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Abstract: Problems in robust multi-objective linear 

optimization are a class of optimization problems with uncertain 

data parameters which aim in the decision-making process to 

obtain the best results in certain circumstances by choosing 

various solution methods for the multi-objective. This research 

aims to formulate a multi-objective Robust Optimization (RO) 

model using the Lexicographic Method, then analyzing the 

existence and uniqueness of the solution. Furthermore, gap 

analysis on the topic was carried out using a Systematic 

Literature Review (SLR) approach with the Preferred Reporting 

Items for Systematic Review and Meta Analysis (PRISMA) 

method. Results in SLR, the analysis results also shows that the 

Lexicographic Method is effective in handling data uncertainty 

with the objective functions sorted by priority. The robust 

formulation with polyhedral uncertainty sets ensures the 

flexibility and adaptability of the model. Convexity analysis and 

application of the Karush-Kuhn-Tucker (KKT) method prove 

that the resulting solution is exist and unique. 

 

1. INTRODUCTION  

Optimization is the act of decision-making to get the best results in certain 

circumstances (Talatahari & Azizi, 2020). In mathematics, optimization is a process of 

achieving the best conditions that provide a minimum or maximum value of a function that 

is limited by certain circumstances (Rao, 2009). In real life, this problems are often faced 

with the problem of more than one objective function, which is called multi-objective 

optimization (Sharma & Chahar, 2022). Multi-objective optimization is a field in 

optimization that aims to find optimal solutions that involve multi-objective functions (Shi 

et al., 2023), and under a series of constraints (Rao, 2009). Solving multi-objective 

optimization problems requires a method, one of which is Lexicographic Method.  

Lexicographic Method is an approach to multi-objective optimization in which are 

given a priority order (Rao, 2009). By ordering these objectives, the resulting solution can 

reflect the preferences of decision makers who consider the order of priorities (Gheouany et 

al., 2023). In real life, optimization problems often experience problems with data that cannot 

be known with certainty, which is called data that contains uncertainty (Chaerani et al., 
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2022). One of the areas of optimization that can be applied to solve problems related to 

uncertainty is RO (Chaerani et al., 2021). 

RO is a methodology for dealing with problems affected by data uncertainty where 

there is no distribution of opportunities that satisfy the uncertainty of the parameters (Gabrel 

et al., 2014). To overcome this data uncertainty, the methodology uses Robust Counterpart 

(RC), which is assumed to be in a series of uncertainties, one of which is polyhedral (Ben-

Tal & Nemirovski, 2002). In recent years, developments regarding uncertainty in multi-

objective optimization problems have been carried out by several researchers, including 

Chaerani et al. (2021) who discuss the development of a robust multi-objective optimization 

model to solve spatial land use allocation problems using lexicographic methods. Apart from 

that, research conducted by Muslihin et al. (2022) discusses Conic Duality research 

regarding multi-objective strong optimization problems. In contrast to previous studies, this 

research includes the formulation of RC model for multi-objective linear optimization model 

problems using the Lexicographic Method where the existence and uniqueness of solutions 

are analyzed using convex analysis and KKT method. However, a gap analysis of the 

problem is first carried out using SLR with PRISMA method.   

Convex analysis is a branch of mathematical analysis that deals with set and function 

convectors in the analytical review of sets and functions (Singh & Singh, 2023). The 

concepts in convex analysis have many roles in various fields such as in the field of 

operations management (Chen & Li, 2021), matching mechanisms (Kojima et al., 2018) and 

optimization (Li & Mastroeni, 2020). While, the KKT method is a method with a series of 

conditions that is used to determine the optimal solution to minimize and maximize problems 

with constraints (Agarwal et al., 2023). The KKT method states that the optimal solution 

must meet several conditions, including complementary conditions (Tulshyan et al., 2010). 

With KKT, points where the constraints in the optimization problem have variable values in 

accordance, or not fulfil can be identified.  

Based on the above discussion, the objectives of this study are: (1) to analyze the gap 

of multi-objective linear RO problems with the Lexicographic method which discusses the 

general model and its mathematical analysis, (2) to formulate a multi-objective linear RO 

model with the Lexicographic method, (3) to analyze the existence and solutions of the 

model formulation obtained. 

