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Black-Scholes Model; Rainfall climatic and agricultural variables. This research presents a
novel contribution to agricultural risk management by applying
the Clayton Copula to model the dependency structure between
rainfall and chili crop production output in the context of crop
insurance pricing. The estimation of Copula parameters was
conducted using Maximum Likelihood Estimation, yielding a
parameter 0 value of -0.1252, which indicates the dependency
structure between the variables. The predictive accuracy of the
Copula Clayton model was evaluated using the Mean Absolute
Error, with a result of 0.01291, demonstrating strong relevance
in describing the dependency between precipitation and yield.
Furthermore, the research integrates the Copula-based rainfall
modeling with the Black-Scholes model for determining
insurance premiums. The findings reveal that premium prices
depend on rainfall index wvalues, where higher rainfall
percentages correspond to higher premium costs.

1. INTRODUCTION

The agricultural sector plays a vital role in enhancing national well-being by ensuring
food supply, creating employment opportunities, contributing to the economy, supporting
regional development, and promoting environmental sustainability (Mulyo, 2016). Among
the various branches of agriculture, the horticultural subsector is one of the most influential
(Adhiana, 2021). According to the Central Bureau of Statistics (BPS), the national demand
for cayenne pepper reached 569.65 thousand tonnes in 2022, an increase of 7.86% or 41.51
thousand tonnes from the 2021 consumption level of 528.14 thousand tonnes. Despite its
economic importance, horticultural farming, particularly chili cultivation, remains
vulnerable to various uncontrollable risks. Therefore, effective risk management
mechanisms are essential to safeguard farmers from potential losses.
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Agricultural insurance has emerged as an important risk management tool (Mao et al.,
2023), offering protection against yield losses, price fluctuations, and other agricultural
uncertainties. Accurate premium pricing plays a crucial role in ensuring the long-term
sustainability of agricultural insurance programs (Chen et al., 2022), as it directly influences
farmers’ participation, affordability, and the financial viability of insurance providers. A
number of studies have examined agricultural insurance from various perspectives. Research
conducted by Estiningtyas (2015) explored climate index—based agricultural insurance and
found that the climate insurance index has the potential to be developed and implemented in
Indonesia. Similarly, Sari (2023) investigated premium calculation based on a rainfall index
using the exponential distribution power plant method. However, both studies relied on the
assumption that the data followed a specific probability distribution.

To address this limitation, a more flexible modeling approach was introduced through
the Copula Model. According to Nelsen (2006), the Copula model has gained attention in
statistics because it enables the study of dependency structures between variables on a free
(scale-invariant) basis and serves as a foundation for constructing bivariate distribution
families. Well-known copula families include the Elliptical and Archimedean Copulas.
Among these, the Clayton Copula, a member of the Archimedean family, is particularly
effective in modeling extreme dependencies between variables. Since rainfall and
agricultural output data often exhibit extreme values, the Clayton Copula is suitable for
capturing the dependency structure between them. This copula is characterized by its ability
to model lower-tail dependency, which is useful in describing co-movements in adverse
conditions.

The use of the copula method in this research is essential because it allows for a more
accurate modeling of the dependency structure between rainfall and output data, especially
under extreme conditions; the combination of the copula approach with traditional statistical
methods provides a more comprehensive understanding of both linear and nonlinear
relationships, capturing tail dependencies that conventional correlation measures often fail
to represent. Fang and Madsen (2013) investigated insurance applications using the Gaussian
Copula model, one of the most popular copulas for financial and insurance risk modeling, to
measure dependencies among agricultural variables. Shi et al. (2016) further applied the
Gaussian Copula to model insurance claims, identifying both cross-sectional and temporal
dependencies between layered claims. Their results demonstrated that copula models
improve the management of insurance claims. Additionally, Hoyer and Kuss (2018)
compared the Gaussian Copula with the Vine Copula in a simulation study of type 2 diabetes,
concluding that the Vine Copula provided superior performance.

Parallel to these developments, extensive research has also utilized the Black-Scholes
method in the pricing of insurance premiums. Chicaiza and Cabedo (2009) applied the
Black-Scholes model to estimate high-cost health insurance premiums in Colombia, finding
that the estimated premiums were comparable to those obtained through traditional actuarial
methods. Similarly, Suarjana et al. (2017) used the Black-Scholes model to determine the
value of agricultural business contracts based on international coffee price parameters and
local farmer price levels using data from the Bali Provincial Agriculture Service (2001-
2015). Okine (2014) applied the Black-Scholes framework to price index-based insurance in
Ghana, using rainfall data from the Tamale district as the index parameter. The study
concluded that rainfall data showed a strong correlation with corn yield, validating the use
of rainfall as an insurance index. Furthermore, Lestari et al. (2017) extended Suarjana’s work
by employing a mean reversion model with jumps to determine insurance premium values
through Monte Carlo simulations. Their findings indicated that premiums varied depending
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on the trigger value, with premium rates decreasing between 5% and 25%, suggesting the
model’s sensitivity to different loss thresholds.

