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an average AUC of 62.33. Among all models, the highest and
consistent performance was achieved by the RF model using
ROSE techniques. The results of measuring variable importance
showed that the predictor variables with the greatest influence
in predicting the accuracy level of the madrasah data are the
number of students and the student-to-teacher and staff ratio.
This finding suggests that school principals and madrasah
administrative staff should prioritize ensuring the completeness
of student, teacher, and staff data to improve the overall
reliability of madrasah data.

1. INTRODUCTION

The rapid advancement of information technology has driven public organizations,
including government agencies, to adopt digital systems that enhance the accuracy,
efficiency, and reliability of data management. High-quality data is essential for evidence-
based decision-making, strategic planning, and effective implementation of public programs,
as unreliable data risks undermining policy outcomes (Batini et al., 2009).

The Directorate General of Islamic Education at the Ministry of Religious Affairs
(MORA) has developed the Education Management Information System (EMIS) as the
backbone for managing Islamic education data nationwide, enabling systematic collection,
storage, analysis, and dissemination (Syarip & Rosidin, 2003). To ensure madrasah data
quality, MORA initiated an annual data accuracy audit survey in 2020, with the 2023 survey
of 1,210 madrasahs reporting a 76% national data accuracy rate. This relatively good
achievement indicates that EMIS data are generally reliable for policymaking, yet further
improvements are required to enhance accuracy and strengthen its role in supporting
evidence-based decision-making. Despite its importance, empirical studies on measuring
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and predicting data accuracy in government education information systems, particularly in
Islamic education, remain limited, highlighting a significant research gap.

This study aims to model and predict the accuracy level of madrasah data using two
machine learning—based classification methods: Random Forest (RF) and Support Vector
Machine (SVM). These methods have been proven effective in handling complex
classification problems and improving predictive performance compared to traditional
statistical approaches (Breiman, 2001; Cortes & Vapnik, 1995). Several studies have
compared RF and SVM in classification tasks across different domains. For example,
Caruana & Niculescu-Mizil (2006) found that both RF and SVM consistently achieved
strong predictive accuracy in large-scale empirical evaluations, with RF often performing
better in handling noisy datasets, while SVM demonstrated superior performance in high-
dimensional spaces. Similarly, Ferndndez-Delgado et al. (2014) conducted a comprehensive
benchmark analysis involving 179 classifiers across 121 datasets and reported that both RF
and SVM ranked among the most accurate classifiers, though RF generally showed higher
robustness and lower variance across diverse data conditions.

The novelty of this research lies in integrating data quality auditing with advanced
classification models to generate actionable insights for improving the reliability of
madrasah data. By bridging the gap between data quality assessment and machine learning
applications, this study contributes theoretically to the literature on public sector data
governance and practically to policy recommendations for strengthening data management
in Islamic education in Indonesia.

2. LITERATURE REVIEW
2.1. Random Forest

Random Forest is a technique employed for both classification and regression. It
operates as an ensemble of learning methods, utilizing decision trees as fundamental
classifiers, which are constructed and amalgamated (Kulkarni & Sinha, 2014). In simple
terms, the algorithm of Random Forest can be explained as follows: if the training dataset
has » magnitude size and consists of p predictor variables, next come the steps of preparation
and estimation using the Random Forest method (Breiman & Cutler, 2003):

1) Bootstrap stage: performs random sampling with n-size recovery from the training
dataset.

2) Random sub-setting stage: a tree is constructed using the bootstrap dataset, extending to
its fullest extent (without pruning). At every node, the sorter (mtry) is chosen by randomly
selecting up to m predictor variables, where m < p.

3) The process is reiterated k times, duplicating steps (1) and (2), resulting in a forest
composed of k£ random trees.

