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Abstract: One of the models in survival analysis is the Cox 

proportional hazards model. This method ignores assumptions 

regarding the distribution of survival times studied. If there are 

indications of multicollinearity in data handling, one way that 

can be done is to use PCA (Principal Component Analysis). 

PCA-Cox regression is a combination of survival analysis and 

PCA which can be an alternative in analyzing multicollinearity 

survival data. The large number of cases of bad credit means that 

customers must be careful in providing credit to prospective 

customers. Character, capacity, capital and collateral variables 

are thought to influence the length of time customers pay house 

ownership loans at the bank. The data used is secondary data 

(n=100) regarding the assessment of character variables, 

capacity, capital and collateral, credit collectibility, and time to 

pay customer house ownership loans at the bank. The results of 

the analysis using PCA-Cox regression show that the variables 

character, capacity, capital and collateral have a significant 

effect on the length of house ownership loan payment time for 

Bank X customers. The originality of this research is the use of 

the PCA-Cox regression integration model in bank credit risk 

analysis. 

 

1. INTRODUCTION  

Survival analysis is a robust statistical approach designed for analyzing time-to-event 

data, where the main variable of interest is the duration until a particular event occurs 

(Kleinbaum & Klein, 2005). The primary goal is to explore the relationship between survival 

time and predictor variables that influence the timing or likelihood of the event. Survival 

time refers to the interval between a defined starting point and the occurrence of an event, 

such as failure, recovery, relapse, or bankruptcy. This makes survival analysis highly 

applicable in diverse fields, including healthcare, engineering, and finance, where 

understanding the time to an event is crucial. There are three primary approaches to survival 

analysis: parametric, non-parametric, and semi-parametric (Pourhoseingholi et al., 2007). 

The parametric approach assumes that survival times follow a specific probability 

distribution, such as Weibull or exponential, making it suitable when the underlying data 

distribution is well-understood. Non-parametric methods, like Kaplan-Meier and life tables, 
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do not rely on assumptions about the survival time distribution, making them more flexible 

but less powerful in cases with substantial prior knowledge of the data. Semi-parametric 

methods, notably Cox proportional hazards regression, strike a balance by not requiring 

distributional assumptions while allowing for the inclusion of covariates (George et al., 

2014; Mardhiah et al., 2022). 

Despite its widespread use, Cox regression has limitations, particularly when 

multicollinearity exists among predictor variables. Multicollinearity arises when predictor 

variables are highly correlated, leading to biased coefficient estimates and reduced model 

reliability (Fernandes & Solimun, 2016). To address this, advanced techniques like Partial 

Least Square-Cox Regression (PLS-Cox) and Principal Component Cox Regression (PCA-

Cox) have been developed. PCA-Cox regression combines the principles of Principal 

Component Regression (PCR) and Cox Regression by first reducing the dimensionality of 

the data through principal component analysis and then regressing the component scores 

against survival time. This approach mitigates multicollinearity while preserving the 

interpretability of survival relationships (Fernandes & Solimun, 2014). 

The financial sector, particularly banking, often faces credit risks associated with 

non-performing loans. One example is house ownership loans, a prominent credit facility 

provided by banks for purchasing or renovating homes. These loans are critical in addressing 

Indonesia's substantial housing demand, with a shortage of 11 million habitable units 

reported in 2021 (Portal Informasi Indonesia, 2022). House ownership loans remain the 

primary choice for home financing in Indonesia, accounting for 69.54% of consumer 

financing, according to Bank Indonesia (Rahman, 2022). This highlights the need for banks 

to carefully evaluate creditworthiness to mitigate potential losses from non-performing 

loans. Banks assess creditworthiness using the 4C framework: character, capacity, capital, 

and collateral (Wahyuni, 2017). These factors collectively measure a debtor's reliability, 

financial ability, resources, and loan security. However, effective assessment becomes 

challenging when these variables exhibit multicollinearity, which can distort statistical 

analyses. Survival analysis, particularly when combined with PCA, provides a valuable tool 

for evaluating the timing of loan repayments and identifying factors influencing repayment 

behavior (Lin et al., 2006; Maxwell et al., 2019). 