 

2. LITERATURE REVIEW 

2.1. Multi-objective Linear Optimization and Lexicographic Methods 

Multi-objective optimization is the solution of optimization problems that have more 

than one objective function. For linear problem, the form of multi-objective optimization 

(Goberna et al., 2014): 

min. {𝒄𝟏
𝑻𝒙, 𝒄𝟐

𝑻𝒙, … , 𝒄𝒌
𝑻𝒙} s.t. 𝒂𝒋

𝑻𝒙 ≥ 𝑏𝑗; 𝑗 ∈ 𝑇 (1) 

where 𝒙 ∈ ℝ𝑛, 𝑇, 𝒄𝑘 ∈ ℝ𝑛; 𝑘 = 1,2, … , 𝑖, 𝑎𝑗 ∈ ℝ𝑛, 𝑏𝑗 ∈ ℝ, ∀𝑗 ∈ 𝑇. 

Referring to Rao (2009), Lexicographic Method is a method that orders objective 

functions based on their priority determined by the researcher. Suppose 𝑓1(𝑥) and 𝑓𝑘(𝑥) 

represent the most important objective function and the least important solution and 𝒙∗ is the 

optimal solution obtained. Then, the problem 𝑖-th is as follows: 

min𝑓𝑙(𝒙) s.t.: 𝑔𝑝 (𝑥) ≤  0, 𝑝 =  1, 2, . . . , 𝑚,  

 𝑓𝑙 (𝑥) =  𝑓𝑙
∗, 𝑙 = 1, 2, . . . , (𝑖 − 1) (2) 
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The solution is obtained, namely 𝒙𝑖
∗ and 𝑓𝑙

∗=𝑓𝑙(𝒙𝑙
∗). The final solution to the problem 𝒙k

∗ , got 

by the solution 𝒙∗from the initial problem of multi-objective optimization. 

2.2. Robust Optimization (RO) 

According to Ben-Tal & Nemirovski (2002) RO is an optimization field that tackles 

optimization problems involving uncertainty parameters. A general form for linear 

optimization problems with uncertainty in vectors 𝒄, 𝒃 and 𝑨 (Ben-Tal et al., 2009; 

Gorissen et al., 2015): 

min
𝑥

{𝒄𝑇𝒙: 𝑨𝒙 ≤ 𝒃|(𝒄, 𝑨, 𝒃) ∈ 𝒰} (3) 

where 𝒙 ∈ ℝ𝑛, 𝒄 ∈ ℝ𝑛, 𝑨  ∈ ℝ𝑚×𝑛, 𝒃 ∈ ℝ𝑚 and 𝒰 is uncertainty set. 

 RO is based on three basic assumptions in decision-making (Gorissen et al., 2015) 

namely all decision variables represent decisions “here and now”, decision-makers are 

responsible for decisions taken with the state of parameters being in the set of uncertainties 

and constraints in the problem RO is a “hard 𝒰, constraint”. In addition to these basic 

assumptions, the general model of RO problems has additional basic assumptions (Gorissen 

et al., 2015): 

A.1 If there is uncertainty in the objective function 𝒄𝑇𝒙, then 𝒄𝑇𝒙 in (3) can be replaced by 

additional variables 𝑡 ∈ ℝ where 𝑡 ≥ 𝒄𝑇𝒙, and 𝑡 in (4) moved to the left segment so that 

it is obtained:  

min
𝒙,𝑡

{𝑡: 𝒄𝑇𝒙 − 𝑡 ≤ 0, 𝑨𝒙 ≤ 𝒃|(𝒄, 𝑨, 𝒃) ∈ 𝒰} (4) 

A.2 If there is uncertainty in parameter 𝒃, then the parameters 𝒃 in (3) can be multiplied by 

variables 𝑥𝑛+1 where 𝑥𝑛+1 = 1, variables 𝒙 and 𝑡 moved to the left side so that it is 

obtained: 

min
𝒙,𝑡

{𝒄𝑇𝒙: 𝒂𝑖
𝑇𝒙 − 𝑏𝑖𝑥𝑛+1 ≤ 0, 𝑥𝑛+1 = 1, 𝑖 = 1,2, … , 𝑚, (𝑨, 𝒃) ∈ 𝒰}. (5) 

A.3 If 𝒙 is a solution for Robust, then 𝒙 is still a viable solution when the set of uncertainties 

𝒰 changed to convex hull 𝒰. Convex hull 𝒰 is the smallest convex set of 𝒰. 

A.4 Robustness towards 𝒰 can be formulated in constraint-wise, that is Robustness the 

problem of RO can be seen in each constraint with a set of uncertainties 𝒰 closed and 

convex. 