In Random Forest, the number of predictor variables randomly selected at each node,
denoted as m (or mtry), is commonly determined using practical rules of thumb, where m is
set to the square root of the total number of predictors (p) for classification tasks, and
approximately one-third of p for regression tasks (Liaw & Wiener, 2002). By aggregating
the predictions of k& trees, Random Forest estimates an observation’s response, while its
accuracy is evaluated through out-of-bag (OOB) error. OOB data, excluded from bootstrap
samples, provide an unbiased estimate of misclassification and are also used to assess
variable importance (Breiman, 2001). Each observation is predicted by about one-third of
the trees, and the OOB error is calculated as the proportion of misclassified predictions
across all observations in the dataset.
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Breiman & Cutler (2003) suggest observing OOB errors when the number of trees (k)
is small and selecting the number of predictors (m) that minimizes OOB error. For generating
variable importance, it is advisable to use many trees—typically 1000 or more—especially
when many predictors are analyzed, to ensure more stable results.

2.2. Support Vector Machine

Support Vector Machine (SVM) stands out among supervised learning algorithms,
commonly employed for both regression and classification (Awad & Khanna, 2015; Cortes
& Vapnik, 1995). In classification modeling, SVM offers a well-established and
conceptually clear framework compared to other methods. The objective of the SVM
algorithm is to establish an optimal decision line or boundary, termed the hyperplane, that
effectively partitions n-dimensional spaces into distinct classes. This hyperplane facilitates
the accurate categorization of new data points in the future. The SVM algorithm identifies
extreme points or vectors, referred to as support vectors, that are crucial for the hyperplane
construction. Therefore, it is referred to as a Support Vector Machine (Noble, 2006).

In real-world applications, many problems are inherently non-linear; therefore, kernel
functions are applied to address the issue of nonlinearity. According to Hsu et al. (2003),
four basic kernel functions are commonly used, namely:

1) Linear: K (x;, %) = x x;

2) Polynomial: K (x;,x;) = (yx{x; + R)%, ¥y > 0

3) Radial Basis Function (RBF): K (x;, x;) = exp(—v||x; — x;|?), ¥ > 0
4) Sigmoid: K (x;,x;) = tanh (yx]x; + 1)

where v,r, and d are kernel parameters.

2.3. Classification Accuracy

The performance of a classification algorithm is commonly evaluated using a
confusion matrix, which summarizes the number of correctly and incorrectly predicted
observations (Gorunescu, 2011). The matrix distinguishes four outcomes: True Positive (TP)
when a positive case is correctly classified, True Negative (TN) when a negative case is
correctly classified, False Positive (FP) when a negative case is incorrectly classified as
positive, and False Negative (FN) when a positive case is misclassified as negative. Higher
TP and TN values generally correspond to better accuracy, precision, and recall. Based on
these components, various performance metrics can be derived, including accuracy,
sensitivity/recall, specificity, precision, and F1-Score. The formulas for these measures are
expressed as follows:

TP + TN

Accuracy = TP + TN + FP + FN X 100% (1)
s = TP
Sensitivity /Recall = TP + FN X 100% 2)
Specificity = _IN 100% 3)
TN + FP
TP
Precision = TP T FP X 100% 4)

2 X Precision X Recall
F1 Score = — x 100% (5)
Precision + Recall
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2.4. Area Under Curve (AUC)

The Receiver Operating Characteristic (ROC) curve is one of the most used tools for
evaluating classification systems because it can evaluate algorithms very well. The threshold
for sensitivity and specificity determines the construction of the ROC curve and the
derivation of the Area Under Curve (AUC) value (Kuhn, 2008). The use of the AUC as a
performance metric is essential, particularly when evaluating classification models on
imbalanced datasets. Unlike accuracy, which can be misleading in the presence of class
imbalance, AUC provides a threshold-independent measure of the model’s overall
discriminative ability between positive and negative classes (Kuhn & Johnson, 2013).

