segments. 

In Model 2, the data generated from the number of segments three and put back into 

the number of segments three has an FPI value of 0.8367 and an NCE value of 0.8513. 

Meanwhile, the data generated from total segment three and entered into total segment two 

has an FPI value of 0.8009 and an NCE value of 0.8370. The FPI and NCE values from the 

data scenario that is generated from the number of segments three and re-entered into the 

number of segments three are greater than the FPI and NCE values from the data scenario 

that is generated from the number of segments three and re-entered into the number of 

segments two. Therefore, it can be concluded that in model 2, the PLSMFC method is unable 

to find the correct number of segments. 

Table 5. Average of FPI and NCE from Number of Segments Three and Four               

(Data Generated from Number of Segments Three) 

Model 

Allocated to The Number 

of  Segment Three 

Allocated to The Number of  

Segment Four 

FPI NCE FPI NCE 

Model 1 0.7328* 0.7536* 0.7562 0.8035 

Model 2 0.8367* 0.8513* 0.8771 0.8756 
*) smallest value when compared with the corresponding validity measure in different 

scenarios 

Table 5 shows the average FPI and NCE values obtained from three and four 

segments where the data was generated from three segments. In Model 1, the data generated 

from the number of segments three and put back into the number of segments three has an 

FPI value of 0.7328 and an NCE value of 0.7536. Meanwhile, the data generated from total 

segment three and entered into total segment four has an FPI value of 0.7562 and an NCE 

value of 0.8035. The FPI and NCE values from the data scenario that is generated from three 

segments and re-entered into three segments are smaller than the FPI and NCE values from 

the data scenario that is generated from three segments and re-entered into four segments. 

Therefore, it can be concluded that in Model 1, the PLSMFC method can find the correct 

number of segments. 

In Model 2, the data generated from the number of segments three and put back into 

the number of segments three has an FPI value of 0.8367 and an NCE value of 0.8513. 

Meanwhile, the data generated from segment number three and entered into segment number 

four has an FPI value of 0.8771 and an NCE value of 0.8756. The FPI value from the data 

scenario that is generated from three segments and re-entered into three segments is smaller 

than the FPI value from the data scenario that is generated from three segments and re-

entered into four segments. The NCE value from the data scenario that is generated from 

three segments and entered into three segments is also smaller than the NCE value from the 

data scenario that is generated from three segments and entered into four segments. 

Therefore, it can be concluded that based on the FPI and NCE values, the PLSMFC method 

can find the correct number of segments. 
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In general, it can be concluded that based on simulation studies, the PLSMFC method 

is capable of detecting segments correctly if the segment size used to reallocate observations 

is larger than the number of segments used to generate data. 

 

5. CONCLUSION 

This research examines a new method for estimating SEM parameters that contain 

heterogeneity in the populations. The method combines the Partial Least Squares (PLS) 

method and modified fuzzy clustering which allows an object to be in many segments even 

with different membership weights. PLSMFC method is a modification of the PLS SEM 

algorithm. PLS SEM algorithm is only intended for the process of estimating latent variable 

scores and estimating SEM parameters. This process is carried out partially on the 

parameters of the inner model and outer model. The PLSMFC method modifies the PLS 

SEM algorithm by adding one more process, namely segmentation (grouping) of observation 

objects. The segmentation process is carried out using a fuzzy approach where each object 

is given an initial weight randomly according to the specified number of segments. These 

weights are updated iteratively and sequentially by estimating the model parameters. The 

iteration process will stop when the difference in the objective function of two successive 

iterations is very small. Generally, it can be concluded that based on simulation studies, the 

PLSMFC method is capable of detecting segments correctly if the segment size used to 

reallocate observations is larger than the number of segments used to generate data. 
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