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Abstract: This study aims to identify the most effective 

classification method for predicting the accuracy level of 

madrasah data with class imbalance. Two machine learning 

approaches were employed: Random Forest (RF) and Support 

Vector Machine (SVM). Based on the AUC values, it was 

concluded that the RF model had a slightly better performance 

in predicting the accuracy level of the madrasah data, with an 

average AUC of 62.82, compared to the SVM model, which had 

an average AUC of 62.33. Among all models, the highest and 

consistent performance was achieved by the RF model using 

ROSE techniques. The results of measuring variable importance 

showed that the predictor variables with the greatest influence 

in predicting the accuracy level of the madrasah data are the 

number of students and the student-to-teacher and staff ratio. 

This finding suggests that school principals and madrasah 

administrative staff should prioritize ensuring the completeness 

of student, teacher, and staff data to improve the overall 

reliability of madrasah data. 

 

1. INTRODUCTION 

The rapid advancement of information technology has driven public organizations, 

including government agencies, to adopt digital systems that enhance the accuracy, 

efficiency, and reliability of data management. High-quality data is essential for evidence-

based decision-making, strategic planning, and effective implementation of public programs, 

as unreliable data risks undermining policy outcomes (Batini et al., 2009).  

The Directorate General of Islamic Education at the Ministry of Religious Affairs 

(MORA) has developed the Education Management Information System (EMIS) as the 

backbone for managing Islamic education data nationwide, enabling systematic collection, 

storage, analysis, and dissemination (Syarip & Rosidin, 2003). To ensure madrasah data 

quality, MORA initiated an annual data accuracy audit survey in 2020, with the 2023 survey 

of 1,210 madrasahs reporting a 76% national data accuracy rate. This relatively good 

achievement indicates that EMIS data are generally reliable for policymaking, yet further 

improvements are required to enhance accuracy and strengthen its role in supporting 

evidence-based decision-making. Despite its importance, empirical studies on measuring 
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and predicting data accuracy in government education information systems, particularly in 

Islamic education, remain limited, highlighting a significant research gap. 

This study aims to model and predict the accuracy level of madrasah data using two 

machine learning–based classification methods: Random Forest (RF) and Support Vector 

Machine (SVM). These methods have been proven effective in handling complex 

classification problems and improving predictive performance compared to traditional 

statistical approaches (Breiman, 2001; Cortes & Vapnik, 1995). Several studies have 

compared RF and SVM in classification tasks across different domains. For example, 

Caruana & Niculescu-Mizil (2006) found that both RF and SVM consistently achieved 

strong predictive accuracy in large-scale empirical evaluations, with RF often performing 

better in handling noisy datasets, while SVM demonstrated superior performance in high-

dimensional spaces. Similarly, Fernández-Delgado et al. (2014) conducted a comprehensive 

benchmark analysis involving 179 classifiers across 121 datasets and reported that both RF 

and SVM ranked among the most accurate classifiers, though RF generally showed higher 

robustness and lower variance across diverse data conditions. 

The novelty of this research lies in integrating data quality auditing with advanced 

classification models to generate actionable insights for improving the reliability of 

madrasah data. By bridging the gap between data quality assessment and machine learning 

applications, this study contributes theoretically to the literature on public sector data 

governance and practically to policy recommendations for strengthening data management 

in Islamic education in Indonesia. 

 

2. LITERATURE REVIEW 

2.1. Random Forest 

Random Forest is a technique employed for both classification and regression. It 

operates as an ensemble of learning methods, utilizing decision trees as fundamental 

classifiers, which are constructed and amalgamated (Kulkarni & Sinha, 2014). In simple 

terms, the algorithm of Random Forest can be explained as follows: if the training dataset 

has n magnitude size and consists of p predictor variables, next come the steps of preparation 

and estimation using the Random Forest method (Breiman & Cutler, 2003):  

1) Bootstrap stage: performs random sampling with n-size recovery from the training 

dataset. 

2) Random sub-setting stage: a tree is constructed using the bootstrap dataset, extending to 

its fullest extent (without pruning). At every node, the sorter (mtry) is chosen by randomly 

selecting up to m predictor variables, where m < p. 