Research on survival analysis in credit risk often focuses on specific techniques. For 

example, the Accelerated Failure Time (AFT) model has been used to describe repayment 

timing (Kawi & Purwono, 2022). Meanwhile, PCA has proven effective in reducing 

dimensionality and multicollinearity before applying Cox regression (Lin et al., 2006). 

Studies comparing methods for addressing multicollinearity, such as PCR, Ridge 

Regression, and LASSO, have shown PCA-based approaches to be superior in many 

contexts (Maxwell et al., 2019). Considering these advancements, this study aims to develop 

a survival analysis model combining PCA and Cox regression. The model will examine the 

relationship between 4C framework variables and the timing of house ownership loan 

repayments for Bank X customers. By addressing multicollinearity, the study seeks to 

improve the accuracy and interpretability of credit risk assessments, providing insights into 

factors that influence loan performance and helping banks make informed decisions to 
minimize non-performing loans and financial losses. 
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2. LITERATURE REVIEW 

2.1. Survival Analysis 

Survival analysis is a technique in statistical analysis where the response variable 

studied is the time until a specific event occurs. In this analysis, the main focus is on time. 

analysis, according to Kleinbaum & Klein (2005), is a statistical technique designed to 

handle or assess data with a dependent variable representing the duration until an event 

transpires. In this analytical approach, various factors that influence the survival duration, 

denoting the period an individual remains event-free, can elucidate the phenomenon. 

When observing survival data, incomplete subject data can often be found because 

the subject did not experience the specific event observed (failure time) until the study period 

ends. It usually takes a long time and a lot of money if you want to get complete and intact 

survival data where all individuals experience failure time. In overcoming this problem, 

survival analysis has special considerations for incomplete data which is commonly known 

as data censoring (Katzman et al., 2018). Data censoring occurs because the survival time of 

a subject cannot be known exactly, but there is some information that can provide clues about 

the subject's survival time (Kleinbaum & Klein, 2005).  

Survival Function S(t) states the probability that a subject will survive (not 

experience an incident) up to or beyond time 𝑡 (Lawless, 1982). The probability density 

function (PDF), denoted as 𝑓(𝑥) represents the likelihood of an individual experiencing a 

specific event and fundamental in quantifying the instantaneous rate of occurrences, at an 

exact time 𝑡 within a continuous time interval. According to the definition above, the 

probability density function can be formulated as shown in Equation (1). 

𝑓(𝑥) = lim
Δ𝑡→0

[
𝑃(𝑡 < 𝑇 < (𝑡 + Δ𝑡)

Δ𝑡
] = lim

Δ𝑡→0
[
𝐹(𝑡 + Δ𝑡) − 𝐹(𝑡)

Δ𝑡
] (1) 

If 𝑇 is a non-negative random variable then 𝐹(𝑡) is the cumulative distribution 

function of 𝑇. 𝐹(𝑡) is defined as the probability of an individual experiencing a failure event 

at time t written as shown in Equation (2). 

𝐹(𝑡) = 𝑃(𝑇 ≤ 𝑡) = ∫ 𝑓(𝑥) 𝑑𝑥, 𝑓𝑜𝑟 𝑡 > 0 
𝑡

0

 (2) 

 The PDF 𝑓(𝑥) is derived as the limit of the probability that the event occurs within 

a very small interval [𝑡, 𝑡 + Δ𝑡], divided by the interval's length (Δ𝑡), as Δ𝑡 approaches zero. 

It provides insight into the timing of events and forms the basis for deriving other survival 

metrics, such as the cumulative distribution function (CDF) 𝐹(𝑡) and the survival function 

𝑆(𝑡). These relationships allow us to model and analyze the probability of survival over time. 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = ∫ 𝑓(𝑥) 𝑑𝑥
∞

𝑡

 (3) 

Hazard function h(t) or also known as the hazard rate states the instantaneous rate at 

which a subject experiences the incident at a specific time 𝑡 (Katzman et al., 2018; 

Kleinbaum & Klein, 2005). The hazard function can be formulated as written in Equation 

(4) (Lawless, 1982). 

