
 

p-ISSN 1979 – 3693 e-ISSN 2477 – 0647 

MEDIA STATISTIKA 17(2) 2024: 140-149 

http://ejournal.undip.ac.id/index.php/media_statistika 

 

Media Statistika 17(2) 2024: 140-149 140 

 

A COMPARISON OF MULTIPLICATIVE AND ADDITIVE HAZARD MODELS 

USING THE HAZARD AND SURVIVAL RATIO 

 
Danardono, Gunardi 

Department of Mathematics, Universitas Gadjah Mada, Yogyakarta, Indonesia 

 

e-mail: danardono@ugm.ac.id  

 

DOI: 10.14710/medstat.17.2.140-149 
 

Article Info: 
Received: 04 July 2024 

Accepted: 30 December 2024 

Available Online: 31 December 2024 

 
Keywords:  
Survival Analysis; the Cox 

Proportional Hazards; the Aalen 

Additive Hazards; Simulations 

 

Abstract: The Cox multiplicative hazards regression and 

Aalen additive hazards regression models are widely used for 

survival data analysis. While the Cox model emphasizes 

hazard ratios or relative risks, the Aalen model focuses on 

relative survival or excess risks. This study compares the 

performance of these models through simulations of 

biomedical survival data. Results reveal no clear dominance 

of one model over the other, suggesting that both models 

should be employed to have a more thorough survival analysis. 

 

1. INTRODUCTION  

Survival data or time-to-event data frequently arise in many applications including 

biomedical investigations, actuarial science, epidemiology, demography, and so forth 

(Başar, 2017; Cook & Lawless, 2014; Emmerson & Brown, 2021; Haberman & Sibbett, 

2024; Kragh Andersen et al., 2021; Wuryandari & Kartiko, 2018) . Two competing models 

to analyze survival data are the Cox proportional hazards model, which is also known as the 

multiplicative hazards model; and the Aalen additive hazards model. Simple and rough 

bibliometric analysis using Scopus in 2023 with keywords related to the multiplicative 

hazards model; and keywords related to the additive hazards model showed that the 

published papers with keywords related to the multiplicative hazards model have increased 

exponentially since the seminal paper by Cox in 1972 (Kalbfleisch & Schaubel, 2023) and 

gave total hits of about 108,276. The additive hazards model also started gaining popularity 

since Aalen’s Dissertation in 1975 (Aalen et al., 2020) and reached 2,643 hits.  

The interpretation of the Cox proportional hazards model in terms of hazard ratio is 

intuitive to the users. It is similar to the relative risk and odds ratio in the logistic regression. 

However, misspecification in the Cox model often occurs when the effect of covariate 

changes over time, causing biased parameter estimates (Martinussen & Peng, 2016).  Aalen 

et al. (2008) and Aalen et al. (2015) argued that the additive models are useful. The reason 

is, among others, (1) the model may be the actual relationship governing the data, (2) the 

model has a similar interpretation as risk difference, excess risk, or attributable risk that 

measures public health importance of risk factors, (3) the Additive hazard model fits very 
nicely with the Martingale theory, (4) the models may be developed and implemented for 

dynamic covariates and causality. Despite their frequent use in many applications, one 

question remains: which one should be used?  

It is well known that the multiplicative hazard models, such as the Cox proportional 

hazards model, are closely related to the hazard ratio or relative risk (Kalbfleisch & 
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Schaubel, 2023). Whereas the additive hazards models, such as the Aalen regression models, 

are closely related to the relative survival or excess risk (Aalen et al, 2008). Therefore, a 

comparison of the two models may be studied through the behavior of the hazard ratio and 

survival ratio (relative survival). In this paper, such a comparison will be discussed and 

implemented in a simulation study with the main scenario in the application of biomedical 

survival data analysis, for example, in cancer studies and clinical trials. The principle and 

the methods for comparison will be discussed in the next section. A simulation study will be 

performed in Section 3, and the discussion and conclusion follow in Section 4. 