In addition to AUC, the Matthews Correlation Coefficient (MCC) is often used for
imbalanced datasets as it incorporates all elements of the confusion matrix into a single value
(Chicco & Jurman, 2020). However, MCC is threshold-dependent, while AUC evaluates
performance across all thresholds, offering a more comprehensive measure of classification
power. Given its broad adoption in machine learning, this study employs AUC as the primary
evaluation metric, with its formula expressed as follows:

__ Sensitivity + Specificity
B 2

AUC x 100% (6)

2.5. Class Imbalance

Class imbalance is one of the problems that often occurs in data mining. This happens
when there is a significant difference in size or frequency between the minority and majority
classes (Ren et al., 2017). Models built with imbalanced data will have poor accuracy for
minority predictions. There are biased decision boundaries in the categorization system
because the dominant class has richer knowledge than the minority class (Jian et al., 2016).
To overcome class imbalance, resampling techniques are applied at the preprocessing stage
to rebalance the data distribution, thereby reducing bias in the learning process. These
techniques include undersampling, which reduces the majority class; oversampling, which
replicates the minority class; and hybrid approaches that combine both (Jian et al., 2016).
Among various oversampling methods, Random Over-Sampling Examples (ROSE) is
widely used to effectively mitigate imbalance and improve model performance (He et al.,
2018).

2.6. Variable Importance

One commonly used approach to assessing variable importance is by evaluating the
frequency with which a variable is used for splitting in a group of decision trees. The more
frequently a variable is used and the greater its contribution to reducing impurity, the more
important it is considered. A widely recognized method for quantifying variable importance
in the Random Forest is the Mean Decrease Gini (MDG), as proposed by Breiman (2001).
The MDG index measures the importance of the predictor variable x;, suppose there are p
predictor variables with h = (1, 2, ...,p). This measure reflects the average decrease in Gini
impurity attributed to splits using x;, across all trees in the forest.

MDG(x;,) = %[1 - ZkGini(h)"] 7)

where Gini(h)*: Gini index for predictor variables xj, in the k" tree; k: the number of trees
in Random Forest

Unlike Random Forest, SVM does not inherently provide measures of variable
importance, particularly when using nonlinear kernels such as the Radial Basis Function
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(RBF). Therefore, external techniques are required to assess which features contribute most
to the model’s predictive performance. A widely adopted method is Permutation Feature
Importance (PFI), which is model-agnostic and applicable to SVMs. The principle is simple:
by permuting the values of a given feature and observing the drop in model performance,
one can quantify the importance of that feature (Fisher et al., 2019). Features causing
substantial performance degradation when shuffled are considered highly relevant, while
those with negligible or negative effects may be irrelevant or noisy. In practice, PFI results
provide ranked importance scores with uncertainty intervals, allowing researchers to better
understand the role of each predictor in classification tasks.

3. MATERIAL AND METHOD
3.1. Source of Data

The data used in this study consisted of one response variable and nine predictor
variables, as detailed in Table 1.

Table 1. List of Variables in This Study

No. Label Variable Name Information Data Type
1 Y Data Accuracy Level 1: Good 2: Less Ordinal
X1 Madrasah Level 1: RA 3: MTs Nominal
2: MI 4: MA
3 X2 Accreditation Status 1: Not Accredited 3:B Ordinal
2:C 4: A
4 X3 Operator Education 1: < High School 3: 81 Ordinal
Qualification 2: Diploma 4:>S1
5 X4 Headmaster’s Account  1: Handed over to the Operator Nominal
Authority 2: Held by Headmaster Himself
6 X5 Number of Students Number of students in each madrasah Numeric
7 X6 Ratio of Students to Number of students divided by the Ratio
Teachers and Staff number of teachers and staff
8 X7 Gender of Operator 1: Male 2: Female Nominal
9 X8 Gender of Headmaster  1: Male 2: Female Nominal
10 X9 Madrasah Location 1: Lowland 3: Mountains Nominal

