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Abstract: Agriculture is a vulnerable sector to the risk of crop 

damage due to climate change and other environmental factors. 

One source of risk in agriculture is rainfall, which significantly 

affects productivity and farmers’ income. Traditional insurance 

premium calculations often rely on assumptions of normal 

distribution and linear dependency, which may not accurately 

capture the complex and non-linear relationships between 

climatic and agricultural variables. This research presents a 

novel contribution to agricultural risk management by applying 

the Clayton Copula to model the dependency structure between 

rainfall and chili crop production output in the context of crop 

insurance pricing. The estimation of Copula parameters was 

conducted using Maximum Likelihood Estimation, yielding a 

parameter θ value of -0.1252, which indicates the dependency 

structure between the variables. The predictive accuracy of the 

Copula Clayton model was evaluated using the Mean Absolute 

Error, with a result of 0.01291, demonstrating strong relevance 

in describing the dependency between precipitation and yield. 

Furthermore, the research integrates the Copula-based rainfall 

modeling with the Black-Scholes model for determining 

insurance premiums. The findings reveal that premium prices 

depend on rainfall index values, where higher rainfall 

percentages correspond to higher premium costs.  

 

1. INTRODUCTION  

The agricultural sector plays a vital role in enhancing national well-being by ensuring 

food supply, creating employment opportunities, contributing to the economy, supporting 

regional development, and promoting environmental sustainability (Mulyo, 2016). Among 

the various branches of agriculture, the horticultural subsector is one of the most influential 

(Adhiana, 2021). According to the Central Bureau of Statistics (BPS), the national demand 

for cayenne pepper reached 569.65 thousand tonnes in 2022, an increase of 7.86% or 41.51 

thousand tonnes from the 2021 consumption level of 528.14 thousand tonnes. Despite its 

economic importance, horticultural farming, particularly chili cultivation, remains 

vulnerable to various uncontrollable risks. Therefore, effective risk management 

mechanisms are essential to safeguard farmers from potential losses. 
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Agricultural insurance has emerged as an important risk management tool (Mao et al., 

2023), offering protection against yield losses, price fluctuations, and other agricultural 

uncertainties. Accurate premium pricing plays a crucial role in ensuring the long-term 

sustainability of agricultural insurance programs (Chen et al., 2022), as it directly influences 

farmers’ participation, affordability, and the financial viability of insurance providers. A 

number of studies have examined agricultural insurance from various perspectives. Research 

conducted by Estiningtyas (2015) explored climate index–based agricultural insurance and 

found that the climate insurance index has the potential to be developed and implemented in 

Indonesia. Similarly, Sari (2023) investigated premium calculation based on a rainfall index 

using the exponential distribution power plant method. However, both studies relied on the 

assumption that the data followed a specific probability distribution. 

To address this limitation, a more flexible modeling approach was introduced through 

the Copula Model. According to Nelsen (2006), the Copula model has gained attention in 

statistics because it enables the study of dependency structures between variables on a free 

(scale-invariant) basis and serves as a foundation for constructing bivariate distribution 

families. Well-known copula families include the Elliptical and Archimedean Copulas. 

Among these, the Clayton Copula, a member of the Archimedean family, is particularly 

effective in modeling extreme dependencies between variables. Since rainfall and 

agricultural output data often exhibit extreme values, the Clayton Copula is suitable for 

capturing the dependency structure between them. This copula is characterized by its ability 

to model lower-tail dependency, which is useful in describing co-movements in adverse 

conditions. 

The use of the copula method in this research is essential because it allows for a more 

accurate modeling of the dependency structure between rainfall and output data, especially 

under extreme conditions; the combination of the copula approach with traditional statistical 

methods provides a more comprehensive understanding of both linear and nonlinear 

relationships, capturing tail dependencies that conventional correlation measures often fail 

to represent. Fang and Madsen (2013) investigated insurance applications using the Gaussian 

Copula model, one of the most popular copulas for financial and insurance risk modeling, to 

measure dependencies among agricultural variables. Shi et al. (2016) further applied the 

Gaussian Copula to model insurance claims, identifying both cross-sectional and temporal 

dependencies between layered claims. Their results demonstrated that copula models 

improve the management of insurance claims. Additionally, Hoyer and Kuss (2018) 

compared the Gaussian Copula with the Vine Copula in a simulation study of type 2 diabetes, 

concluding that the Vine Copula provided superior performance. 