3) The process is reiterated k times, duplicating steps (1) and (2), resulting in a forest 

composed of k random trees. 

In Random Forest, the number of predictor variables randomly selected at each node, 

denoted as m (or mtry), is commonly determined using practical rules of thumb, where m is 

set to the square root of the total number of predictors (p) for classification tasks, and 

approximately one-third of p for regression tasks (Liaw & Wiener, 2002). By aggregating 

the predictions of k trees, Random Forest estimates an observation’s response, while its 

accuracy is evaluated through out-of-bag (OOB) error. OOB data, excluded from bootstrap 

samples, provide an unbiased estimate of misclassification and are also used to assess 

variable importance (Breiman, 2001). Each observation is predicted by about one-third of 

the trees, and the OOB error is calculated as the proportion of misclassified predictions 

across all observations in the dataset. 
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Breiman & Cutler (2003) suggest observing OOB errors when the number of trees (k) 

is small and selecting the number of predictors (m) that minimizes OOB error. For generating 

variable importance, it is advisable to use many trees—typically 1000 or more—especially 

when many predictors are analyzed, to ensure more stable results. 

2.2. Support Vector Machine 

Support Vector Machine (SVM) stands out among supervised learning algorithms, 

commonly employed for both regression and classification (Awad & Khanna, 2015; Cortes 

& Vapnik, 1995). In classification modeling, SVM offers a well-established and 

conceptually clear framework compared to other methods. The objective of the SVM 

algorithm is to establish an optimal decision line or boundary, termed the hyperplane, that 

effectively partitions n-dimensional spaces into distinct classes. This hyperplane facilitates 

the accurate categorization of new data points in the future. The SVM algorithm identifies 

extreme points or vectors, referred to as support vectors, that are crucial for the hyperplane 

construction. Therefore, it is referred to as a Support Vector Machine (Noble, 2006).  

In real-world applications, many problems are inherently non-linear; therefore, kernel 

functions are applied to address the issue of nonlinearity. According to Hsu et al. (2003), 

four basic kernel functions are commonly used, namely: 

1) Linear: 𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 

2) Polynomial: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑅)𝑑, 𝛾 > 0 

3) Radial Basis Function (RBF): 𝐾(𝑥𝑖, 𝑥𝑗) = exp(−𝛾||𝑥𝑖 − 𝑥𝑗||
2) , 𝛾 > 0 

4) Sigmoid: 𝐾(𝑥𝑖 , 𝑥𝑗) = tanh⁡(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑟) 

where γ,r, and d are kernel parameters. 

2.3. Classification Accuracy 

The performance of a classification algorithm is commonly evaluated using a 

confusion matrix, which summarizes the number of correctly and incorrectly predicted 

observations (Gorunescu, 2011). The matrix distinguishes four outcomes: True Positive (TP) 

when a positive case is correctly classified, True Negative (TN) when a negative case is 

correctly classified, False Positive (FP) when a negative case is incorrectly classified as 

positive, and False Negative (FN) when a positive case is misclassified as negative. Higher 

TP and TN values generally correspond to better accuracy, precision, and recall. Based on 

these components, various performance metrics can be derived, including accuracy, 

sensitivity/recall, specificity, precision, and F1-Score. The formulas for these measures are 

expressed as follows: 

Accuracy =
TP⁡ + ⁡TN

TP⁡ + ⁡TN⁡ + ⁡FP⁡ + ⁡FN
⁡× ⁡100% (1) 

Sensitivity/Recall =
TP

TP⁡ + ⁡FN
⁡× ⁡100% (2) 

Specificity =
TN

TN + FP
× 100% (3) 

Precision =
TP

TP + FP
× 100% (4) 

F1⁡Score =
2 × Precision × Recall

Precision + Recall
× 100% (5) 
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2.4. Area Under Curve (AUC) 

The Receiver Operating Characteristic (ROC) curve is one of the most used tools for 

evaluating classification systems because it can evaluate algorithms very well. The threshold 

for sensitivity and specificity determines the construction of the ROC curve and the 

derivation of the Area Under Curve (AUC) value (Kuhn, 2008). The use of the AUC as a 

performance metric is essential, particularly when evaluating classification models on 

imbalanced datasets. Unlike accuracy, which can be misleading in the presence of class 

imbalance, AUC provides a threshold-independent measure of the model’s overall 

discriminative ability between positive and negative classes (Kuhn & Johnson, 2013).  