2: Coastline

The data for this study were obtained from the 2023 Islamic Education Data Accuracy
Audit survey conducted by the Directorate General of Islamic Education, Ministry of
Religious Affairs, through observations and direct interviews with school principals and data
operators. The survey covered 1,210 madrasahs at the level of MA (Madrasah Aliyah), MTs
(Madrasah Tsanawiyah), MI (Madrasah Ibtidaiyah), and RA (Raudhatul Athfal) in 102
regencies/cities. Given the large, geographically dispersed, and hierarchically structured
population of 86,343 madrasahs across 34 provinces and 514 districts/cities in Indonesia as
of 2023, a multistage random sampling technique was employed. In the first stage, a random
selection of districts/cities was conducted, followed by the random selection of madrasahs
within the selected areas. This sampling method was chosen to ensure adequate
representation of the target population while optimizing the use of time, financial resources,
and logistical capacity. Such an approach is particularly appropriate for educational surveys
involving clustered populations, where full population enumeration is impractical (Babbie,
2020). Based on the survey results, the percentage of data accuracy (PDA) for each sample
madrasah was obtained, which was calculated using the formula:
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the number of correct EMIS data attributes according to survey results
PDA = , x100% (7)
the number of all surveyed data attributes

Furthermore, the PDA obtained is converted into a Data Accuracy Level (DAL)
category consisting of two classifications: “Less” for values below 71% and “Good* for
values equal to or above 71%.

3.2. Research Methodology

As mentioned above, this study applied two classification methods: Random Forest
(RF) and Support Vector Machine (SVM), to predict the accuracy level of madrasah data.
These two ensemble methods were evaluated and compared to determine which method
showed better performance in classifying and predicting the accuracy level of madrasah data.

The methodology in this study consists of several steps (see Figure 1), including: (1)
data collection; (2) pre-processing of data, consisting of: (a) check for the condition of class
imbalance and perform resampling; (b) for each sampling method, split the observation data
into two (training and testing); (3) create the model with the original training data and the
resampled training data; (4) testing the trained RF and SVM models using the test dataset to
generate predictions; (5) create confusion matrix and evaluation the model; (6) measurement
of variable importance.

Start Data Check the class R i
ar collection imbalance esampiing
Build the models using Data splitting
the training dataset (training 80%; testing 20%)

Cw ] [ sw ]

Testing the models ]‘
using the test datasetJ‘

Confusion Model Variable End
matrix evaluation importance

Figure 1. Research Methodology

The RF model was developed by partitioning the observation data into two subsets,
with 80% allocated for training and 20% for testing. Model tuning was performed by varying
the number of trees (ntree) at 300, 500, and 1000, and the number of predictor variables used
at each split (mtry) at 2, 3, and 6. The results across these parameter configurations were
compared to identify the optimal model for predicting the accuracy level of madrasah data,
with the smallest out-of-bag (OOB) error serving as the selection criterion.

Similarly, the SVM model was trained using an 80/20 split of the data, with the Radial
Basis Function (RBF) kernel employed to capture nonlinear relationships. Two key
hyperparameters were considered: cost (C), which regulates the trade-off between margin
width and classification error, and sigma (o), which controls the influence of each data point
in shaping the decision boundary. The tuning process of the SVM model was carried out by
adjusting the cost (C) parameter at values of 0.25, 0.50, and 1.00.
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To address the issue of class imbalance, three resampling methods were applied:
undersampling, oversampling, and ROSE. Undersampling reduces the size of the majority
class through random selection, thereby balancing it with the minority class. Oversampling
increases the representation of the minority class by randomly replicating its instances until
class proportions are balanced. The ROSE method generates synthetic observations using a
smoothed bootstrap approach, creating a more representative and balanced training dataset.

4. RESULTS AND DISCUSSION
4.1. Overview of Observation Data

The research dataset comprised 1,210 observations with an imbalanced response
variable. The "Good" class has a percentage of 80.08% or 969 data, much higher than the
"Less" class with a percentage of 19.92% or 241 data. Furthermore, the 1,210 observational
data were divided into two data groups with a ratio of 80% or 968 training data, and 20% or
242 testing data. Of the 968 training data, it consisted of 766 or 79.13% of the "Good" class
data and 202 or 20.87% of the "Less" class data. A comparison between observational data
and training dataset based on class is presented in Figure 2.