Parallel to these developments, extensive research has also utilized the Black-Scholes 

method in the pricing of insurance premiums. Chicaíza and Cabedo (2009) applied the 

Black-Scholes model to estimate high-cost health insurance premiums in Colombia, finding 

that the estimated premiums were comparable to those obtained through traditional actuarial 

methods. Similarly, Suarjana et al. (2017) used the Black-Scholes model to determine the 

value of agricultural business contracts based on international coffee price parameters and 

local farmer price levels using data from the Bali Provincial Agriculture Service (2001–

2015). Okine (2014) applied the Black-Scholes framework to price index-based insurance in 

Ghana, using rainfall data from the Tamale district as the index parameter. The study 

concluded that rainfall data showed a strong correlation with corn yield, validating the use 

of rainfall as an insurance index. Furthermore, Lestari et al. (2017) extended Suarjana’s work 

by employing a mean reversion model with jumps to determine insurance premium values 

through Monte Carlo simulations. Their findings indicated that premiums varied depending 
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on the trigger value, with premium rates decreasing between 5% and 25%, suggesting the 

model’s sensitivity to different loss thresholds. 

Based on these studies, this paper focuses on analyzing the dependency structure 

between rainfall and agricultural output using the Clayton Copula approach. After estimating 

the parameters of the Clayton Copula, the Cumulative Distribution Function (CDF) of the 

copula is derived. The resulting CDF is then transformed into a Lognormal distribution, 

consistent with the assumption that rainfall data follows a lognormal pattern. Finally, the 

Black-Scholes model is applied to determine the appropriate premium price based on the 

transformed rainfall data obtained from the Clayton Copula CDF. This integrated approach 

aims to provide a more accurate and theoretically sound framework for agricultural insurance 

premium determination. 

 

2. LITERATURE REVIEW 

2.1. Uniform Distribution 

Uniform distribution is one of the important things to know when doing research using 

the Copula approach (Ly et al., 2004) by finding the value of the CDF (Cumulative 

Distribution Function). A continuous random variable X is said to be a uniform distribution 

that is noted with U(a,b), has a density function of probability given by Equation (1) 

𝑓(𝑥) =
1

𝑏−𝑎
  for 𝑎 < 𝑥 < 𝑏 (1) 

2.2. Random Variable Transformation to Uniform Distribution [0, 1] 

Transforming a random variable to a uniform domain [0, 1] is the first step in 

performing a Copula analysis. The marginal distribution of an unknown random variable can 

be determined through Equation (2), 

𝐹𝑥(𝑥) =
1

𝑛 + 1
∑ 𝐼(𝑋𝑖 ≤ 𝑥)

𝑛

𝑖=1

; 𝑥 ∈  ℝ (2) 

with 𝐼(𝑋𝑖 ≤ 𝑥)is an indicator function that is worth 1 if 𝑋𝑖 ≤ 𝑥 and value 0 if not. 

The transformation process is done by creating a rank for each random variable. 

𝑅1 , 𝑅2 , . . . , 𝑅𝑝 is the rank of 𝑋1, 𝑋2, . . . , 𝑋𝑝 which has previously been converted into the 

respective matrix divided by 𝑛 + 1 as follows, 

((
𝑅1

𝑛 + 1
) , (

𝑅2

𝑛 + 1
) , . . . , (

𝑅𝑛

𝑛 + 1
)) 

Therefore, the copula equation with the transformation as follows 

𝐶(𝑢1, 𝑢2, … , 𝑢𝑝) =
1

𝑛
∑ I

𝑛

𝑗=1

(
𝑅1

𝑛 + 1
≤ 𝑢1,

𝑅2

𝑛 + 1
≤ 𝑢2, . . . ,

𝑅𝑛

𝑛 + 1
≤ 𝑢𝑛) ; 

𝑢1, 𝑢2, … , 𝑢𝑝 ∈ (0.1)  

(3) 

with I(.) on Equations (2) and (3) is an indicator function if respectively 𝑋𝑗 ≤ 𝑥 and 
𝑅𝑖

𝑖+1
≤

 𝑢𝑖  ;  𝑖 =  1, 2, … , 𝑝. The variables 𝑢1, 𝑢2, … , 𝑢𝑝 are the marginal cumulative distribution 

function (CDF) values of the p random variables 𝑋1, 𝑋2, . . . , 𝑋𝑝. 