ℎ(𝑡) = lim
Δ𝑡→0

[
𝑃(𝑡 ≤ 𝑇 < (𝑡 + Δ𝑡)|𝑇 ≥ 𝑡

Δ𝑡
] (4) 
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2.2. Cox Proportional Hazard Model 

Cox proportional hazards, the most popular model in semiparametric survival 

analysis, can analyze how a predictor variable influences the time until an event occurs 

(survival time). However, there is a weakness in this modeling, namely that it cannot estimate 

with certainty what the functional hazard form will be from the survival time studied 

(Kleinbaum & Klein, 2005; Rabe-Hesketh & Skrondal, 2008). Cox proportional hazards 

modeling does not require assumptions regarding the distribution of survival times, so this 

model is flexible to problems involving the distribution of survival times. The Cox 

proportional hazard model can be formulated in Equation (5). 

ℎ̂(𝑡, 𝑥) = ℎ0(𝑡)exp (𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝) (5) 

where ℎ0(𝑡) = basic failure function (baseline hazard); 𝑥𝑗 = independent variable value 

of 𝑥𝑗, 𝑗 = 1,2, … , 𝑝; 𝛽𝑗 = regression parameter, 𝑗 = 1,2, … , 𝑝. 

The survival time depends on the values 𝑥1, 𝑥2, . . . , 𝑥𝑝combined in the vector x of 

size 𝑝 × 1, 𝒙 = (𝑥1, 𝑥2, . . . , 𝑥𝑝)′. The vector 𝜷 contains regression coefficients resulting 

from parameter estimation which provides information on how much influence the predictor 

variables have on survival time. 

Hazard Ratio (HR) is a comparison of the hazard of one individual with another 

individual. Kleinbaum & Klein (2005) explains that the hazard ratio is a measure that can be 

used to determine the level of risk seen by comparing an individual who has a value of 

variable X in the success category with another individual who has a value of variable X in 

the category of failure. Stensrud & Hernán (2020) explains the hazard ratio as the effect or 

magnitude of the influence of the predictor variable on the observed time. By using the 

hazard ratio, the Cox regression coefficient obtained can be easily interpreted and 

understood. Hazard ratio can be calculated with Equation (6). 

𝐻𝑅 =
ℎ(𝑡, 𝑥∗)

ℎ(𝑡, 𝑥)
 

=
ℎ0(𝑡) exp(𝛽1𝑥∗

1 + ⋯ + 𝛽𝑝𝑥∗
𝑝)

ℎ0(𝑡) exp(𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝)
 

= exp (𝛽1(𝑥∗
1

= 𝑥1) + ⋯ + 𝛽𝑝(𝑥∗
𝑝 − 𝑥𝑝)) 

= exp (∑ 𝛽𝑗(𝑥𝑗
∗ − 𝑥𝑗)

𝑝

𝑗=1
) 

(6) 

Where ℎ(𝑡, 𝑥∗) = hazard function for an individual with variable value 𝑥∗; ℎ(𝑡, 𝑥) = hazard 

function for an individual with variable value 𝑥; ℎ0(𝑡) = basic failure function (baseline 

hazard); β = regression coefficient; 𝑥∗ = predictor variable value for success/comparison 

group; 𝑥 = predictor variable value for base/reference group; 𝑝 = number of predictor 

variables. 

2.3. PCA-Cox Regression 

According to Candès et al. (2011), the Principal Component Analysis (PCA) method 

was first introduced by Harold Hotelling. PCA functions to eliminate multicollinearity from 

predictor variables. According to Bair et al. (2006) PCA can be applied to multicollinearity 

problems in regression analysis such as Cox regression in survival analysis. By forming the 

main components of the predictor variables that contain multicollinearity, it can be seen 

which predictor variables have a significant effect and which predictor variables can be 
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identified which are important. PCA-Cox regression aims to predict survival chances from 

response variables. The PCA-Cox regression method involves principal components formed 

from a linear combination of the predictor variables studied. The main components that have 

been formed from the PCA-Cox regression model are components that are independent of 

each other or do not have multicollinearity, so that in their application they can be used to 

overcome non-fulfillment of the non-multicollinearity assumption in modeling (Fernandes 

& Solimun, 2016).  