241

Observational Data Training Dataset

m Good ®Less
Figure 2. Classes Comparison of Response Variable (Data Accuracy Level)
4.2. Resampling

The issue of class imbalance in observational data is addressed through resampling,
aiming to procure a training dataset with a more equitable class distribution. A comparison
between the data volume of the majority and minority classes in both the original training
data and the resampled outcomes is presented in Table 2.

Table 2. Comparison of Training Data for each Sampling Method

Sampling Amount of Data Ratio

Methods Good Less Good Less
Original 766 202 79.13% 20.87%
Undersampling 184 202 47.67% 52.33%
Oversampling 766 796 49.04% 50.96%
ROSE 480 488 49.59% 50.41%

The comparison of the original training data shows a very unbalanced ratio between the
majority class ("Good") of 79.13% and the minority class ("Less") of 20.87%. Meanwhile,
training data that has been resampled using the under-sampling method shows a relatively
balanced ratio, with the "Good" class of 47.67% and the "Less" class of 52.33%. Similarly,
for the oversampling method, the "Good" class has a ratio of 49.04% and the "Less" class of
50.96%. As for the ROSE method, the ratio of the "Good" class is 49.59%, and the "Less"
class is 50.41%.
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4.3. Random Forest Classification Analysis

To obtain the optimal Random Forest model with the lowest OOB error, the algorithm
was trained repeatedly using combinations of ntree values (300, 500, and 1000) and mtry
values (2, 3, and 6). The smallest OOB error, 21.19%, was achieved with ntree = 1000 and
mtry = 2. Table 3 reports the performance of this optimal model, evaluated on the original
training data as well as three resampled datasets (undersampling, oversampling, and ROSE).
The evaluation includes confusion matrices and performance metrics—accuracy, precision,
recall, F1-Score, and AUC—providing a comprehensive assessment of the model’s ability
to classify the accuracy level of madrasah data.

The model trained on the original dataset achieved the highest accuracy (82.64) and
F1-Score (90.37), showing strong performance in identifying the majority class (“Good”)
with balanced precision (84.55) and recall (97.04). However, its low AUC (52.37) indicates
limited ability to distinguish the minority class (“Less”). In contrast, undersampling resulted
in the weakest performance, with accuracy dropping to 59.92 and recall to 58.13. Although
its AUC improved to 63.68, the overall predictive power declined due to loss of information
from reducing the majority class. This finding supports previous research highlighting the
drawbacks of undersampling and its risk of information loss (Haibo He & Garcia, 2009).

Table 3. Confusion Matrix of Random Forest Model

Sampling -
Methods Prediction Actual Value
Good Less Accuracy Precision Recall F1-Score AUC
Original Good 197 36 64 8455  97.04 9037  52.37
Less 6 3
Undersampling  Good 18 120 5900 9077 5813 70.87 63.68
Less 85 27
Oversampling  Good 147 I35 5066 9074 7241 80.55 66.98
Less 56 24
ROSE Good 147 14
Lo ss g5 7107 9130 7241 80.77 6826

The application of oversampling produced more balanced classification outcomes,
raising the AUC to 66.98, with a precision of 90.74 and an accuracy of 70.66. This
demonstrates its effectiveness in improving the detection of minority class instances while
maintaining predictive performance for the majority class. Similarly, the ROSE method
achieved the highest AUC (68.26) and precision (91.30), with an accuracy of 71.07, showing
comparable overall performance. By generating synthetic minority class examples, ROSE
effectively mitigates class imbalance and enhances the model’s ability to distinguish
between classes (Lunardon et al., 2014).