The RC reformulations for polyhedral is: 

𝒂𝑇𝒙 + 𝒒𝑇𝒚 ≤ 𝒃 𝐷𝑇𝒚 = −𝑃𝑇𝒙 𝒚 ≥ 0 (6) 

2.3. Convex Analysis 

Definition 1 (Bartle and Sherbert, 2010). Let 𝐼 ⊆ ℝ is an interval, let 𝑓: 𝐼 ⟶ ℝ, and let 𝑐 ∈
𝐼. Real number 𝐿 is derivative of 𝑓 at point 𝑐, if for any 𝜀 > 0, there exists 𝛿 > 0 such as: 

∀𝒙 ∈ 𝐼, 0 < |𝑥 − 𝑐| < 𝛿 ⟹ |
𝑓(𝑥) − 𝑓(𝑐)

𝑥 − 𝑐
− 𝐿| < 𝜀 (7) 

Thorem 1 (Bartle and Sherbert, 2010). If 𝑓: 𝐼 → ℝ has a derivative at 𝑐 ∈ 𝐼, then 𝑓 

continuous at 𝑐. 

Definition 2 (Brinkhuis, 2020). Let  𝑨 ⊆ ℝ𝑛 is nonempty convex set. Function 𝑓: 𝑨 → ℝ, it 

says convex function if for every 𝒙, 𝒚 ∈ 𝑨 𝑎𝑛𝑑 𝜆 ∈ [0, 1] then: 

𝑓(𝜆𝒙 + (1 − 𝜆) 𝒚) ≤ 𝜆 𝑓(𝒙) + (1 − 𝜆)𝑓(𝒚)  (8) 

Definition 3 (Boyd and Vandenberghe, 2004). A function 𝑓 : ℝ𝑛 → ℝ𝑚 It is said to be affine 

if it is the sum of a linear function and a constant, i.e. 𝑓 has a form: 

𝑓(𝑥) =  𝑨𝒙 +  𝑏 with 𝑨 ∈ ℝ𝑚 × 𝑛, 𝒙 ∈ ℝ𝑛, dan 𝒃 ∈  ℝ𝑚. (9) 
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2.4. Karush-Kuhn-Tucker (KKT) Method 

KKT is a method for solving optimization problems in order to find the optimal 

solution of a function with constraints. For optimization problems with inequality and 

equality constraint functions, suppose functions 𝑓(𝒙), 𝑔𝑖(𝒙), ℎ𝑗(𝒙) is a differentiable and 

continuous functions. Let �̂� is a fissible point that solves the above problem locally with  

𝛻𝑔𝑖(�̂�) and  𝛻ℎ𝑗(�̂�) is constraint function. Then there is a scalar 𝜆𝑖 and 𝜇𝑗 the so-called 

lagrange caller is such that: 

𝛻 𝑓(�̂�) + ∑ 𝜆𝑖𝛻𝑔𝑖(�̂�) + ∑ 𝜇𝑗

𝑝

𝑗=1

𝑚

𝑖=1

𝛻ℎ𝑗(�̂�) = 0 (10) 

where the constraints are:  

𝑔𝑖(�̂�) ≤ 0, 𝑖 = 1, 2, … , 𝑚 (11) 

ℎ𝑗(�̂�) = 0, 𝑗 = 1, 2, … , 𝑝 (12) 

𝜆𝑖𝑔𝑖(�̂�) = 0, 𝑖 = 1, 2, … , 𝑚 (13) 

𝜆𝑖 ≥ 0,   𝑖 = 1, 2, … , 𝑚 (14) 

It is called the complementary slackness condition which expresses two possibilities, 

namely: 1. If 𝑔𝑖(�̂�) < 0, then 𝜆𝑖 = 0, 

 2. If 𝜆𝑖 > 0, then constraints 𝑔𝑖(�̂�) = 0. 

 

3. METHODOLOGY  

3.1. Stages of Systematic Literature Review 

SLR in this study used PRISMA (Moher et al., 2009), which provides guidance for 

conducting SLR (Stovold et al., 2014), and improves the quality of the methodology and 

results of the review (Panik et al., 2013). PRISMA has several stages including identification, 

screening, Eligibility, and included (Irmansyah et al., 2022; Utomo et al., 2018). The process 

on first step includes keyword classification is carried out using a combination of the 

keywords "Optimization Model", "Linear", " Robust Optimization ", "Lexicographic 

Method" and "Analysis". A literature search was carried out from four databases Scopus, 

Science Direct, Dimensions, and Google Scholar then checked for duplication using 

Mendeley software (Rathbone et al., 2015). The second step involved filtering articles by 

title and abstract, while the third step included a full content review, categorizing articles 

into two groups: 183 articles rated with one star and 19 with two stars. Dataset 1, consisting 

of these articles, was used for bibliometric mapping and thematic evolution analysis with 

RStudio. The final stage involved further analysis of the most relevant articles, referred to 

as dataset 2, to identify research gaps. 