 Component score regression 𝑠𝑘𝑖𝑗 using the PCA method is carried out by regressing 

the component scores on the response variable 𝑌. This means using the component scores 

obtained from the PCA results as predictor variables for the Cox regression on the response 

variable 𝑌. The following equation for the regression results of component scores 𝑠𝑘𝑖𝑗 on 

the response variable 𝑌 can be written as Equation (7). 

ℎ𝑖(𝑡)  =  ℎ0(𝑡) 𝑒𝑥𝑝(𝑐1𝑠𝑘𝑖1 + 𝑐2𝑠𝑘𝑖2 + ⋯ + 𝑐𝑚𝑠𝑘𝑛𝑝) (7) 

where ℎ0(𝑡) = basic failure function (baseline hazard); 𝑠𝑘𝑖𝑗 = score of the 𝑖-th component 

of the 𝑗-th original variable; 𝑐𝑗 = 𝑗-th Cox regression coefficient, 𝑗 = 1,2, … , 𝑚 

The equation above is a Cox regression model with predictor variable component 

scores obtained using the PCA method, so in summary the above equation can be called the 

Principal Component Analysis Cox model Regression or PCA-Cox regression. 

Basically, the PCA-Cox method regression aims to determine the form of the 

connection or association between...the predictor variable (𝑋) and the response variable (𝑌). 

Based on this, a transformation is needed from the main component scores to the original 

variables. 

 

3. MATERIAL AND METHOD  

The variables used in this research are character, capacity, capital, collateral, credit 

collectibility, and the time for house ownership loan payments for each customer. Data were 

obtained from research conducted at Bank X in 2023. The event studied in this research is 

the timing of house ownership loan payments. This research uses data from 100 subjects 

who were customers with house ownership loans at Bank X and were willing to be 

interviewed. The variables include assessments of character, capacity, capital, collateral, and 

credit collectibility, while the response variable is the time for house ownership loan 

payments. The data were analyzed using R Studio software. The data measurement scale 

employed in this study is presented in Table 1. 

Table 1. Data Variables and Scales 

Variable Information Data Type 

Character (𝑋1) Age Continuous 

Capacity (𝑋2) RPA (Installment Income Ratio) Continuous 

Capital (𝑋3) Loan To Value Continuous 

Collateral (𝑋4) Length of Residence Continuous 

Credit Payment Time (𝑡) Time Continuous 

The analysis used is PCA-Cox Regression. The important point in survival analysis is 

being able to analyze censored data. In this research, the status of customer censored data is 

seen from credit collectability, so that the analysis still considers data on customers whose 

credit is bad. Principal Component Analysis aims to accommodate multicollinearity in the 

data. The main components formed from PCA are a linear combination of the original 
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variables. The resulting component scores were then formed into a Cox Proportional Hazard 

model. The model formed at this stage is the Cox proportional hazard model between the 

customer's house ownership loan payment time and the main components formed from PCA. 

This modeling is a model that is more sensitive to the multicollinearity between variables. 

The relationship between variables can be explained without bias using this modeling. The 

final step is to carry out a transformation to the original variables to form a Cox proportional 

hazard model which can explain the relationship between the customer's house ownership 

loan payment time and the character, capacity, capital and collateral variables. 

 

4. RESULTS AND DISCUSSION 

The foundation of Cox proportional hazard modeling relies on the Cox proportional 

hazard assumption. This assumption signifies that the ratio between individuals in different 

categories remains consistent throughout time and is not influenced by time. The outcomes 

of the Cox proportional hazard assumption assessment via the Global Test are detailed in 

Table 2. 