Overall, the findings demonstrate that the choice of sampling method greatly affects
the performance of Random Forest on imbalanced data. While the original dataset yielded
the highest accuracy and recall, its low AUC reflects poor performance to identify the
minority class. In contrast, the ROSE technique provides the best trade-off and most
consistent balance across evaluation metrics, making it the most effective resampling
approach for addressing class imbalance in predicting the accuracy level of madrasah data.

4.4. Support Vector Machine Classification Analysis

Hyperparameter tuning for the SVM model with a radial basis kernel identified the
optimal configuration at sigma (o) = 0.0449 and cost (C) = 0.25, achieving the highest
accuracy (79.6%) compared to other C values (0.50 and 1.00). Table 4 shows the model’s
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performance (¢ = 0.0449, C = 0.25) across different sampling methods: original data,
undersampling, oversampling, and ROSE. The model trained on the original data yielded the
highest accuracy (83.88), recall (100.00), and Fl-score (91.24), indicating perfect
classification of the majority class (“Good”). However, its AUC score was only 50.00,
suggesting poor discrimination between majority and minority classes and a bias toward the
majority class, thus limiting its effectiveness on imbalanced data.

Resampling techniques enhanced the model’s ability to detect minority classes.
Oversampling produced the most balanced performance, achieving the highest AUC (67.08),
precision (91.33), and accuracy (67.36), indicating improved discriminative power and
stability of SVM. ROSE delivered comparable results with slightly lower AUC (65.85),
accuracy (65.29), and precision (91.03). Undersampling increased AUC (66.39) but reduced
accuracy (64.46) and F1-Score (75.00) due to the loss of data volume. Overall, oversampling
proved the most effective approach for improving SVM performance on imbalanced
madrasah data, ensuring fairer classification between majority and minority classes.

Table 4. Confusion Matrix of SVM Model

Sampling Methods Prediction Actual Value
Good Less Accuracy Precision Recall F1-Score AUC

Original S;)Sosd 203_ 39_ 83.88 83.88  100.00 91.24 50.00

Undersampling Good 129 12 64.46 91.49 63.35 75.00 66.39
Less 74 27

Oversampling Good 137 13 67.36 91.33 67.49 77.62  67.08
Less 66 26

ROSE Good 132 13
Less 71 26 6.29 91.03 65.02 75.86  65.85

4.5. Model Evaluation

The comparison between Random Forest (RF) and Support Vector Machine (SVM)
reveals notable differences in handling class imbalance in madrasah data. Trained on the
original dataset, both models achieved high accuracy (RF = 82.64, SVM = 83.88) and recall
(RF = 97.04, SVM = 100.00), demonstrating strong performance for the majority class
(“Good”). However, their very low AUC values (RF = 52.37, SVM = 50.00) highlight poor
discrimination of the minority class (“Less”), confirming that models without resampling
are biased toward the dominant class and fail to generalize effectively.

When resampling techniques were applied, both models exhibited improvements in
their ability to recognize minority cases. For Random Forest, the ROSE method produced
the most consistent performance, with the highest AUC (68.26), the highest accuracy
(71.07), and a balanced recall (72.41). For SVM, oversampling yielded the best results,
achieving the highest AUC (67.08) along with the highest accuracy (67.36) and an
acceptable recall (67.49). While both algorithms benefited from resampling, Random Forest
consistently demonstrated slightly better balance across recall, accuracy, and AUC
compared to SVM.

These results align with previous studies conducted by Caruana & Niculescu-Mizil
(2006) and Fernandez-Delgado et al. (2014), which show the superiority of the Random
Forest over SVM. In the context of madrasah data, Random Forest with ROSE technique
provides the most reliable performance by addressing class imbalance and improving the
representation of minority data.
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4.6. Variable Importance

Variable importance was calculated for the model that was considered the best
classification model in this study: Random Forest model with the ROSE sampling and SVM
with oversampling technique. The importance of predictor variables in the Random Forest
model is measured using the Mean Decrease Gini (MDG). The greater the MDG value of a
variable, the more important the variable is in the model. Table 5 displays the MDG value
for each predictor variable in the Random Forest model using the ROSE.