In addition to AUC, the Matthews Correlation Coefficient (MCC) is often used for 

imbalanced datasets as it incorporates all elements of the confusion matrix into a single value 

(Chicco & Jurman, 2020). However, MCC is threshold-dependent, while AUC evaluates 

performance across all thresholds, offering a more comprehensive measure of classification 

power. Given its broad adoption in machine learning, this study employs AUC as the primary 

evaluation metric, with its formula expressed as follows: 

AUC =
Sensitivity + Specificity

2
× 100% (6) 

2.5. Class Imbalance 

Class imbalance is one of the problems that often occurs in data mining. This happens 

when there is a significant difference in size or frequency between the minority and majority 

classes (Ren et al., 2017). Models built with imbalanced data will have poor accuracy for 

minority predictions. There are biased decision boundaries in the categorization system 

because the dominant class has richer knowledge than the minority class (Jian et al., 2016). 

To overcome class imbalance, resampling techniques are applied at the preprocessing stage 

to rebalance the data distribution, thereby reducing bias in the learning process. These 

techniques include undersampling, which reduces the majority class; oversampling, which 

replicates the minority class; and hybrid approaches that combine both (Jian et al., 2016). 

Among various oversampling methods, Random Over-Sampling Examples (ROSE) is 

widely used to effectively mitigate imbalance and improve model performance (He et al., 

2018).  

2.6. Variable Importance 

One commonly used approach to assessing variable importance is by evaluating the 

frequency with which a variable is used for splitting in a group of decision trees. The more 

frequently a variable is used and the greater its contribution to reducing impurity, the more 

important it is considered. A widely recognized method for quantifying variable importance 

in the Random Forest is the Mean Decrease Gini (MDG), as proposed by Breiman (2001). 

The MDG index measures the importance of the predictor variable 𝑥ℎ, suppose there are p 

predictor variables with ℎ = (1, 2, … , 𝑝).  This measure reflects the average decrease in Gini 

impurity attributed to splits using 𝑥ℎ across all trees in the forest. 

MDG(𝑥ℎ) =
1

𝑘
[1 −∑ Gini(ℎ)𝑘]

𝑘
 (7) 

where Gini(ℎ)𝑘: Gini index for predictor variables 𝑥ℎ in the kth tree; k: the number of trees 

in Random Forest  

Unlike Random Forest, SVM does not inherently provide measures of variable 

importance, particularly when using nonlinear kernels such as the Radial Basis Function 
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(RBF). Therefore, external techniques are required to assess which features contribute most 

to the model’s predictive performance. A widely adopted method is Permutation Feature 

Importance (PFI), which is model-agnostic and applicable to SVMs. The principle is simple: 

by permuting the values of a given feature and observing the drop in model performance, 

one can quantify the importance of that feature (Fisher et al., 2019). Features causing 

substantial performance degradation when shuffled are considered highly relevant, while 

those with negligible or negative effects may be irrelevant or noisy. In practice, PFI results 

provide ranked importance scores with uncertainty intervals, allowing researchers to better 

understand the role of each predictor in classification tasks. 

 

3. MATERIAL AND METHOD 

3.1. Source of Data 

The data used in this study consisted of one response variable and nine predictor 

variables, as detailed in Table 1. 

Table 1. List of Variables in This Study 

No. Label Variable Name Information Data Type 

1 Y Data Accuracy Level 1: Good  2: Less Ordinal 

2 X1 Madrasah Level 1: RA  

2: MI 

3: MTs 

4: MA 

Nominal 

3 X2 Accreditation Status 1: Not Accredited 

2: C 

3: B 

4: A 

Ordinal 

4 X3 Operator Education 

Qualification 
1:  High School 

2: Diploma 

3: S1 

4: > S1 

Ordinal 

5 X4 Headmaster’s Account 

Authority 

1: Handed over to the Operator 

2: Held by Headmaster Himself 

Nominal 

6 X5 Number of Students Number of students in each madrasah Numeric 

7 X6 Ratio of Students to 

Teachers and Staff 

Number of students divided by the 

number of teachers and staff 

Ratio 

8 X7 Gender of Operator  1: Male 2: Female Nominal 

9 X8 Gender of Headmaster 1: Male 2: Female Nominal 

10 X9 Madrasah Location 1: Lowland 

2: Coastline 

3: Mountains Nominal 

The data for this study were obtained from the 2023 Islamic Education Data Accuracy 