2.3. Copula 

Copula is used to describe the joint distribution of random variables (Cherubini et 

al., 2004). The definition of n-dimensional copula by (Nelsen, 2006) noted by 𝐶 is the F-
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multivariate distribution function of the random variable 𝑋1, 𝑋2, … , 𝑋𝑛 with its marginal 

distribution 𝐹1, 𝐹2, … , 𝐹𝑛is a standard uniform distribution, given by the Equation (4), 

𝐹𝑖~𝑈(0, 1);  𝑖 =  1, 2, … , 𝑛  (4) 

This Copula function is a function that has a domain [0, 1]𝑛 and a range [0,1], which 

is represented by 𝐶: [0,1]𝑛 → [0,1]. Mathematically, copula C is expressed by the Equation 

(5), 

𝐶(𝑢, 𝑣) = 𝑃𝑟[𝑈 ≤ 𝑢, 𝑉 ≤ 𝑣]  (5) 

Copula as a joint distribution of continuous random variables 𝑋 and 𝑌  has distribution 

functions in sequence 𝐹and 𝐺, then a new random variable can be formed namely 𝑈 = 𝐹(𝑋) 

and 𝑉 = 𝐺(𝑌). Based on the Sklar theorem (Nelsen, 2006) the distribution function of 

bivariate 𝑋 and 𝑌 is defined by the Equation (6), 

𝐻(𝑥, 𝑦) = 𝑃𝑟[𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦] 

= 𝑃𝑟[𝐹(𝑋) ≤ 𝐹(𝑥), 𝐺(𝑌) ≤ 𝐺(𝑦)] 

= 𝑃𝑟[𝑈 ≤ 𝑢, 𝑉 ≤ 𝑣] 

= 𝐶(𝑢, 𝑣)  

(6) 

for a copula C. If H is a bivariate distribution function with marginal distribution functions 

F and G, then there is a copula C for all (𝑥, 𝑦) such that, 

𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦))  (7) 

The bivariate probability density function corresponding to copula 𝐶 can be expressed 

in the Equation (8), 

ℎ(𝑥, 𝑦) = 𝑓(𝑥)𝑔(𝑦)𝑐(𝐹(𝑥), 𝐺(𝑦)) (8) 

where 

𝑐(𝑢, 𝑣) =
𝜕2𝐶(𝑢, 𝑣)

𝜕𝑢𝜕𝑣
 (9) 

is the copula density function, with 𝑐(𝑢, 𝑣)  =  1, if X and Y are mutually free. 

2.4. The Clayton Copula 

The Clayton Copula belongs to the Archimedean Copula group. The Archimedean 

family of copulas has a characteristic that a copula has a single parameter of dependence (𝜃) 

and can be formed from a function of producing copula 𝜑. The Archimedean family of 

Copulas is commonly used to model the common cumulative distribution function of two 

random variables whose distribution tail is fat (Chao & Zou, 2018). The Archimedean dome 

family is a family of functions 𝐶: [0,1]  ×  [0,1]  →  [0,1) defined by the Equation (10), 

𝐶(𝑢, 𝑣) = 𝜑−1(𝜑(𝑢) + 𝜑(𝑣)) (10) 

where 𝜑: [0,1] → [0, ∞)is a continuous function, strictly decreasing, convex, and 𝜑(1) = 0. 