Based on these studies, this paper focuses on analyzing the dependency structure
between rainfall and agricultural output using the Clayton Copula approach. After estimating
the parameters of the Clayton Copula, the Cumulative Distribution Function (CDF) of the
copula is derived. The resulting CDF is then transformed into a Lognormal distribution,
consistent with the assumption that rainfall data follows a lognormal pattern. Finally, the
Black-Scholes model is applied to determine the appropriate premium price based on the
transformed rainfall data obtained from the Clayton Copula CDF. This integrated approach
aims to provide a more accurate and theoretically sound framework for agricultural insurance
premium determination.

2. LITERATURE REVIEW
2.1. Uniform Distribution

Uniform distribution is one of the important things to know when doing research using
the Copula approach (Ly et al., 2004) by finding the value of the CDF (Cumulative
Distribution Function). A continuous random variable X is said to be a uniform distribution
that is noted with U(a,b), has a density function of probability given by Equation (1)

f(x)=ﬁ fora<x<b (1)

2.2. Random Variable Transformation to Uniform Distribution [0, 1]

Transforming a random variable to a uniform domain [0, 1] is the first step in
performing a Copula analysis. The marginal distribution of an unknown random variable can
be determined through Equation (2),

F,(x) =n—J1rlZI(xi <x);x€ R 2)
i=1

with I(X; < x)is an indicator function that is worth 1 if X; < x and value 0 if not.

The transformation process is done by creating a rank for each random variable.
Ry,R;,..., R, is the rank of Xy, X,,..., X, which has previously been converted into the
respective matrix divided by n + 1 as follows,

() (). (2))

Therefore, the copula equation with the transformation as follows

n
1 R, R, R
C(ul,uz,...,up)=£Zl<n+1Su1,n—+1Su2,..., - Sun>;

j=1
Uq, Uy, ...,up € (01)

3)

with I(.) on Equations (2) and (3) is an indicator function if respectively X/ < x and iR% <

u;; L = 1,2,..,p. The variables uy, uy, ..., u, are the marginal cumulative distribution
function (CDF) values of the p random variables X;, X5, ..., X,.

2.3. Copula

Copula is used to describe the joint distribution of random variables (Cherubini et
al., 2004). The definition of n-dimensional copula by (Nelsen, 2006) noted by C is the F-
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multivariate distribution function of the random variable X, X5, ... , X,, with its marginal
distribution Fy, F, ... , F,is a standard uniform distribution, given by the Equation (4),

F~U(0,1); i = 1,2,..,n 4)
This Copula function is a function that has a domain [0, 1]™ and a range [0,1], which
is represented by C:[0,1]" — [0,1]. Mathematically, copula C is expressed by the Equation

(5),
C(u,v) =Pr[U <u,V <v] (5)

Copula as a joint distribution of continuous random variables X and Y has distribution
functions in sequence Fand G, then a new random variable can be formed namely U = F(X)
and V = G(Y). Based on the Sklar theorem (Nelsen, 2006) the distribution function of
bivariate X and Y is defined by the Equation (6),

H(x,y) =Pr[X <x,Y <y]
=Pr[F(X) <F(x),G(Y) <G(y)]
=Pr(U <u,V <v]
=C(u,v)
for a copula C. If H is a bivariate distribution function with marginal distribution functions
F and G, then there is a copula C for all (x, y) such that,

H(x,y) = C(F(x),G(¥)) (7)

The bivariate probability density function corresponding to copula C can be expressed
in the Equation (8),

(6)

h(x,y) = fF(x)g)c(F(x),G(Y)) (3)
where
2 0

is the copula density function, with c(u,v) = 1, if X and Y are mutually free.
2.4. The Clayton Copula

The Clayton Copula belongs to the Archimedean Copula group. The Archimedean
family of copulas has a characteristic that a copula has a single parameter of dependence (6)
and can be formed from a function of producing copula ¢. The Archimedean family of
Copulas is commonly used to model the common cumulative distribution function of two
random variables whose distribution tail is fat (Chao & Zou, 2018). The Archimedean dome
family is a family of functions C:[0,1] X [0,1] — [0,1) defined by the Equation (10),