Audit survey conducted by the Directorate General of Islamic Education, Ministry of 

Religious Affairs, through observations and direct interviews with school principals and data 

operators. The survey covered 1,210 madrasahs at the level of MA (Madrasah Aliyah), MTs 

(Madrasah Tsanawiyah), MI (Madrasah Ibtidaiyah), and RA (Raudhatul Athfal) in 102 

regencies/cities. Given the large, geographically dispersed, and hierarchically structured 

population of 86,343 madrasahs across 34 provinces and 514 districts/cities in Indonesia as 

of 2023, a multistage random sampling technique was employed. In the first stage, a random 

selection of districts/cities was conducted, followed by the random selection of madrasahs 

within the selected areas. This sampling method was chosen to ensure adequate 

representation of the target population while optimizing the use of time, financial resources, 

and logistical capacity. Such an approach is particularly appropriate for educational surveys 

involving clustered populations, where full population enumeration is impractical (Babbie, 

2020). Based on the survey results, the percentage of data accuracy (PDA) for each sample 

madrasah was obtained, which was calculated using the formula: 
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PDA =
the⁡number⁡of⁡correct⁡EMIS⁡data⁡attributes⁡according⁡to⁡survey⁡results

the⁡number⁡of⁡all⁡surveyed⁡data⁡attributes
⁡× 100% (7) 

Furthermore, the PDA obtained is converted into a Data Accuracy Level (DAL) 

category consisting of two classifications: “Less” for values below 71% and “Good“ for 

values equal to or above 71%.  

3.2. Research Methodology 

As mentioned above, this study applied two classification methods: Random Forest 

(RF) and Support Vector Machine (SVM), to predict the accuracy level of madrasah data. 

These two ensemble methods were evaluated and compared to determine which method 

showed better performance in classifying and predicting the accuracy level of madrasah data.  

The methodology in this study consists of several steps (see Figure 1), including: (1) 

data collection; (2) pre-processing of data, consisting of: (a) check for the condition of class 

imbalance and perform resampling; (b) for each sampling method, split the observation data 

into two (training and testing); (3) create the model with the original training data and the 

resampled training data; (4) testing the trained RF and SVM models using the test dataset to 

generate predictions; (5) create confusion matrix and evaluation the model; (6) measurement 

of variable importance. 

 

Figure 1. Research Methodology  

The RF model was developed by partitioning the observation data into two subsets, 

with 80% allocated for training and 20% for testing. Model tuning was performed by varying 

the number of trees (ntree) at 300, 500, and 1000, and the number of predictor variables used 

at each split (mtry) at 2, 3, and 6. The results across these parameter configurations were 

compared to identify the optimal model for predicting the accuracy level of madrasah data, 

with the smallest out-of-bag (OOB) error serving as the selection criterion.  

Similarly, the SVM model was trained using an 80/20 split of the data, with the Radial 

Basis Function (RBF) kernel employed to capture nonlinear relationships. Two key 

hyperparameters were considered: cost (C), which regulates the trade-off between margin 

width and classification error, and sigma (𝜎), which controls the influence of each data point 

in shaping the decision boundary. The tuning process of the SVM model was carried out by 

adjusting the cost (C) parameter at values of 0.25, 0.50, and 1.00. 
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To address the issue of class imbalance, three resampling methods were applied: 

undersampling, oversampling, and ROSE. Undersampling reduces the size of the majority 

class through random selection, thereby balancing it with the minority class. Oversampling 

increases the representation of the minority class by randomly replicating its instances until 

class proportions are balanced. The ROSE method generates synthetic observations using a 

smoothed bootstrap approach, creating a more representative and balanced training dataset. 