While the Clayton Copula is defined by the following Equation (11) 

𝐶𝐶,𝜃(𝑢, 𝑣) = (𝑢−𝜃 + 𝑣−𝜃 − 1)
−

1
𝜃  (11) 

with 𝜃 ∈  (0, ∞). The Clayton Copula generator function is given by the Equation (12) 

𝜑𝜃(𝑡) =
1

𝜃
(𝑡−𝜃 − 1)  (12) 

The Copula Clayton density function is defined by the Equation (13), 

𝑐𝐶,𝜃(𝑢, 𝑣) =
𝜃 + 1

(𝑢𝑣)𝜃+1
(𝑢−𝜃 + 𝑣−𝜃 − 1)

−(
2𝜃+1

𝜃
)
 (13) 

The parameters 𝜃of the Clayton Copula are given by the Equation (14), 
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𝜃 =
2𝜏

1−𝜏
   (14) 

2.5. Copula Parameter Estimation 

The prediction of the copula parameters can be obtained using the method of 

Maximum Likelihood Estimation (MLE). By describing the given parameter copula and the 

marginal spread, the MLE is obtained by maximizing the log likelihood function. 𝑁is given 

a random variable n-dimensional vector of the multivariate distribution, 𝑥̂1, … , 𝑥̂𝑁 ,with 𝑥𝑗̂ =

(𝑥̂𝑗,1, … , 𝑥̂𝑗,𝑛), 𝑗 ∈ {1, … 𝑁}a parametric model for the marginal distribution 𝐹1, 𝐹2, … , 𝐹𝑛with 

the parameter 𝛼1, 𝛼2, … , 𝛼𝑛 and the Copula parameter is 𝜃so that the density of the multi-

variant distribution 𝑓can be written as follows 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑝)  =  𝑐(𝐹1 (𝑥1), 𝐹2(𝑥2), … , 𝐹𝑝(𝑥𝑝) ∏ 𝑓𝑖(𝑥𝑖)
𝑛
𝑖=1 .  (15) 

with c is the copula density and 𝑓1, 𝑓2, … , 𝑓𝑛is the density of the marginal distribution. 

The parameters of the marginal distribution, 𝛼1, 𝛼2, … , 𝛼𝑛 and parameters from copula 

𝜃, can be estimated from data using MLE as follows (Joe and Xu 1996) 

arg max
𝑎𝑛,𝜃

∑ ln[𝑐 (𝐹1(𝑥̂𝑗,1; 𝛼1), 𝐹2(𝑥̂𝑗,2; 𝛼2), … , 𝐹𝑛(𝑥̂𝑗,𝑛; 𝛼𝑛); 𝜃 ∏ 𝑓𝑖(𝑥𝑗,𝑖; 𝛼𝑖)
𝑛

𝑖=1
]

𝑛

𝑗=1

 (16) 

2.6. Copula Error Checker 

The selection of the best models in this study was based on the level of prediction 

error. The smaller the error rate, the more accurate the prediction will be. In this study, the 

Mean Absolute Error (MAE) method will be used in the calculation of errors. A good model 

has an MAE of less than 10%. The MAE indicates the magnitude of the error from the 

theoretical population to the empirical cupola. Given 𝐶(𝑢, 𝑣) which the theoretical 

population will test its compatibility, in this case, the Clayton Copula. The MAE value can 

be obtained using the Equation (17) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝐶(𝑢𝑖 , 𝑣𝑖) − 𝐶𝑛(𝑢𝑖 , 𝑣𝑖)|𝑛

𝑖=1 .   (17) 

With (𝑢𝑖, 𝑣𝑖) for 𝑖 = 1,2, … , 𝑛 is the pair data and 𝐶𝑛(𝑢𝑖 , 𝑣𝑖) is the empirical copula. 

Basically, the empire copula is used to approach the theoretical copula. 

2.7. Black-Scholes Model 

The price of the European type put option determined by the Black-Scholes formula is 

as follows (Ariyanti et al., 2020): 

𝑃 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑆0𝑁(−𝑑1)  (18) 

with,  

𝑑1 =
ln(

𝑆0
𝐾

)+(𝑟+
𝜎2

2
)𝑇

𝜎𝑇√𝑇
   (19) 

𝑑2 =
ln(

𝑆0
𝐾

)+(𝑟−
𝜎2

2
)𝑇

𝜎𝑇√𝑇
= 𝑑1 −  𝜎𝑇√𝑇   

(20) 

where 𝑃 is put option price, 𝑆0 is initial stock price, 𝐾 is option strike price, 𝑟 is annual risk-

free interest rate, 𝜎𝑇 is standard deviation of stock price, 𝑇 is time until maturity, 𝑁(−𝑑1) is 

standard normal cumulative distribution function of 𝑑1, and 𝑁(−𝑑2) is standard normal 

cumulative distribution function of 𝑑2. 