 

2. MODELS AND METHOD FOR COMPARISON 

The multiplicative hazards model or the Cox regression model assumes that the 

covariates modify the baseline hazard in a multiplicative time-independent way given by  

ℎ(𝑡|𝜓) = ℎ0(𝑡)𝜓 (1) 

where ℎ0(𝑡) is the baseline hazard, common to all individuals; 𝜓 is the parametric function 

of covariates, independent of time. Since the hazard must be non-negative, then 𝜓 has to be. 

Therefore, typically 𝜓 is in the form of the exponential function of covariates and the 

regression parameters. The ratio between hazards of two groups or individuals, e.g., ℎ(𝑡|𝜓1) 

and ℎ(𝑡|𝜓2) given (1), will be constant 𝜓2 𝜓2⁄  over time. Given this property, this model is 

also known as the proportional hazards model.  

The additive hazards model takes the hazard function as  

   ℎ(𝑡|𝜓 ) = ℎ0(𝑡) + 𝜓(𝑡) (2) 

where the 𝜓(𝑡) is the parametric function of covariates, dependent on time. Model (2) 

assumes that the covariate modifies the baseline hazard additively. The 𝜓(𝑡) here is 

parametrically defined as the linear combination of covariates and the regression 

coefficients. In this model 𝜓(𝑡) ≤ ℎ0(𝑡).  

As an illustration, suppose the multiplicative hazards model is specified as in (1) and 

the additive hazards model specified as (2) but with 𝜓(𝑡) = 𝜃, a constant over time. Using 

the functional relationship between 𝑆(𝑡) and 𝜓𝐻(𝑡), the survival function of the 

multiplicative hazards model can be written as 

𝑆(𝑡|𝜓 ) =  exp (−𝐻(𝑡 |𝜓))  

=  exp (∫ ℎ0(𝑡)𝜓 𝑑𝑢
𝑡

0
)  

=  exp (−𝜓 ∫ ℎ0(𝑡) 𝑑𝑢
𝑡

0
)  

=   exp (−𝐻0(𝑡)𝜓)  

=   𝑆0(𝑡)𝜓 (3) 

where 𝑆0(𝑡) is the baseline survival. The additive hazards model is specified in the same 

way 

𝑆(𝑡|𝜃) = 𝑒𝑥𝑝(−𝐻(𝑡|𝜃)) 

=  𝑒𝑥𝑝 (− ∫[ℎ0 (𝑡)  + 𝜃]

𝑡

0

𝑑𝑢) 

=  𝑒𝑥𝑝(−𝐻0(𝑡)  −  𝜃𝑡) 

=  𝑆0 (𝑡) 𝑒𝑥𝑝(−𝜃𝑡) (4) 
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Figure 1a and Figure 1b show the picture of survival functions (3) and (4), taking 

𝑆0(𝑡) as an exponential distribution with parameter unity. When the 𝜓 = 𝜃 ≥ 1 both survival 

curves are lower than the baseline survival, with the additive one being the lowest. Both 

multiplicative and additive curves will coincide when 𝜓 = 𝜃 close to infinity. On the other 

side, given the values 𝜓 = 𝜃 < 1, the survival curve of the multiplicative hazards will be 

higher than the baseline, whereas the survival curve of the additive hazards is always lower 

than the baseline.  

 

 

Figure 1a. Survival curve with the value 

of 𝜓 = 𝜃 ≥ 1 

Figure 1b. Survival curve with the value of 

𝜓 = 𝜃 < 1 

Of course, the values of 𝜓 and 𝜃 do not have to be the same. When 𝜃 is negative, the 

survival curve of the additive hazards model will be larger than the baseline. Values of 𝜓 

and 𝜃 give the same survival curve for both the multiplicative and the additive model. For 

example, given the 𝑆0(𝑡)  is exponentially distributed with a unit parameter, 𝜓 = 2.25 and 

𝜃 = 1.25 will give the same survival curve; also, when 𝜓 = 0.8 and 𝜃 = −0.2. There are 

infinite numbers of 𝜓 and 𝜃 which will give the same survival curve. When this happens, it 

does not matter which one is used, the multiplicative hazards or the additive hazards model 

will give the same result.  