Cw,v) =97 (¢W) + () (10)
where ¢:[0,1] — [0, o)is a continuous function, strictly decreasing, convex, and ¢(1) = 0.
While the Clayton Copula is defined by the following Equation (11)

1
Ceowv)=(u??+vr9-1)7° (11)
with 8 € (0, ). The Clayton Copula generator function is given by the Equation (12)
1., _
po(t) =5 (t7°—1) (12)
The Copula Clayton density function is defined by the Equation (13),
0+1 20+1
S (13)

cco(v) = cosgry (W™ + 07 = 1)

The parameters fof the Clayton Copula are given by the Equation (14),

16 Sarah Sutisna (Determination Insurance Premiums)



2T

== (14)

2.5. Copula Parameter Estimation

0

The prediction of the copula parameters can be obtained using the method of
Maximum Likelihood Estimation (MLE). By describing the given parameter copula and the
marginal spread, the MLE is obtained by maximizing the log likelihood function. Nis given
a random variable n-dimensional vector of the multivariate distribution, X4, ..., Xy,with X, =

(56\]-'1, s fj'n), Jj € {1, ... N}a parametric model for the marginal distribution F;, F,, ..., F,,with
the parameter a4, @5, ..., &, and the Copula parameter is 8so that the density of the multi-
variant distribution fcan be written as follows

f(xlixZi ey xp) = C(Fl (xl)) FZ (XZ)) ey Fp (xp) H?:lfl(xl) (15)
with c is the copula density and f3, f5, ..., f,1s the density of the marginal distribution.

The parameters of the marginal distribution, a4, @5, ..., &, and parameters from copula
8, can be estimated from data using MLE as follows (Joe and Xu 1996)

n
arg rglaé(z In[c <F1(J?j‘1; 0(1), F, (56\]-‘2; az), s Fn(a?j_n; an); 2] 1_[ 1fi (x]-‘l-; al-)] (16)
n j=1 1=

2.6. Copula Error Checker

The selection of the best models in this study was based on the level of prediction
error. The smaller the error rate, the more accurate the prediction will be. In this study, the
Mean Absolute Error (MAE) method will be used in the calculation of errors. A good model
has an MAE of less than 10%. The MAE indicates the magnitude of the error from the
theoretical population to the empirical cupola. Given C(u,v) which the theoretical
population will test its compatibility, in this case, the Clayton Copula. The MAE value can
be obtained using the Equation (17)

1
MAE = 231 |C(uy, v)) = Coli, vy)]. 17

With (u;,v;) for i =1,2,...,n is the pair data and C,(u;, v;) is the empirical copula.
Basically, the empire copula is used to approach the theoretical copula.

2.7. Black-Scholes Model

The price of the European type put option determined by the Black-Scholes formula is
as follows (Ariyanti et al., 2020):

P = Ke_rTN(_dz) - SON(_dl) (18)
with,
ln(‘%o)+(r+a—2>T
— K/ \ 2] 19
dl O'T\/T ( )

(20)

In(22)+(r-Z )T
N
where P is put option price, S is initial stock price, K is option strike price, r is annual risk-
free interest rate, o is standard deviation of stock price, T is time until maturity, N(—d;) is
standard normal cumulative distribution function of d;, and N(—d,) is standard normal
cumulative distribution function of d,.

There are several similarities between option pricing and index insurance (Purwandari
et al., 2024). Therefore, index insurance can be formulated the same as the option price. In
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determining the price of index insurance using the Black-Scholes method, the following can
be considered:

1) The benchmark value for index insurance is Ry.

2) The payment structure for index insurance is one at a time.

3) The index follows a Lognormal distribution.

In the Black-Scholes model adapted for rainfall insurance, rainfall (R) is considered
the underlying asset underlying the insurance contract. Therefore, R, which is the latest
rainfall value or the average historical rainfall value relevant at the time of premium
calculation, replaces S,. So, the agricultural insurance premium value can be calculated by
first finding the cumulative distribution value d,with Equation (21),

n(Re) 4 (72

where Rjis the latest rainfall values, Ryis benchmark value (rainfall selected as index), ois
standard deviation of rainfall index, ris risk free interest rate, and Tis time.