 

4. RESULTS AND DISCUSSION 

4.1. Overview of Observation Data 

The research dataset comprised 1,210 observations with an imbalanced response 

variable. The "Good" class has a percentage of 80.08% or 969 data, much higher than the 

"Less" class with a percentage of 19.92% or 241 data. Furthermore, the 1,210 observational 

data were divided into two data groups with a ratio of 80% or 968 training data, and 20% or 

242 testing data. Of the 968 training data, it consisted of 766 or 79.13% of the "Good" class 

data and 202 or 20.87% of the "Less" class data. A comparison between observational data 

and training dataset based on class is presented in Figure 2. 

 
Figure 2. Classes Comparison of Response Variable (Data Accuracy Level) 

4.2. Resampling 

The issue of class imbalance in observational data is addressed through resampling, 

aiming to procure a training dataset with a more equitable class distribution. A comparison 

between the data volume of the majority and minority classes in both the original training 

data and the resampled outcomes is presented in Table 2. 

Table 2. Comparison of Training Data for each Sampling Method 

Sampling 

Methods 

Amount of Data Ratio 

Good Less Good Less 

 Original  766  202  79.13% 20.87% 

 Undersampling  184  202  47.67% 52.33% 

 Oversampling  766  796  49.04% 50.96% 

 ROSE  480  488  49.59% 50.41% 

The comparison of the original training data shows a very unbalanced ratio between the 

majority class ("Good") of 79.13% and the minority class ("Less") of 20.87%. Meanwhile, 

training data that has been resampled using the under-sampling method shows a relatively 

balanced ratio, with the "Good" class of 47.67% and the "Less" class of 52.33%. Similarly, 

for the oversampling method, the "Good" class has a ratio of 49.04% and the "Less" class of 

50.96%. As for the ROSE method, the ratio of the "Good" class is 49.59%, and the "Less" 

class is 50.41%. 
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4.3. Random Forest Classification Analysis 

To obtain the optimal Random Forest model with the lowest OOB error, the algorithm 

was trained repeatedly using combinations of ntree values (300, 500, and 1000) and mtry 

values (2, 3, and 6). The smallest OOB error, 21.19%, was achieved with ntree = 1000 and 

mtry = 2. Table 3 reports the performance of this optimal model, evaluated on the original 

training data as well as three resampled datasets (undersampling, oversampling, and ROSE). 

The evaluation includes confusion matrices and performance metrics—accuracy, precision, 

recall, F1-Score, and AUC—providing a comprehensive assessment of the model’s ability 

to classify the accuracy level of madrasah data. 

The model trained on the original dataset achieved the highest accuracy (82.64) and 

F1-Score (90.37), showing strong performance in identifying the majority class (“Good”) 

with balanced precision (84.55) and recall (97.04). However, its low AUC (52.37) indicates 

limited ability to distinguish the minority class (“Less”). In contrast, undersampling resulted 

in the weakest performance, with accuracy dropping to 59.92 and recall to 58.13. Although 

its AUC improved to 63.68, the overall predictive power declined due to loss of information 

from reducing the majority class. This finding supports previous research highlighting the 

drawbacks of undersampling and its risk of information loss (Haibo He & Garcia, 2009). 

Table 3. Confusion Matrix of Random Forest Model 

Sampling 

Methods 
Prediction Actual Value 

  Good Less Accuracy Precision Recall F1-Score AUC 

Original Good 197 36 
82.64 84.55 97.04 90.37 52.37 

 Less 6 3 

Undersampling Good 18 12 
59.92 90.77 58.13 70.87 63.68 

 Less 85 27 

Oversampling Good 147 15 
70.66 90.74 72.41 80.55 66.98 

 Less 56 24 

ROSE Good 147 14 
71.07 91.30 72.41 80.77 68.26 

 Less 56 25 

The application of oversampling produced more balanced classification outcomes, 

raising the AUC to 66.98, with a precision of 90.74 and an accuracy of 70.66. This 

demonstrates its effectiveness in improving the detection of minority class instances while 

maintaining predictive performance for the majority class. Similarly, the ROSE method 

achieved the highest AUC (68.26) and precision (91.30), with an accuracy of 71.07, showing 

comparable overall performance. By generating synthetic minority class examples, ROSE 

effectively mitigates class imbalance and enhances the model’s ability to distinguish 

between classes (Lunardon et al., 2014). 