The models considered here are not parametric but semi or non-parametric models, 

in which the baseline survival curve, and the corresponding baseline hazard, are not known. 

Therefore, analytical comparison by investigating hazard or survival function as discussed 

previously is not possible. However, comparison by disregarding the baseline survival and 

the corresponding baseline hazard is still possible by looking at the hazard ratio and survival 

ratio. In the multiplicative hazards model (1), the hazard ratio between two groups or 

individuals will disregard the baseline hazard, since, by proportional hazards assumption, 

the baseline hazard will be canceled out in the hazard ratio. Whereas in the additive hazards 

model (2) the survival ratio (or the relative survival) between two groups or individuals will 

be equal to the exponential of the negative cumulative risk function which can be estimated 

non-parametrically. Therefore, the comparison will be performed based on the estimated 

hazard ratio and survival ratio obtained from both models by a simulation study. The 
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methods for estimating hazard and survival function from each model as the basis for the 

simulation study are discussed in the following.  

For the multiplicative hazards model (1), the hazard model for each individual is 

specified as 

ℎ(𝑡|𝒙, 𝜷)  =  ℎ0 (𝑡) exp(𝒙𝜷) (5) 

where 𝒙 = (𝑥1, … , 𝑥𝑝) is a 1 × 𝑝  vector of covariates for one individual, 𝜷 =  (𝛽1, . . . , 𝛽𝑝) 

is a 𝑝 × 1   vector of regression coefficient. When considering all 𝑖 = 1, … , 𝑛 individuals, 𝑿, 

an 𝑛 × 𝑝  matrix of covariates of all individuals, is used in place of  𝒙. The estimation method 

for β is based on the partial likelihood function (Collett, 2023; van Houwelingen & Stijnen, 

2016). 

The survival function of Model (5) can be estimated using the functional relationship 

between the survival function S(t) and the cumulative hazard function as discussed in the 

early paragraph of this section. The baseline cumulative hazard itself can be estimated by 

the Nelson-Aalen estimator or Breslow estimator, 

𝐻0̂(𝑡) =  ∑
𝑑𝑖

𝑌𝑖
𝑡𝑖 ≤ 𝑡

   (6) 

where 𝑑𝑖 is the number of events, which gives the value of unity in the case of no ties in the 

time-to-event data and 𝑌𝑖 be the number of individuals who are at risk at time 𝑡𝑖. 

The estimated conditional survival function is conditional to the covariates and the 

parameter is given by 

�̂�(𝑡|𝑿, 𝜷) =  �̂�0(𝑡)exp(𝑿𝜷) (7) 

where �̂�0(𝑡) = exp (�̂�0(𝑡))  

The additive hazards model (2) has the following function, 

ℎ(𝑡|𝑥(𝑡)) = ℎ0(𝑡)  +  𝑥(𝑡) 𝛽(𝑡) (8) 

where the covariates are time-dependent. It is also possible that not all the coefficients are 

time-dependent which is known as the semiparametric additive hazards model (Martinussen 

& Scheike, 2006).   

The cumulative hazard for Model (8) is obtained by integrating ℎ(𝑡|𝑿(𝑡)) over time 

𝐻(𝑡|𝑿(𝑡))  = ∫(ℎ0 (𝑢)  + 𝑿(𝑢)𝜷(𝑢))𝑑𝑢

𝑡

0

  

=  𝐻0(𝑡) +  𝑿(𝑢)𝑩(𝑡) 

(9) 

Here, the matrix notations X is used for convenience. The 𝑩(𝑡) is the cumulative regression 

coefficient 𝑩(𝑡) = (𝐵1(𝑡), … , 𝐵𝑝(𝑡), where 𝐵𝑗 = ∫ 𝐵𝑗(𝑢) 𝑑𝑢,
𝑡

0
 𝑗 = 1, … , 𝑝. The method of 

estimation for 𝑩(𝑡) in Model (8) follows that in (Martinussen & Scheike, 2006). 