Table 2. Proportional Hazard Assumption Test Results 

Variable Test Statistics p-value 

Character (𝑋1) 0.23 0.63 

Capacity (𝑋2) 1.36 0.24 

Capital (𝑋3) 1.41 0.23 

Collateral (𝑋4) 1.42 0.36 

Testing the Cox proportional hazard assumption uses the following hypothesis test. 

𝐻0 ∶ ρ = 0 (Assuming PH is met) 

𝐻1 ∶ ρ ≠ 0 (PH assumption not met) 

Based on Table 2, it is found that all predictor variables have a p-value > 0.05. So 

the decision taken is to accept 𝐻0. So, it can be concluded that the hazard ratio for character, 

capacity, capital and collateral does not depend on time or the proportional hazard 

assumption is met. 

The existence of multicollinearity between predictor variables can cause the 

estimator to have a variance that tends to be large. A large variance value causes the 

confidence interval to be wider so that the test results accept more of the null hypothesis. In 

fact, in the case of perfect multicollinearity between variables, the estimated model 

coefficients cannot be estimated. This also applies to Cox regression modeling in survival 

data analysis. Multicollinearity checking can use the VIF value. In this case, the VIF values 

between variables is presented in Table 3. 

Table 3. Predictor Variable VIF Value 

 
Variable 

Character Capacity Capital Collateral 

VIF value 12.9998 15.95228 10.5694 10.7558 

From Table 3, it can be seen that all predictor variables have a value of 𝑉𝐼𝐹 > 10. 

So, it can be concluded that the data contains multicollinearity between variables or there is 

a close relationship between one predictor variable and another. 

Principal Component Analysis (PCA) is a commonly used technique for addressing 

data that is affected by multicollinearity. Within this analysis, a primary component is 

constructed, representing a linear combination of predictor variables affected by 

multicollinearity. These primary components are assured to be mutually independent. 
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Therefore, principal component analysis is one way that is commonly used to handle data 

that contains multicollinearity. Principal component analysis begins with determining the 

input matrix. In this case, the editorial variables involved have different units, so the input 

matrix used is the R matrix. Once the input matrix has been determined, we proceed with the 

formation of the main components. Formation of principal components begins with 

calculating the eigenvalues and eigenvectors of the input matrix. 

Table 4. Eigenvalue, Diversity Proportion, and Cumulative Diversity 

Proportion of Principal Components 

 𝑃𝐶1 𝑃𝐶2 𝑃𝐶3 𝑃𝐶4 

Eigenvalues 1.2386 1.2040 0.8712 0.5071 

Diversity Proportion 0.3836 0.3624 0.1898 0.0643 

Cumulative Diversity Proportion 0.3836 0.7460 0.9357 1 

Cox regression modeling is carried out by regressing the component scores resulting 

from 𝑃𝐶1, 𝑃𝐶2, 𝑃𝐶3 the customer credit payment time variable (𝑡). The PCA-Cox regression 

equation that models the component scores 𝑠𝑘1, 𝑠𝑘2and 𝑠𝑘3 the time to pay customer credit 

variables (𝑡) is as follows. 

ℎ𝑖(𝑡) = ℎ0(𝑡)exp (−0.2694 𝑠𝑘1 + 0.1902 𝑠𝑘2 + 0.6025 𝑠𝑘3)  

Cox regression model into the form of original variables to model the relationship 

between variables 𝑋1, 𝑋2, 𝑋3, 𝑋4 and 𝑋5 the timing of customer credit payments (𝑡). The 

following is the Cox proportional hazards regression model that is formed: 

ℎ𝑖(𝑡) = ℎ0(𝑡) exp (0.0645 𝑋1𝑖 − 0.4397 𝑋2𝑖 + 0.1265 𝑋3𝑖 − 0.3685 𝑋4𝑖) 

The hazard ratio of the Cox proportional hazard model is described as follows. 

a. Character (𝑋1) 

𝐻𝑅 =
ℎ𝐴

ℎ𝐵
= exp 𝛽1 = exp(0.0645) = 1.0667  

The hazard ratio for the Character variable shows a value of, meaning that a one year 

increase in the customer's age will increase the potential for the customer to have 