Overall, the findings demonstrate that the choice of sampling method greatly affects 

the performance of Random Forest on imbalanced data. While the original dataset yielded 

the highest accuracy and recall, its low AUC reflects poor performance to identify the 

minority class. In contrast, the ROSE technique provides the best trade-off and most 

consistent balance across evaluation metrics, making it the most effective resampling 

approach for addressing class imbalance in predicting the accuracy level of madrasah data. 

4.4. Support Vector Machine Classification Analysis 

Hyperparameter tuning for the SVM model with a radial basis kernel identified the 

optimal configuration at sigma (σ) = 0.0449 and cost (C) = 0.25, achieving the highest 

accuracy (79.6%) compared to other C values (0.50 and 1.00). Table 4 shows the model’s 
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performance (σ = 0.0449, C = 0.25) across different sampling methods: original data, 

undersampling, oversampling, and ROSE. The model trained on the original data yielded the 

highest accuracy (83.88), recall (100.00), and F1-score (91.24), indicating perfect 

classification of the majority class (“Good”). However, its AUC score was only 50.00, 

suggesting poor discrimination between majority and minority classes and a bias toward the 

majority class, thus limiting its effectiveness on imbalanced data. 

Resampling techniques enhanced the model’s ability to detect minority classes. 

Oversampling produced the most balanced performance, achieving the highest AUC (67.08), 

precision (91.33), and accuracy (67.36), indicating improved discriminative power and 

stability of SVM. ROSE delivered comparable results with slightly lower AUC (65.85), 

accuracy (65.29), and precision (91.03). Undersampling increased AUC (66.39) but reduced 

accuracy (64.46) and F1-Score (75.00) due to the loss of data volume. Overall, oversampling 

proved the most effective approach for improving SVM performance on imbalanced 

madrasah data, ensuring fairer classification between majority and minority classes. 

Table 4. Confusion Matrix of SVM Model 

Sampling Methods Prediction Actual Value 

  Good Less Accuracy Precision Recall F1-Score AUC 

 Original   Good  203 39 
83.88 83.88 100.00 91.24 50.00 

  Less  - - 

 Undersampling   Good  129 12 
64.46 91.49 63.35 75.00 66.39 

  Less  74 27 

 Oversampling   Good  137 13 
67.36 91.33 67.49 77.62 67.08 

  Less  66 26 

 ROSE   Good  132 13 
6.29 91.03 65.02 75.86 65.85 

  Less  71 26 

4.5. Model Evaluation 

The comparison between Random Forest (RF) and Support Vector Machine (SVM) 

reveals notable differences in handling class imbalance in madrasah data. Trained on the 

original dataset, both models achieved high accuracy (RF = 82.64, SVM = 83.88) and recall 

(RF = 97.04, SVM = 100.00), demonstrating strong performance for the majority class 

(“Good”). However, their very low AUC values (RF = 52.37, SVM = 50.00) highlight poor 

discrimination of the minority class (“Less”), confirming that models without resampling 

are biased toward the dominant class and fail to generalize effectively. 

When resampling techniques were applied, both models exhibited improvements in 

their ability to recognize minority cases. For Random Forest, the ROSE method produced 

the most consistent performance, with the highest AUC (68.26), the highest accuracy 

(71.07), and a balanced recall (72.41). For SVM, oversampling yielded the best results, 

achieving the highest AUC (67.08) along with the highest accuracy (67.36) and an 

acceptable recall (67.49). While both algorithms benefited from resampling, Random Forest 

consistently demonstrated slightly better balance across recall, accuracy, and AUC 

compared to SVM. 

These results align with previous studies conducted by Caruana & Niculescu-Mizil 

(2006) and Fernández-Delgado et al. (2014), which show the superiority of the Random 

Forest over SVM. In the context of madrasah data, Random Forest with ROSE technique 

provides the most reliable performance by addressing class imbalance and improving the 

representation of minority data. 
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4.6. Variable Importance 

Variable importance was calculated for the model that was considered the best 

classification model in this study: Random Forest model with the ROSE sampling and SVM 

with oversampling technique. The importance of predictor variables in the Random Forest 

model is measured using the Mean Decrease Gini (MDG). The greater the MDG value of a 

variable, the more important the variable is in the model. Table 5 displays the MDG value 

for each predictor variable in the Random Forest model using the ROSE. 