To estimate the survival function under model (8), the functional relationship 𝑆(𝑡) =
exp(−𝐻(𝑡)) is again used. 

�̂�(𝑡 | 𝑿(𝑡)) =  exp(−�̂�0(𝑡)  − 𝑿(𝑡)�̂�(𝑡)) 

 =  𝑆0(𝑡) exp(−𝑿(𝑡)𝑩 ̂ (𝑡)) 
(10) 
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where the �̂�(𝑡) is the estimate of 𝑩(𝑡) as specified in Model (9).  

The estimation functions of (6), (7), and (10) can be used to calculate the hazard ratio 

and survival ratio between two groups or individuals. The hazard ratio is formulated as, 

𝐻�̂�(𝑡) =
�̂�1(𝑡)

�̂�2(𝑡)
 (11) 

where index 1 and index 2 denote the different groups or individuals. For the multiplicative 

hazards model of (5), the hazard ratio 𝐻�̂�(𝑡) will be constant through time, whereas it is not 

necessary in the additive hazards model of (8). In the case of dichotomous covariates, with 

the estimated regression coefficient �̂�, the adjusted hazard ratio in Model (5) will be exp(�̂�), 

by adjusting means all values for other variables are kept the same in both groups.  

The survival ratio is defined as  

𝑆�̂�(𝑡) =
�̂�1(𝑡)

�̂�2(𝑡)
 (12) 

where in the additive hazards model (8), the estimation (12) will be equal to exp (−(�̂�(𝑡))), 

which is also known as the adjusted relative function of covariates (Aalen et al., 2008b).  

As it has been mentioned earlier, a comparison between the two models will be 

performed through a simulation study. The comparison is based on the performance of the 

estimated survival function given a certain Data Generating Process (DGP) for the survival 

random variable 𝑇. Three data DGPs are considered here: (1) the multiplicative hazards 

model; (2) the additive hazards model, with time-independent coefficient on the main 

covariate of interest; (3) the additive hazards model, with time-dependent coefficients on the 

main covariates of interest.  

Often, the main interest in biomedical applications is the comparison of survival 

curves for two or more competing groups. For example, comparing the survival curve 

between treatment and control groups. Therefore, the multiplicative and additive models in 

the simulation study accommodate this kind of survival data. Two covariates were 

considered here, one is a zero-one covariate representing the treatment and control group 

usually used in biomedical applications; the other one is a continuous covariate, representing 

a potential confounding variable. The main models were the multiplicative hazards model 

and additive hazards model as follows. 

1. Specification for the multiplicative hazards model  

ℎ(𝑡|𝑥) =  0.05 exp(𝛽1 𝑋1  + 𝛽2 𝑋2 ) (13) 

where 𝑋1 are independent Bernoulli distribution with mean value of 0.5; 𝑋2 are 

independent Uniform distribution; 𝛽1 = 1.44 and 𝛽2 = 0.16. Other distributions can be 

specified, as long as it is a discrete distribution for 𝑋1, and a continuous distribution for 

𝑋2.  

2. Specification for the additive hazards model with time-independent effect on the main 

variable of interest 

ℎ(𝑡|𝑥) =  𝛽1 + 𝛽2 𝑋1   + 𝛽3 𝑋2 (14) 

where 𝑋1 are independent Bernoulli distribution with mean value of 0.5; 𝑋2 are 

independent Uniform distribution; 𝛽1 = 0.07, 𝛽2 = 0.14 and 𝛽3 = 0.04.  