3.2. Stage of Multi-objective RO Model with Lexicographic Methods, Existence and 

Uniqueness Solution Analysis 

The Problem Context begins with the input of an uncertainty optimization problem 

which is a special problem in a multi-objective robust linear optimization model solved using 

the Lexicographic Methods, which is that assumed the objective function coefficient and the 

constraint function which is assumed to be uncertainty set 𝒰 on polyhedral uncertainty set. 

The solution of this stage is carried out by changing the uncertainty multi-objective linear 

optimization model to the RC optimization problem. After the model formulation is 

obtained, an analysis of the existence and solution is carried out. The model formulation 

obtained will be analyzed for the guarantee of existence and the uniqueness of the solution 

by the KKT Method and convex analysis.  
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4. RESULTS AND DISCUSSION 

4.1 The Result of Systematic Literature Review 

The Figure 1 shows results with four clusters based on color (green, red, blue, and 

purple), representing 50 articles. The keyword “RO” which is linked to “Multi-objective 

Optimization”, where this keyword is related to the keywords “Convex Optimization” and 

“Linear Programming”. 

 
Figure 1. Bibliometric Map 

The Figure 2 shows the frequency of the word “linear programming” with one event 

in 2014-2022, increased in 2014-2016 and 2017-2018. In 2021-2022, the frequency of the 

word “Multi-objective Optimization” was six. The frequency of the word “Optimization” 

appearing was two in 2020-2022 and increased in 2020-2021 with two frequencies. The 

frequency of the word “Robust Optimization” occurred in 2014-2023 with the highest 

frequency appearing in 2021-2022. However, from Figure 1 and 2 the keywords “Analysis”, 

“optimization model” and “Lexicographic Method” were not found, which could be a robust 

reason for this study to be conducted. 

 

Figure 2. Word Frequency over Time 

 
Figure 3. Most Relevant Authors 
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Evaluation of the relevance of article authors can be done by analyzing specifically 

about the contributions of each author. Figure 3 depicts 10 authors who have a significant 

influence on the topic that is currently being discussed systematically. In the Figure 3, there 

is one most influential author with four published articles, followed by nine other authors 

with one published article. 

In Table 1, six articles relevant to the study are highlighted. Siraj et al. (2015) 

examined an economic optimization model based on oil production using the Lexicographic 

Method. Wang and Fang (2018) proposed a multi-objective linear programming model 

incorporating uncertainty with ellipsoidal and general norm uncertainty sets. Perdana et al. 

(2020) applied the Lexicographic Method to address multi-objective optimization, focusing 

on balancing demand fulfillment and logistics costs. Chaerani et al. (2021) explored a robust 

multi-objective optimization model for spatial land use allocation, employing Lexicographic 

and uncertain methods within ellipsoidal and polyhedral uncertainty sets. Kecskés and Odry 

(2021) tackled multi-purpose scenario problems using a modified Lexicographic Method 

with a minimum-maximum scheme to achieve optimal solutions. Lastly, Muslihin et al. 

(2022) investigated the cone duality of multi-objective robust optimization problems, 

addressing them with the utility function method. 

Tabel 1. State-of-the-art 

Writer Type Uncertainty 

Set 

Lexicographic 

Method 

Analysis Review 

Linear Nonlinear Existence & 

uniqueness 

of solutions 

Convexity 

Siraj et al. 

(2015) 

- √ - √ - - 

Wang & Fang 

(2018) 

√ - Ellipsoidal & 

General Norm 

- - - 

Perdana et al. 

(2020) 

√ - Box √ - - 

Chaerani et al. 

(2021) 

√ - Ellipsoidal & 

Polyhedral 

√ - - 

Kecskés & 

Odry (2021) 

- √ - - - - 

Muslihin et al. 