There are several similarities between option pricing and index insurance (Purwandari 

et al., 2024). Therefore, index insurance can be formulated the same as the option price. In 
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determining the price of index insurance using the Black-Scholes method, the following can 

be considered: 

1) The benchmark value for index insurance is 𝑅𝑇. 

2) The payment structure for index insurance is one at a time. 

3) The index follows a Lognormal distribution. 

In the Black-Scholes model adapted for rainfall insurance, rainfall (R) is considered 

the underlying asset underlying the insurance contract. Therefore, 𝑅0 which is the latest 

rainfall value or the average historical rainfall value relevant at the time of premium 

calculation, replaces 𝑆0. So, the agricultural insurance premium value can be calculated by 

first finding the cumulative distribution value 𝑑2with Equation (21), 

𝑑2 =
ln(

𝑅0
𝑅𝑇

)+(𝑟−
𝜎2

2
)𝑇

𝜎√𝑇
   (21) 

where 𝑅0is the latest rainfall values, 𝑅𝑇is benchmark value (rainfall selected as index), 𝜎is 

standard deviation of rainfall index, 𝑟is risk free interest rate, and 𝑇is time. 

The transformation process for calculating the agricultural insurance premium based 

on the rainfall index involves adapting financial option pricing principles, particularly from 

the Black-Scholes model, to quantify weather-related risks. First, the key variables are 

identified, including the coverage value (P), the risk-free interest rate (r), the time to maturity 

(T), and the probability that rainfall will fall below the trigger level, represented by 𝑁(−𝑑₂). 

Historical rainfall data are analyzed to estimate the likelihood of a rainfall deficit, and this 

probability is expressed using the cumulative distribution function of a standard normal 

distribution. The expected coverage value (𝑃) is then discounted to its present value using 

the exponential factor 𝑒−𝑟𝑇, which accounts for the time value of money by reflecting how 

future payouts are worth less in present terms. The final premium value is obtained by 

multiplying the discounted coverage value by the probability of rainfall falling below the 

trigger threshold, resulting in the Equation (22), 

Premiums = 𝑃𝑒−𝑟(𝑇)𝑁(−𝑑2)  (22) 

where 𝑃 is the value of coverage, 𝑁(−𝑑2) is the probability that the rainfall is less than the 

trigger value of rainfall, 𝑟 is the risk-free interest rate, and 𝑇 is time. 

 

3. MATERIAL AND METHOD  

This study adopts a quantitative research approach to determine fair insurance 

premiums for chili plantations by integrating the Black–Scholes model with the Clayton 

copula approach. The observation data in this study are monthly data on cane agricultural 

output and rainfall from 2012 to 2022. Cane agricultural output data is taken from the 

Department of Agriculture of Lake Malaya District and the rainfall data are taken from 

NASA. Cane farming yield data is indicated by the random variable Y and the data of rainfall 

is expressed by the random variable X. 

The Clayton copula is applied to model the dependency structure among these risk 

variables, capturing lower-tail dependence that reflects extreme losses in production. The 

Black–Scholes model is then adapted to calculate expected losses as option values, using the 

volatility of chili prices and yields to estimate fair premium rates. Model performance is 

validated through back-testing and statistical error metrics such as MAE, ensuring reliability 

in premium estimation for agricultural risk management.  
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The computational analysis is performed using R software with libraries for time-series 

analysis, copula modeling, and stochastic simulation. 

 

4. RESULTS AND DISCUSSIONS 

The observation data in this study are monthly data on cane agricultural output and 

rainfall from 2012 to 2022. Cane agricultural output data is taken from the Department of 

Agriculture of Lake Malaya District and the rainfall data are taken from NASA. Cane 

farming yield data is indicated by the random variable Y and the data of rainfall is expressed 

by the random variable X. Descriptive statistics of the data can be seen in Table 1. 