3. Specification for the additive hazards model, with time-dependent effects on the main 

variable of interest 
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ℎ(𝑡|𝑥) = 0.05 +  
1

log(1 + 𝑡)
𝑋1 + 𝛽2 𝑋2 (15) 

where 𝑋1 are independent Bernoulli distribution with mean value of 0.5; 𝑋2 are 

independent Uniform distribution; 𝛽1 = 0.07, the 
1

log(1+t)
 is mimicking the decreasing 

time-varying effect of 𝑋1; and 𝛽2 = 0.04.  

For each DGP, samples of size n = 100, 200 were generated using the method based 

on the data generation given hazard rate. For each sample set, several statistical quantities 

were obtained from the estimated models as the basis for the comparison analysis as 

described below. 

1.   The estimated coefficients of the Cox multiplicative hazards Regression. 

These quantities were estimated using the Partial Likelihood and were compared with 

the true values of Model (13) 

2.   The test for the proportional hazard assumption. 

The data generated by the additive hazards model will likely violate the proportionality 

assumptions of the Model (13). In this simulation, the behavior of the p-values obtained 

from the R replication was investigated. As random variables, p-values will be uniformly 

distributed if they are not significant. 

3.  The hazard ratios.  

For the Cox regression methods, these values were calculated from the estimated 

coefficients of the main variable (𝑋1 in the DGP); for the Aalen regression, these 

quantities were calculated from the estimated cumulative hazard for 𝑋1=1, 

�̂�(𝑡 |𝑋1 = 1) =  �̂�0(𝑡)  + �̂�1(𝑡)𝑋1  + �̂�2(𝑡) �̃�2 (16) 

and for 𝑋1 = 0 

�̂�(𝑡|𝑋1 = 0) =  �̂�0(𝑡)  + �̂�2(𝑡)�̃�2 (17) 

with �̃�2= 0.5 which is the mean of random uniform(0,1), the underlying distribution of 

𝑋2 as specified by the DGPs above. The hazard ratios are �̂�(𝑡)|𝑋1 = 1 �̂�(𝑡)|𝑋1 = 0⁄ . 

The similar calculation is applicable for the hazard ratios of the DGP under additive 

hazards models (14) and (15), replacing the estimate of 𝐵1(𝑡) and 𝐵2 with the true values 

under the models. The average differences between estimated hazard ratios and the true 

hazard ratios for the whole times (the times were taken from each the generated models) 

were calculated for R replications.  

4.    The survival ratios.  

For the Cox regression methods, the ratios were calculated from exp(exp(−�̂�1)t) and 

replacing �̂�1with β1 for the DGP of Model (13). For the Aalen model, the ratio is 

exp(−�̂�1(t)) and replacing �̂�1(t) with B1(t) for the DGP under Model (14) and (15). The 

average differences between estimated survival ratios and the true survival ratios for the 

whole time were calculated for R replications. 

For each combination of DGP, sample sizes, and their statistical quantities, an R = 

500 replications were performed. The computations were performed using R (R Core Team, 

2024) and library survival (Therneau, 2024) and timereg (Martinussen & Scheike, 2006). 

The next section shows the simulation results. 
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3. SIMULATION RESULT 

a. DGP under the Multiplicative Hazards Models 

   The estimates of β1, as the main effect to be studied, using the Cox regression model 

is as expected. The estimations were reasonably good. The �̂�1’s were very close to the true 

value β1 = 1.44. As the sample size increased, the precision is also increased. (Figure 2). The 

same behavior were also found for the other estimated parameter β2’s, in which the 

estimations were very close to the true value. Under the multiplicative hazards model, the 

test for proportionality assumptions were accepted. The medians and means for the p-values 

of 500 replications gave values near 0.5, showing that the proportionality assumptions were 

not rejected. The results also showed that the estimated hazard ratio , i.e., the exponential of 

the Cox regression’s coefficients were very close to the true hazard ratio, even if the baseline 

hazard in the Model (13) is a constant hazard of 0.05, whereas in the estimation this baseline 

hazard was not specified.  