(2022) 

√ - Ellipsoidal & 

Polyhedral 

- √ √ 

4.2. Formulation of RC Models for Multi-objective Robust Linear Optimization 

Problems 

In this study, it is assumed that uncertainty is in the objective function coefficient 
(𝑐𝑘) and the coefficient of the constraint function (𝐴). Based on assumption A.1, the 

objective function can be replaced by an additional variable 𝑡𝑘 ∈ ℝ with 𝑡𝑘 ≥ 𝑐𝑘
𝑇𝒙, so that it 

is obtained: 

min. 𝑡𝑘 s.t.: 𝑐𝑘
𝑇𝒙 ≤ 𝑡𝑘; 𝑨𝒙 ≤ 𝑏; 𝒄𝑙

𝑇𝒙 = 𝒄𝑙
∗, 𝑙 = 1,2, … , (𝑘 − 1); (15) 

 𝒙 ≥ 0; (𝒄𝑘, 𝑨) ∈ 𝒰.   

Moving variables 𝑡𝑘 on the first constraint to the left side, and change it to the 

standard form of variable linear programming, namely 𝑡𝑘 is changed to a nonnegative 

variable, i.e. by assuming 𝑡𝑘 as 𝑡𝑘 = 𝛿𝑘
(1)

− 𝛿𝑘
(2)

, 𝛿𝑘
(1)

, 𝛿𝑘
(2)

≥ 0, so that (15) becomes: 

min. 𝛿𝑘
(1)

− 𝛿𝑘
(2)

 s.t.: 𝒄𝑘
𝑇𝒙 − 𝛿𝑘

(1)
+ 𝛿𝑘

(2)
≤ 0; 𝑨𝒙 ≤ 𝒃; (16) 

 𝒄𝑙
𝑇𝒙 = 𝒄𝑙

∗, 𝑙 = 1,2, … , (𝑘 − 1); 𝛿𝑘
(1)

, 𝛿𝑘
(2)

≥ 0;  

 𝒙 ≥ 0; (𝒄𝑘 , 𝑨) ∈ 𝒰.  
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Furthermore, 𝒄𝑘 and 𝑨 is expressed in a primitive uncertainty parameter 𝜻1, 𝜻2 ∈ 𝑍 with 𝜻1 =

(𝜁1
(1)

, 𝜁1
(2)

, … , 𝜁1
(𝑤)

) ∈ ℝ𝑤 and 𝜻2 = (𝜁2
(1)

, 𝜁2
(2)

, … , 𝜁2
(𝑖)

) ∈ ℝ𝑖. Model (16) is a problem that 

only has uncertainty in the coefficient of the first and second constraint. RC (16) becomes: 

(�̅� + 𝑃𝜻1)𝑇𝒙 − 𝛿𝑘
(1)

+ 𝛿𝑘
(2)

≤ 0, (�̅� + 𝑄𝜻2)𝑇𝒙 ≤ 𝒃, (17) 

with  (�̅� + 𝑃𝜻1)𝑇dan (�̅� + 𝑄𝜻2)𝑇 is an affine function. Furthermore, formulation (17) 

equivalent: 

�̅�𝑇𝒙 + (𝑃𝑇𝒙)𝑇𝜻1 − 𝛿𝑘
(1)

+ 𝛿𝑘
(2)

≤ 0, �̅�𝑇𝒙 + (𝑄𝑇𝒙)𝑇𝜻2 ≤ 𝒃, (18) 

Then, the determination of this problem solutions involving data uncertainty is "the best 

worst-case" solution, therefore reformulation was carried out in (19) as follows: 

�̅�𝑇𝒙 + max
𝜻1

(𝑃𝑇𝒙)𝑇𝜻1 − 𝛿𝑘
(1)

+ 𝛿𝑘
(2)

≤ 0, �̅�𝑇𝒙 + max
𝜻2

(𝑄𝑇𝒙)𝑇𝜻2 ≤ 𝒃, (19) 

4.2 Formulation Model for Multi-objective Linear Counterpart RO Problem with 

Polyhedral Uncertainty Set 

The formulation of this optimization model assumes that the parameter is uncertainty 

𝑐𝑘 and 𝐴 is in the set of polyhedral uncertainties defined as follows: 

𝑍1 = {𝜻1: 𝒏 − 𝑵𝜻1 ≥ 0}, 𝑍2 = {𝜻2: 𝒉 − 𝑯𝜻2 ≥ 0}, (20) 

𝒏 ∈ ℝ𝑗, 𝑵 ∈ ℝ𝑤×𝑗, 𝒉 ∈ ℝ𝑟, 𝑯 ∈ ℝ𝑖×𝑟, 𝜻1 ∈ ℝ𝑤, and 𝜻2 ∈ ℝ𝑖. 