1.0667a longer house ownership loan payment time.1.0667  
b. Capacity (𝑋2) 

𝐻𝑅 =
ℎ𝐴

ℎ𝐵
= exp 𝛽2 = exp(−0.4397) = 0.6442  

The hazard ratio for the Capacity variable shows a value of 0.6442, meaning that 

increasing the customer's Installment Income Ratio (RPA) by 1 unit will increase the 

customer's potential to have a 0,6442 faster house ownership loan payment time. 

c. Capital (𝑋3) 

𝐻𝑅 =
ℎ𝐴

ℎ𝐵
= exp 𝛽3 = exp(0.1265) = 1.1349  

The hazard ratio for the Capital variable shows a value of 1.1349, meaning that an 

increase in the Loan to Value value owned by a customer by 1 unit will reduce the 

potential for the customer to have a 1.1349 longer house ownership loan payment time. 

d. Collateral (𝑋4) 

𝐻𝑅 =
ℎ𝐴

ℎ𝐵
= exp 𝛽4 = exp(−0.3685) = 0.6917  
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The hazard ratio for the Collateral variable shows a value of 0.6917, meaning that 

increasing the time of residence for one year will have the potential to increase the 

customer's house ownership loan payment time 0.6917 faster. 

Significance testing using the Jackknife method begins by carrying out Jackknife 

resampling. The purpose of this testing is to evaluate the stability and reliability of the 

model's coefficients while reducing bias from a single data sample. At each resampling, the 

PCA-Cox regression coefficient is then calculated which is a Cox regression of component 

and variable 𝑠𝑘3 scores 𝑠𝑘1, 𝑠𝑘2. Then a transformation is carried out to the initial variables 

to form a Cox proportional hazards regression model containing the original variables 𝑋. The 

results of the transformation of the PCA-Cox model to the Cox proportional hazards model 

at each resampling can be seen in Table 5. 

Table 5. Transformation Result Coefficient for Each Jackknife Resampling 

Resampling to- �̂�∗
1
 �̂�∗

2
 �̂�∗

3
 �̂�∗

4
 

1 0.0628 -0.4368 0.1298 -0.3709 

2 0.1160 -0.4150 0.0867 -0.3554 

3 0.0788 -0.4536 0.1266 -0.3851 

4 0.0512 -0.4505 0.1245 -0.3761 

5 0.0479 -0.4558 -0.0076 -0.3503 

⋮ ⋮ ⋮ ⋮ ⋮ 
500 0.0887 -0.4456 0.1260 -0.3914 

Based on the coefficient estimates produced at each resampling, standard error values 

are obtained for each coefficient �̂�∗. Then a Z test was carried out for partial testing using a 

jackknife standard error. The hypothesis used is as follows. 

𝐻0 ∶  𝛽𝑖 = 0; 𝑖 = 1, 2, 3, 4 

𝐻1 ∶  𝛽𝑖 ≠ 0; 𝑖 = 1, 2, 3, 4 

The significancy level used is 5%. The results of the test statistics and p-value 

calculations are summarized in Table 6. 

Table 6. Z test statistics and P-value Partial Test 

Variable �̂�𝑖 𝑠𝑒(�̂�1) Z Test Statistics p-value Decision 

Character(𝑋1) 0.0645 0.0331 2.3176 0.0102 Reject 𝐻0 

Capacity (𝑋2) -0.4397 0.1426 -2.7679 0.0028 Reject 𝐻0 

Capital (𝑋3) 0.1265 0.0545 2.1468 0.0159 Reject 𝐻0 

Collateral (𝑋4) -0.3685 0.1550 -3.1494 0.0008 Reject 𝐻0 

From Table 6, we can observe the p-value associated with the Character variable 
(𝑋1), Capacity (𝑋2), Capital (𝑋3), and Collateral (𝑋4) have values greater than the 

significance level 0.05, so the decision taken is to reject 𝐻0 for each variable. It can be 

concluded that the Character, Capacity, Capital, and Collateral variables influence the speed 

or slowness of customer credit payment times. 