  

Figure 2a. The Boxplot of the �̂�1  Figure 2b. The Boxplot of the �̂�2  

The hazard ratios calculated from the Aalen model are compared to the true hazard 

ratio, exp(1.44), using the mean difference between. The result shows that Aalen’s hazard 

ratios and the true Cox’s hazard ratio are close but they have very high variability (Figure 

3). This pattern is the same for the larger sample size (n = 200). The mean differences 

between the survival ratio calculated by the Cox multiplicative hazards exp(exp(−�̂�1)t) and 

the true survival ratio exp(exp(−0.14)t) for the available time were close, for n = 100 and n 

= 200. Whereas for the Aalen model, the mean differences were slightly downward (Figure 

4).  

 

Figure 3. The boxplot of the mean difference between the estimated 

hazards ratios using the Aalen additive hazards model with the true 

hazard ratio from the Cox model 
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𝑛 = 100                                                                          𝑛 = 200 

Figure 4. The boxplot of the mean difference between the estimated 

survival ratios using the Cox multiplicative hazard and the Aalen 

additive hazards model with the true survival ratio from the Cox model. 

b. DGP under the Additive Hazards Models with Time Independent Effect on X1 

The hazard ratio of Model (15) is independent in time and can be calculated as (0.07+ 

0.14+ 0.04 × 0.5)/(0.07+ 0.04 ×  0.5) = 2.55. This value is comparable with the Cox model. 

The estimation of β1 for the R = 500 replication gave the median value of 0.993 (n = 100) or 

hazard ratio exp(0.993) = 2.699; and 0.944 (n = 200) or exp(0.944) = 2.570, where these 

values are close to the 2.55 from the true additive model. The test for hazard proportionality 

for the given model estimated from the additive model was not rejected either. Using the 

Cox model in this time independent additive hazards model seems reasonable. However, 

when analyzing the survival ratio, the estimated survival ratios obtained from the Cox model 

were biased downward (Figure 5). 

 

Figure 5. The boxplot of the mean difference between the estimated 

survival ratios using the Cox multiplicative hazards model with the true 

hazard ratio from the Aalen model 

c. DGP under the Additive Hazards Models with Time-Dependent Effect on X1 

 In this time-dependent additive model, the estimated hazard ratios were far from the 

time dependent hazard ratios from the true additive hazards model. The estimated β1 using 

the Cox model gave a median of 1.4 (n = 200, R = 500). When it is plotted as a cumulative 

hazard function and compared to the true cumulative hazard function of Model (15), the 

result were quite different (Figure 6). The test of proportional hazard assumption were 

significantly rejected for the β1, (n = 100 and n = 200). The estimated survival ratio obtained 

from the Cox model were also biased downward.  
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Figure 6. The cumulative hazard plotted from the estimated β1 and the 

true cumulative hazard from the Aalen model 

 

3. CONCLUSION 

The main aim of this study is to investigate the performance of multiplicative hazards 

and additive hazards under the miss-specified models, in which the data-generating process 

from the Aalen additive models was analyzed by the Cox multiplicative hazards model and 

vice versa. To study their performances, the hazard ratio and survival ratio, which may be 

estimated semi- or non-parametrically from the data, were used. Generally, the Cox 

multiplicative hazards regression is good when the DGPs are multiplicative hazards models 

or time-independent additive hazards models, both in terms of hazard ratio or survival ratio. 

However, it is severely biased under time-independent additive hazard models. The Aalen 

additive hazards regression is good under time-independent or time-dependent additive 

hazards models, but severely biased in representing hazard ratio under the multiplicative 

hazards model. In the simulation study, several replications under the Aalen additive 

regression failed, suggesting this method is sometimes computationally problematic. The 

result of the simulation studies confirms the previous study, suggesting that each model does 

not dominate the other (Aalen et al., 2008; Martinussen & Scheike, 2006). Both models 

should be employed to have a more thorough survival analysis. 
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