The transformation process for calculating the agricultural insurance premium based
on the rainfall index involves adapting financial option pricing principles, particularly from
the Black-Scholes model, to quantify weather-related risks. First, the key variables are
identified, including the coverage value (P), the risk-free interest rate (r), the time to maturity
(7), and the probability that rainfall will fall below the trigger level, represented by N(—d,).
Historical rainfall data are analyzed to estimate the likelihood of a rainfall deficit, and this
probability is expressed using the cumulative distribution function of a standard normal
distribution. The expected coverage value (P) is then discounted to its present value using
the exponential factor e "7, which accounts for the time value of money by reflecting how
future payouts are worth less in present terms. The final premium value is obtained by
multiplying the discounted coverage value by the probability of rainfall falling below the
trigger threshold, resulting in the Equation (22),

Premiums = Pe "M N(—d,) (22)

where P is the value of coverage, N(—d,) is the probability that the rainfall is less than the
trigger value of rainfall, r is the risk-free interest rate, and T is time.

3. MATERIAL AND METHOD

This study adopts a quantitative research approach to determine fair insurance
premiums for chili plantations by integrating the Black—Scholes model with the Clayton
copula approach. The observation data in this study are monthly data on cane agricultural
output and rainfall from 2012 to 2022. Cane agricultural output data is taken from the
Department of Agriculture of Lake Malaya District and the rainfall data are taken from
NASA. Cane farming yield data is indicated by the random variable Y and the data of rainfall
is expressed by the random variable X.

The Clayton copula is applied to model the dependency structure among these risk
variables, capturing lower-tail dependence that reflects extreme losses in production. The
Black—Scholes model is then adapted to calculate expected losses as option values, using the
volatility of chili prices and yields to estimate fair premium rates. Model performance is
validated through back-testing and statistical error metrics such as MAE, ensuring reliability
in premium estimation for agricultural risk management.
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The computational analysis is performed using R software with libraries for time-series
analysis, copula modeling, and stochastic simulation.

4. RESULTS AND DISCUSSIONS

The observation data in this study are monthly data on cane agricultural output and
rainfall from 2012 to 2022. Cane agricultural output data is taken from the Department of
Agriculture of Lake Malaya District and the rainfall data are taken from NASA. Cane
farming yield data is indicated by the random variable Y and the data of rainfall is expressed
by the random variable X. Descriptive statistics of the data can be seen in Table 1.

Table 1. Descriptive Marginal Data Statistics

Mean  Median Maximum Minimum Std. Dev. Variance Kurtosis Skewness
X 10.4179 10,207 30.8354 0.19193  7.18409  51.6112  -0.49825 0.40910
Y 300,701 278 679.2 114.19 115,268  13286.7 1.0727 0.98177
Based on Table 1, the skewness values of rainfall and sequential harvest are 0.40910 and
0.98177, both positive values indicating provincial and farmer price data sliding to the right.
For kurtosis on rainfall data and sequential harvest yields -0.49825 and 1.0727, both values
are less than 3 which indicates that both data have peaked flat tendencies. The data can be
said to be distributed normally if the value of the curve is equal to three and the value for the
skewness is equal to zero.

The relationship between rainfall and harvest can be described in the form of a
scatterplot, can be seen in Figure 1.
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Figure 1. ScatterplotiR‘ai-nfall and Production

The resulting plot of the output data range with rainfall forms an unlinear pattern in
Figure 1, making it difficult to identify the relationship between variables. Therefore, further
analysis was carried out using the copula method, where theoretically it has been proven that
the copula is a parameter that can explain relationships better than a plot of data frames.
Copula is a method that is not limited to the assumptions, especially the normal assumption.
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Figure 2. Scatterplot Pseudo Rainfall and Production
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The pseudo log likelihood method transforms empirical observations of rainfall and
production into pseudo observations of u and v without taking the functional form of the
marginal distribution. To calculate pseudo-observations, Equation (3) is used, and scatterplot
observation pseudo data of precipitation and production can be seen in Figure 2.

Based on Figure 2, no search data is visible. Some surveillance data is nearby, but
patterns of data are not yet visible. So, Copula can be used to further analyze related
structures of dependency between rainfall and production. The copula used was from the
Clayton family because there was a supposedly extreme incident and a connection at the
extreme point

The estimation of the Copula Clayton parameters has been done using maximum
likelihood, using R software based on Equation (16). In brief, the steps are as follows:
1. Determine the Kendall’s Tau correlation between the pairs of rainfall and production data.
2. Determine the Clayton copula parameter based on its relationship with the Kendall’s Tau
correlation from step 1. This stage is performed using the R software.