The quality or goodness of a model can be assessed by examining the 𝑅2-value the 

model has. 𝑅2 explains how much diversity of data the model can explain. The PCA- Cox 

regression model was formed which has a value 𝑅2of 77.55%, meaning that the model can 

account for 77.55% of the variance in the data, with the remaining 22.45% being attributed 

to unexplained factors not addressed in the study. So, it can be concluded that the model 

formed is quite good in explaining the relationship between character, capital, capacity and 

collateral variables on the house ownership loan payment time for Bank X customers, but 

the influence of research factors is still quite strong. 
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There is a high multicollinearity relationship between predictor variables. This is 

indicated by the VIF for each variable having a value of more than 10. Before modeling the 

relationship between the character, capital, capacity and collateral variables on the customer 

house ownership loan payment time variable, it is necessary to handle multicollinearity. The 

existence of multicollinearity between predictor variables is because the assessment aspects 

(predictor variables) are interrelated with each other. In this research, multicollinearity is 

handled by conducting principal component analysis. The resulting main components are a 

linear combination of predictor variables and it is guaranteed that the main components are 

independent of each other. Modeling the relationship between the variables character, 

capital, capacity, and collateral on the time to pay a customer's house ownership loan is 

modeled using the Cox proportional hazards model. because the modeling is carried out 

using component scores resulting from principal component analysis, it is called PCA-Cox 

regression modeling. 

After checking the proportional hazard assumption, it was concluded that the 

assumption was met for all predictor variables, so that we could proceed to PCA-Cox 

regression modeling. The results of the analysis show that all assessments of character, 

capital, capacity and collateral variables have a significant effect on the length of house 

ownership loan payment time for Bank. This is in line with Ardani & Herawati (2021) 

research, which concluded that character, capital, capacity and collateral influences the 

effectiveness of providing credit. In the Capacity variable, increasing the customer's 

Installment Income Ratio (RPA) by 1 unit will increase the customer's potential to have a 

customer house ownership loan payment time of 0.6442 times faster. In the Capital variable, 

an increase in the Loan to Value value owned by a customer by 1 unit will reduce the 

customer's potential to have a customer house ownership loan payment time of 1.1349 times 

longer. In the Collateral variable, increasing the time to occupy a residence for one year will 

have the potential to increase the customer's house ownership loan payment time by 0.6917 

times faster. 

To improve loan repayment performance, Bank X should refine its customer 

assessment by incorporating additional variables, such as credit history and behavioral 

scoring. Risk management should focus on customers with favorable Installment Income 

Ratio (RPA) and Loan to Value (LTV) ratios, while monitoring high-risk clients to reduce 

defaults. Loan terms, like repayment duration and interest rates, can be adjusted based on 

customer profiles for better repayment outcomes. Additionally, educating customers on 

maintaining optimal financial ratios can enhance their repayment capacity. Lastly, similar 

analyses for other loan types could provide further insights for credit management. 

 

5. CONCLUSION 

Based on the research conducted, the relationship between house ownership loan 

payment times and customer characteristics such as character, capacity, capital, and 

collateral were analyzed using the PCA-Cox regression method. This method effectively 

addressed multicollinearity issues within the data, resulting in a more stable and interpretable 

model. The findings emphasize the importance of thoroughly understanding customer 
profiles to estimate risks comprehensively. This approach enables financial institutions, such 

as banks, to anticipate potential risks more effectively related to house ownership loans. 

For future research, it is recommended to include additional predictor variables, such as 

the 7Ps (Personality, Party, Purpose, Prospect, Payment, Profitability, and Protection), which 

are believed to significantly influence loan payment durations. Furthermore, the use of the 
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PLS-Cox regression method is suggested as an alternative for modeling survival data with 

multicollinearity, offering potentially more accurate and in-depth results. These 

advancements aim to provide financial institutions with enhanced insights into credit risk 

management and support more efficient decision-making processes. 
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