Table 1. Descriptive Marginal Data Statistics 

 Mean Median Maximum Minimum Std. Dev. Variance Kurtosis Skewness 

𝑋 10.4179 10,207 30.8354 0.19193 7.18409 51.6112 -0.49825 0.40910 

𝑌 300,701 278 679.2 114.19 115,268 13286.7 1.0727 0.98177 

Based on Table 1, the skewness values of rainfall and sequential harvest are 0.40910 and 

0.98177, both positive values indicating provincial and farmer price data sliding to the right. 

For kurtosis on rainfall data and sequential harvest yields -0.49825 and 1.0727, both values 

are less than 3 which indicates that both data have peaked flat tendencies. The data can be 

said to be distributed normally if the value of the curve is equal to three and the value for the 

skewness is equal to zero. 

The relationship between rainfall and harvest can be described in the form of a 

scatterplot, can be seen in Figure 1. 

 
Figure 1. Scatterplot Rainfall and Production 

The resulting plot of the output data range with rainfall forms an unlinear pattern in 

Figure 1, making it difficult to identify the relationship between variables. Therefore, further 

analysis was carried out using the copula method, where theoretically it has been proven that 

the copula is a parameter that can explain relationships better than a plot of data frames. 

Copula is a method that is not limited to the assumptions, especially the normal assumption. 

 
Figure 2. Scatterplot Pseudo Rainfall and Production 
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The pseudo log likelihood method transforms empirical observations of rainfall and 

production into pseudo observations of u and v without taking the functional form of the 

marginal distribution. To calculate pseudo-observations, Equation (3) is used, and scatterplot 

observation pseudo data of precipitation and production can be seen in Figure 2. 

Based on Figure 2, no search data is visible. Some surveillance data is nearby, but 

patterns of data are not yet visible. So, Copula can be used to further analyze related 

structures of dependency between rainfall and production. The copula used was from the 

Clayton family because there was a supposedly extreme incident and a connection at the 

extreme point 

The estimation of the Copula Clayton parameters has been done using maximum 

likelihood, using R software based on Equation (16). In brief, the steps are as follows: 

1. Determine the Kendall’s Tau correlation between the pairs of rainfall and production data. 

2. Determine the Clayton copula parameter based on its relationship with the Kendall’s Tau 

correlation from step 1. This stage is performed using the R software. 

The value of the copula Clayton parameters 𝜃 = −0.1252. To compare observation 

data with simulation data through empirical dome distribution, the simulation is done by 

constructing the following data series using the Clayton Copula model using previously 

obtained parameters. To make the distribution clearer, this simulation uses R software to 

simulate 5000 data. The distribution plot is shown in Figure 3. 

 
Figure 3. Scatterplot Clayton Copula Simulation Data 

The pattern of relationship between rainfall and output that follows the Clayton copula 

describes that there are extreme events at low values, and there is a relationship between the 

two variables when both values are low, the higher the observed values on the variable, the 

weaker the relationship between them is, because the Clayton Copula has a relationship tail 

at the bottom (Cherubini et al., 2004). 

The sample data was observed closer to the log-normal distribution. Next, check 

Copula's prediction error using MAE; the MAE value shows the magnitude of the error from 

the theoretical population to the empirical copula (see empirical excerpt in Table 2).  
 

 

 

 

 

Table 2. Copula Empiric 

Rainfall Productivity 
Empiric 

CDF Rank CDF Rank 

0.560964 79 0.593377 127 0.325758 

0.559063 33 0.807314 95 0.454545 

0.533256 93 0.609724 128 0.325758 

⋮ ⋮ ⋮ ⋮ ⋮ 
0.720210 101 0.591413 5 0.393939 
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The MAE value for Copula Clayton can be seen in Table 3 based on equations (17) 

with R software. 

Table 3. Copula MAE Values 

Copula MAE 

Clayton 0.01291 

Based on the table, the Copula Clayton error value is 0.01291. A copula error value below 

1% is still relevant. Therefore, the Clayton Copula can be used to model the dependency 

between the rainfall variable and the yield of chili. 