The value of the copula Clayton parameters § = —0.1252. To compare observation
data with simulation data through empirical dome distribution, the simulation is done by
constructing the following data series using the Clayton Copula model using previously
obtained parameters. To make the distribution clearer, this simulation uses R software to
simulate 5000 data. The distribution plot is shown in Figure 3.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3. Scatterplot Clayton Copula Simulation Data

The pattern of relationship between rainfall and output that follows the Clayton copula
describes that there are extreme events at low values, and there is a relationship between the
two variables when both values are low, the higher the observed values on the variable, the
weaker the relationship between them is, because the Clayton Copula has a relationship tail
at the bottom (Cherubini et al., 2004).

The sample data was observed closer to the log-normal distribution. Next, check
Copula's prediction error using MAE; the MAE value shows the magnitude of the error from
the theoretical population to the empirical copula (see empirical excerpt in Table 2).

Table 2. Copula Empiric
Rainfall Productivity Empiric

CDF Rank CDF Rank
0.560964 79 0.593377 127 0.325758
0.559063 33 0.807314 95 0.454545
0.533256 93 0.609724 128 0.325758
0.720210 101 0.591413 5 0.393939
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The MAE value for Copula Clayton can be seen in Table 3 based on equations (17)
with R software.
Table 3. Copula MAE Values

Copula MAE

Clayton 0.01291
Based on the table, the Copula Clayton error value is 0.01291. A copula error value below
1% 1is still relevant. Therefore, the Clayton Copula can be used to model the dependency
between the rainfall variable and the yield of chili.

Agricultural insurance liabilities are the basis for the calculation of premiums and the
maximum limit in compensation for losses. The accountability value is based on the cost of
cane production, fixed costs and operating costs in one hectare from the beginning of the
farmer's planting to the harvest obtained from the Food and Agriculture Service of
Tasikmalaya District. Production costs include seeds, fertilizers, pesticides, POT, ZPT, and
rapia. Costs still include land rental and cutting tools. Operating costs include from pre-
planting processing to post-harvesting. The cost details can be seen in Table 4.

Table 4. Chili Resource Value

No Type of Cost Total
1 Production Costs IDR 57,730,000.00
2 Fixed Costs IDR  6,000,000.00
3 Operating Costs IDR 53,220,000.00
Total Cost IDR 116,950,000.00

The rainfall observation data obtained through Copula, then distributed into rainfall
data per quarter. Division of rainfall Data per quarter is as follows: first quarter is from
January to April, the second quarter is from May to August, and the third quarter is from
September to December. The result of the calculation of rain data can be seen in Table 5.

Table 5. Data on Quarter Rainfall in Tasikmalaya District in 2012-2022 (mm)

Rainfall 2012 2013 2014 2015 2016 2017
1** Quarter 3.721855 6.33463  3.31509 13.2470125 8.27698  3.8797825
2" Quarter 1.5250925 1.65992  2.92924  2.4724225  3.20907 2.8812425
3" Quarter 2.4178825 1.23439  5.52669  3.7229775  4.28892  5.188535

Rainfall 2018 2019 2020 2021 2022
1** Quarter 7.68471 446623  2.55926 2.08588 2.34535
2" Quarter 0.96002 0.66157 1.8493 0.93952 0.57028
3" Quarter 3.31035 0.42502  4.85446 3.3777 3.17398

In the calculation of insurance premiums, it is necessary to know the exit value used
as the payment limit in case of claims. The exit value is the lowest rainfall data after the
preparation, so we got an exit rating of 2.085. Trigger determination based on percentage
values of the amount of rainfall in each calendar month. The trigger determination results
are presented in Table 6.

Table 6. Trigger and Exit Values

. Triggers
Percentiles 1 Quarter 2" Quarter 3™ Quarter
40 3.64050 1.412078 3.28308
50 3.87978 1.65992 3.3777
60 4.83990 1.9739225 3.83617
70 6.87465 2.6359505 4.51513
80 8.04007 2.910041 5.0549
90 12,253 3.153106 5.45906
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Table 6 shows the trigger values for insurance payouts based on different percentiles
of a certain risk metric across three time periods (quarters) in a year. These values represent
thresholds used to determine whether insurance coverage should be activated. The
determination of agricultural insurance premiums based on rainfall in this study uses the
Black-Scholes method. The descriptive statistics of average rainfall per quarter from 2012-
2022 are shown for the premium calculation presented in Table 7.