Table 5 shows that the number of students (X5) and the student-to-teacher and staff
ratio (X6) are the strongest predictors of madrasah performance in data management, with
MDG indices of 79.44366 and 74.27680, respectively. These results highlight the need for
accurate data on student enrollment and teacher allocation to support effective resource
planning and prevent issues such as overcrowded classrooms or underutilized staff. The
madrasah level (X1), with MDG index of 48.93449, further underscores the role of valid
institutional data in strategic planning and quality assurance. Strengthening data reporting
systems is thus essential for policymakers and madrasah administrators to design
interventions that target the most critical performance factors.

Table 5. Variable Importance of the ROSE Random Forest Model

No. Variables MDG

1 X5 Number of Students 79.44366

2 X6 Ratio of Students to Teachers and Staff 74.27680

3 X1 Madrasah Level 48.93449

4 X2 Accreditation Status 29.43915

5 X7 Gender of Operator 23.31659

6 X3 Operator Education Qualification 20.62864

7 X9 Madrasah Location 20.10117

8 X8 Gender of Headmaster 13.02222

9 X4 Headmaster’s Account Authority 12.02313

Table 6. Variable Importance of the Oversampling SVM Model
No Variables PFI (0.05) PFI (Average) PFI (0.95)

1 X5 Number of Students 0.03606 0.04667 0.05163
2 X6 Ratio of Students to Teachers and Staff  0.03737 0.04439 0.05437
3 X1 Madrasah Level 0.03445 0.03753 0.04749
4 X3 Operator Education Qualification 0.01975 0.02350 0.03006
5 X7 Gender Operator 0.01074 0.02121 0.02719
6 X4 Headmaster’s Account Authority 0.01465 0.01958 0.02513
7 X8 Gender of Headmaster 0.00783 0.02108 0.01407
8 X9 Madrasah Location 0.00271 0.02242 0.01609
9 X2 Accreditation Status -0.00013 0.00587 0.01217

Table 6 presents the variable importance values of the oversampling SVM model based on
Permutation Feature Importance (PFI). The results show the relative contribution of each
predictor to the model’s performance. Among the variables, the number of students (X5),
the student-to-teacher and staff ratio (X6), and madrasah level (X1) emerge as the most
influential, with average PFI scores of 0.04667, 0.04439, and 0.03753, respectively. This
suggests that school size, the proportional distribution of students relative to staff, and
madrasah level substantially affect the SVM model’s classification accuracy. Conversely,
variables such as accreditation status (X2) and madrasah location (X9) record the lowest PFI
values. Notably, accreditation status even shows a slightly negative value at the 0.05
confidence interval, indicating that its contribution may be negligible or potentially
introduce noise into the predictive process.
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The ranking of these features highlights the practical implication that quantitative and
structural characteristics of schools (such as student numbers, ratios, and institutional levels)
are more critical for accurate predictions than demographic or administrative attributes. This
finding suggests that educational data analysis using SVM models may yield stronger
predictive accuracy when emphasizing measurable institutional capacity indicators rather
than identity-based variables.

5. CONCLUSION

This study demonstrates that the Random Forest model consistently outperforms the
SVM model in predicting madrasah data accuracy, with the best performance achieved by
Random Forest using the ROSE sampling. Variable importance analysis reveals that the
number of students and the student-to-teacher and staff ratio are the most influential
predictors. These findings highlight the importance of maintaining accurate and complete
records of students, teachers, and staff, verified through official documentation such as
family cards, birth certificates, and assignment letters. Achieving this goal requires effective
coordination among principals, teachers, data operators, students, and parents. Strengthening
data governance will enhance the quality and reliability of educational data, support
evidence-based decision-making, and enhance management and accountability in
madrasahs.
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