Agricultural insurance liabilities are the basis for the calculation of premiums and the 

maximum limit in compensation for losses. The accountability value is based on the cost of 

cane production, fixed costs and operating costs in one hectare from the beginning of the 

farmer's planting to the harvest obtained from the Food and Agriculture Service of 

Tasikmalaya District. Production costs include seeds, fertilizers, pesticides, POT, ZPT, and 

rapia. Costs still include land rental and cutting tools. Operating costs include from pre-

planting processing to post-harvesting. The cost details can be seen in Table 4.  

Table 4. Chili Resource Value 

No Type of Cost Total 

1 Production Costs IDR  57,730,000.00 

2 Fixed Costs IDR  6,000,000.00 

3 Operating Costs IDR  53,220,000.00 

Total Cost IDR  116,950,000.00 

The rainfall observation data obtained through Copula, then distributed into rainfall 

data per quarter. Division of rainfall Data per quarter is as follows: first quarter is from 

January to April, the second quarter is from May to August, and the third quarter is from 

September to December. The result of the calculation of rain data can be seen in Table 5. 

Table 5. Data on Quarter Rainfall in Tasikmalaya District in 2012-2022 (mm) 

Rainfall 2012 2013 2014 2015 2016 2017 

1st Quarter  3.721855 6.33463 3.31509 13.2470125 8.27698 3.8797825 

2nd Quarter  1.5250925 1.65992 2.92924 2.4724225 3.20907 2.8812425 

3rd Quarter  2.4178825 1.23439 5.52669 3.7229775 4.28892 5.188535 

       

Rainfall 2018 2019 2020 2021 2022  

1st Quarter  7.68471 4.46623 2.55926 2.08588 2.34535  

2nd Quarter  0.96002 0.66157 1.8493 0.93952 0.57028  

3rd Quarter  3.31035 0.42502 4.85446 3.3777 3.17398  

In the calculation of insurance premiums, it is necessary to know the exit value used 

as the payment limit in case of claims. The exit value is the lowest rainfall data after the 

preparation, so we got an exit rating of 2.085. Trigger determination based on percentage 

values of the amount of rainfall in each calendar month. The trigger determination results 

are presented in Table 6. 

Table 6. Trigger and Exit Values 

Percentiles 
Triggers 

1st Quarter  2nd Quarter  3rd Quarter  

40 3.64050 1.412078 3.28308 

50 3.87978 1.65992 3.3777 

60 4.83990 1.9739225 3.83617 

70 6.87465 2.6359505 4.51513 

80 8.04007 2.910041 5.0549 

90 12,253 3.153106 5.45906 



22  Sarah Sutisna (Determination Insurance Premiums) 

Table 6 shows the trigger values for insurance payouts based on different percentiles 

of a certain risk metric across three time periods (quarters) in a year. These values represent 

thresholds used to determine whether insurance coverage should be activated. The 

determination of agricultural insurance premiums based on rainfall in this study uses the 

Black-Scholes method. The descriptive statistics of average rainfall per quarter from 2012-

2022 are shown for the premium calculation presented in Table 7. 

Table 7. Descriptive Statistics of Rainfall Data 

Parameter 
Value 

1st Quarter  2nd Quarter  3rd Quarter  

Mean 5.265160227 1.787061591 3.41099 

Std. Deviation 3.225977202 0.916114286 1.51642 

Min 2.0858775 0.5702775 0.42502 

Max 13.2470125 3.2090725 5.52669 

Based on the latest actual rainfall data in 2022 (𝑅0) is 5.1642 mm. 𝑅𝑇 is the trigger 

used for each percentile. T is the selected time period, harvest is assumed to occur as many 

as 3 times in 1 year so the value 𝑇 =
4

12
= 0.33. Risk-free interest rate, 𝑟= 0.06. The default 

deviations (𝜎) from the rains of the 1st quarter, the 2nd quarter, and the 3rd quarter in a row 

are 3.22597, 0.91611, and 1.51642. Then calculate the cumulative distribution value with 

Equation (21). The examples of calculations of 𝑑2 and 𝑁(−𝑑2)on the 40th percentile of 1st 

quarter with a value of 𝑅𝑇  =  3.6405 are as follows: 

𝑑2 =
ln (

𝑅0

𝑅𝑇
) + (𝑟 −

(σ)2

2
) 𝑇

σ(√𝑇)
 

𝑑2 =
ln (

5.1642
3.6405

) + (0.06 −
(3.22597)2

2
) 0.33

3.22597(√0.33)
 

= −0.7272.  