Table 7. Descriptive Statistics of Rainfall Data

Parameter Value
1t Quarter 2" Quarter 3" Quarter
Mean 5.265160227 1.787061591 3.41099
Std. Deviation  3.225977202 0.916114286 1.51642
Min 2.0858775 0.5702775 0.42502
Max 13.2470125 3.2090725 5.52669

Based on the latest actual rainfall data in 2022 (R;) is 5.1642 mm. Ry is the trigger

used for each percentile. 7T is the selected time period, harvest is assumed to occur as many
as 3 times in 1 year so the value T = % = 0.33. Risk-free interest rate, r= 0.06. The default
deviations (o) from the rains of the 1% quarter, the 2" quarter, and the 3™ quarter in a row
are 3.22597, 0.91611, and 1.51642. Then calculate the cumulative distribution value with
Equation (21). The examples of calculations of d, and N(—d;)on the 40th percentile of 1%

quarter with a value of Ry = 3.6405 are as follows:

ln(g—:)+<r—(02—)2)T

d, =
’ o(vT)
5.1642 (3.22597)2
. In(3¢102) + <0.06 - T) 0.33
? 3.22597(1/0.33)
= —0.7272.

Then the value of N(—d,) is calculated,
N(—d,;) = N(—(—0.7272)) = N(0.7272) = 0.76646.
Also calculated for the other trigger values of each quarter presented in Table 8.
Table 8. Value Calculation ResultsN(—d;)

Percentiles 15t Quarter 2" Quarter 3™ Quarter
Triggers  N(—d,) Triggers N(—d,) Triggers N(—=d,)
40 3.64050  0.76646 1.412078 0.0126 3.28308  0.457330767
50 3.87978  0.77685 1.65992 0.02673 3.3777 0.470289164
60 4.83990  0.81082  1.9739225 0.05458  3.83617  0.528526824
70 6.87465 0.85775  2.6359505  0.14631  4.51513  0.602043035
80 8.04007  0.87591 2.910041 0.19368 5.0549 0.651091981
90 12,253 091654  3.153106  0.23824  5.45906  0.683164866

Table 8 reflects a time-dependent shift in perceived option risk across quarters.
N(—d;) behaves as expected, it increases with percentiles, implying that as trigger values
grow, the probability of option exercise rises. After that, the premiums are calculated using
Equation (22) where the amount of liability is IDR116,950,000. Example of the calculation
of premiums made on the 40" percentile of the 1% quarter with the value of N(—d,) of
0.76646 as follows:
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Premium = Pe "TN(—d,)
= (IDR116.950.000)e~%-06(033) (0. 76646)
= IDR87.880.261

So, the premium to be paid at the 40™ percentile when the trigger value Ry of 3.6405
is IDR 87.880.261. Also calculated the premium price for other trigger values at each
quarter presented in Table 9. Table 9 shows the large farm insurance premiums based on
rainfall on chili commodities in the district of Tasikmalaya. It can be seen that the higher the
percentage value then the greater the rainfall trigger value. The 90™ percentile was chosen
because it is sufficiently representative of the highest loss risk faced by chili farmers.
Furthermore, if the 95 percentile were included, the chili insurance premium would increase
due to the higher losses borne by the insurance companies. As a result, fewer insurance
companies would be willing to cover the risks of chili farmers, and fewer chili farmers would
be willing to participate in the insurance.

Table 9. Rainfall-Based Chili Plant Insurance Prices per Quarter

Premium

Percentiles

15t Quarter 2" Quarter 3" Quarter
40 IDR87,880,261 IDR1,444,296 IDR52,436,248
50 IDR&9,071,233 IDR3,065,013 IDR53,922,021
60 IDR92,965,936 IDR 6,258,459  IDR60,599,386
70 IDR98,347,687 IDR16,775,988  1DR69,028,547
80 IDR100,429,464  IDR22,207,240  IDR74,652,360
90 IDR105,087,419 1DR27,316,208 1DR78,329,746

S. CONCLUSIONS

The relationship between production results and rainfall can be explained more
specifically using the Clayton Copula approach. The Clayton copula has a tail dependency
below, which means that extreme events occur when the rainfall is low and the production
output obtained is smaller, the closer the relationship. The Black-Scholes model based on
the Clayton Copula, which has a relatively small MAE, can be used to determine insurance
premiums for chili crops based on crop yields and rainfall. The premium price obtained
varies according to the rainfall percentile and the quarterly period used to index. The greater
the percentile value, the greater the premium that farmers must pay.
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