Table 5 shows that the number of students (X5) and the student-to-teacher and staff 

ratio (X6) are the strongest predictors of madrasah performance in data management, with 

MDG indices of 79.44366 and 74.27680, respectively. These results highlight the need for 

accurate data on student enrollment and teacher allocation to support effective resource 

planning and prevent issues such as overcrowded classrooms or underutilized staff. The 

madrasah level (X1), with MDG index of 48.93449, further underscores the role of valid 

institutional data in strategic planning and quality assurance. Strengthening data reporting 

systems is thus essential for policymakers and madrasah administrators to design 

interventions that target the most critical performance factors. 

Table 5. Variable Importance of the ROSE Random Forest Model 

No.   Variables   MDG  

1   X5   Number of Students  79.44366  

2   X6   Ratio of Students to Teachers and Staff  74.27680  

3   X1   Madrasah Level  48.93449  

4   X2   Accreditation Status  29.43915  

5   X7   Gender of Operator  23.31659  

6   X3   Operator Education Qualification  20.62864  

7   X9   Madrasah Location  20.10117  

8   X8   Gender of Headmaster  13.02222  

9   X4   Headmaster’s Account Authority  12.02313  
 

Table 6. Variable Importance of the Oversampling SVM Model 

No Variables PFI (0.05) PFI (Average) PFI (0.95) 

1 X5 Number of Students 0.03606 0.04667 0.05163 

2 X6 Ratio of Students to Teachers and Staff 0.03737 0.04439 0.05437 

3 X1 Madrasah Level 0.03445 0.03753 0.04749 

4 X3 Operator Education Qualification 0.01975 0.02350 0.03006 

5 X7 Gender Operator 0.01074 0.02121 0.02719 

6 X4 Headmaster’s Account Authority 0.01465 0.01958 0.02513 

7 X8 Gender of Headmaster 0.00783 0.02108 0.01407 

8 X9 Madrasah Location 0.00271 0.02242 0.01609 

9 X2 Accreditation Status -0.00013 0.00587 0.01217 

Table 6 presents the variable importance values of the oversampling SVM model based on 

Permutation Feature Importance (PFI). The results show the relative contribution of each 

predictor to the model’s performance. Among the variables, the number of students (X5), 

the student-to-teacher and staff ratio (X6), and madrasah level (X1) emerge as the most 

influential, with average PFI scores of 0.04667, 0.04439, and 0.03753, respectively. This 

suggests that school size, the proportional distribution of students relative to staff, and 

madrasah level substantially affect the SVM model’s classification accuracy. Conversely, 

variables such as accreditation status (X2) and madrasah location (X9) record the lowest PFI 

values. Notably, accreditation status even shows a slightly negative value at the 0.05 

confidence interval, indicating that its contribution may be negligible or potentially 

introduce noise into the predictive process. 
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The ranking of these features highlights the practical implication that quantitative and 

structural characteristics of schools (such as student numbers, ratios, and institutional levels) 

are more critical for accurate predictions than demographic or administrative attributes. This 

finding suggests that educational data analysis using SVM models may yield stronger 

predictive accuracy when emphasizing measurable institutional capacity indicators rather 

than identity-based variables.  

 

5. CONCLUSION 

This study demonstrates that the Random Forest model consistently outperforms the 

SVM model in predicting madrasah data accuracy, with the best performance achieved by 

Random Forest using the ROSE sampling. Variable importance analysis reveals that the 

number of students and the student-to-teacher and staff ratio are the most influential 

predictors. These findings highlight the importance of maintaining accurate and complete 

records of students, teachers, and staff, verified through official documentation such as 

family cards, birth certificates, and assignment letters. Achieving this goal requires effective 

coordination among principals, teachers, data operators, students, and parents. Strengthening 

data governance will enhance the quality and reliability of educational data, support 

evidence-based decision-making, and enhance management and accountability in 

madrasahs. 
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