Then the value of 𝑁(−𝑑2) is calculated, 

𝑁(−𝑑2) = 𝑁(−(−0.7272)) = 𝑁(0.7272)  =  0.76646. 

Also calculated for the other trigger values of each quarter presented in Table 8. 

Table 8. Value Calculation Results𝑁(−𝑑2) 

Percentiles 
1st Quarter  2nd Quarter  3rd Quarter  

Triggers 𝑁(−𝑑2) Triggers 𝑁(−𝑑2) Triggers 𝑁(−𝑑2) 

40 3.64050 0.76646 1.412078 0.0126 3.28308 0.457330767 

50 3.87978 0.77685 1.65992 0.02673 3.3777 0.470289164 

60 4.83990 0.81082 1.9739225 0.05458 3.83617 0.528526824 

70 6.87465 0.85775 2.6359505 0.14631 4.51513 0.602043035 

80 8.04007 0.87591 2.910041 0.19368 5.0549 0.651091981 

90 12,253 0.91654 3.153106 0.23824 5.45906 0.683164866 

Table 8 reflects a time-dependent shift in perceived option risk across quarters. 

𝑁(−𝑑2) behaves as expected, it increases with percentiles, implying that as trigger values 

grow, the probability of option exercise rises. After that, the premiums are calculated using 

Equation (22) where the amount of liability is IDR116,950,000. Example of the calculation 

of premiums made on the 40th percentile of the 1st quarter with the value of 𝑁(−𝑑2) of 

0.76646 as follows: 
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𝑃𝑟𝑒𝑚𝑖𝑢𝑚 =  𝑃𝑒−𝑟𝑇𝑁(−𝑑2)  

=  (IDR116.950.000)𝑒−0.06(0.33) (0.76646) 

=  IDR87.880.261 

So, the premium to be paid at the 40th percentile when the trigger value 𝑅𝑇 of 3.6405 

is IDR 87.880.261. Also calculated the premium price for other trigger values at each 

quarter presented in Table 9. Table 9 shows the large farm insurance premiums based on 

rainfall on chili commodities in the district of Tasikmalaya. It can be seen that the higher the 

percentage value then the greater the rainfall trigger value. The 90th percentile was chosen 

because it is sufficiently representative of the highest loss risk faced by chili farmers. 

Furthermore, if the 95th percentile were included, the chili insurance premium would increase 

due to the higher losses borne by the insurance companies. As a result, fewer insurance 

companies would be willing to cover the risks of chili farmers, and fewer chili farmers would 

be willing to participate in the insurance.  

Table 9. Rainfall-Based Chili Plant Insurance Prices per Quarter 

Percentiles 
Premium 

1st Quarter  2nd Quarter  3rd Quarter 

40 IDR87,880,261 IDR1,444,296 IDR52,436,248 

50 IDR89,071,233 IDR3,065,013 IDR53,922,021 

60 IDR92,965,936 IDR 6,258,459 IDR60,599,386 

70 IDR98,347,687 IDR16,775,988 IDR69,028,547 

80 IDR100,429,464 IDR22,207,240 IDR74,652,360 

90 IDR105,087,419 IDR27,316,208 IDR78,329,746 

 

5. CONCLUSIONS 

The relationship between production results and rainfall can be explained more 

specifically using the Clayton Copula approach. The Clayton copula has a tail dependency 

below, which means that extreme events occur when the rainfall is low and the production 

output obtained is smaller, the closer the relationship. The Black-Scholes model based on 

the Clayton Copula, which has a relatively small MAE, can be used to determine insurance 

premiums for chili crops based on crop yields and rainfall. The premium price obtained 

varies according to the rainfall percentile and the quarterly period used to index. The greater 

the percentile value, the greater the premium that farmers must pay. 
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