Reformulating the left side in both constraints in (19), so that it is equivalent to: 

�̅�𝑇𝒙 + max
𝜻1:𝒏−𝑵𝜻1≥0

(𝑃𝑇𝒙)𝑇𝜻1 − 𝛿𝑘
(1)

+ 𝛿𝑘
(2)

≤ 0, (21) 

�̅�𝑇𝒙 + max
𝜻2:𝒉−𝑯𝜻2≥0

(𝑄𝑇𝒙)𝑇𝜻2 ≤ 𝒃, (22) 

The constraint (21) has uncertainty variables 𝜻1 that unrestricted with 𝑛 moved to the right 

side and both sides are multiplied by (-1), obtained: 

max(𝑷𝑇𝒙)𝑇𝜻1 s.t.: 𝑵𝜻1 ≤ 𝒏; (23) 

 𝜻1 ∈ ℝ𝑤.  

Using the robust duality theorem, the dual form of the problem (23) is as follows: 

min 𝒏𝑇𝜸 s.t.: 𝑵𝑇𝜸 = 𝑷𝑇𝒙; (24) 

 𝜸 ≥ 0.  

with 𝜸 ∈ ℝ𝑗. Substitution (24) to (21) results in: 

�̅�𝑇𝒙 + min
𝜸

{𝒏𝑇𝜸: 𝑵𝑇𝜸 = 𝑷𝑇𝒙, 𝜸 ≥ 0} − 𝛿𝑘
(1)

+ 𝛿𝑘
(2)

≤ 0, (25) 

Problem (25) is met for a physical solution 𝛾 in the physical set ℱ. So, the constraint (25) 

becomes: 

�̅�𝑇𝒙 + 𝒏𝑇𝜸 − 𝛿𝑘
(1)

+ 𝛿𝑘
(2)

≤ 0, 𝑵𝑇𝜸 = 𝑷𝑇𝒙, 𝜸 ≥ 0.  (26) 

In the same way, a RC formulation for constraints is obtained (22): 

�̅�𝑇𝒙 + 𝒉𝑇𝝀 ≤ 𝒃, 𝑯𝑇𝝀 = 𝑸𝑇𝒙, 𝝀 ≥ 0. (27) 

Constraints (26) and (27) are linear constraints so they are guaranteed to be computationally 

tractable. The primal-dual relationship above can be written as follows: 

max
𝜻1:𝒏−𝑵𝜻1≥0

(𝑷𝑇𝒙)𝑇𝜻1 = min
𝜸

{𝒏𝑇𝜸: 𝑵𝑇𝜸 = 𝑷𝑇𝒙, 𝜸 ≥ 0 (28) 

max
𝜻2:𝒉−𝑯𝜻2≥0

(𝑄𝑇𝒙)𝑇𝜻2 = min
𝝀

{𝒉𝑇𝝀: 𝑯𝑇𝝀 = 𝑸𝑇𝒙, 𝝀 ≥ 0 (29) 

Both dual formulations are met for a feasible solution 𝛾 and 𝜆 contained in the following: 

ℱ = {𝜸: 𝑵𝑇𝜸 = 𝑷𝑇𝒙, 𝜸 ≥ 0} → ∃𝜸 ≥ 0 ∋ 𝑵𝑇𝜸 = 𝑷𝑇𝒙. (30) 
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ℱ = {𝝀: 𝑯𝑇𝝀 = 𝑸𝑇𝒙, 𝝀 ≥ 0} → ∃𝝀 ≥ 0 ∋ 𝑯𝑇𝝀 = 𝑸𝑇𝒙. (31) 

Thus, the formulation of a multi-objective robust linear optimization model using the 

Lexicographic Method and assumed to be in the polyhedral uncertainty set is as follows: 

min. 𝛿𝑘
(1)

− 𝛿𝑘
(2)

   (32) 

s.t.: 𝑠. 𝑡. �̅�𝑇𝒙 + 𝒏𝑇𝜸 − 𝛿𝑘
(1)

+ 𝛿𝑘
(2)

≤ 0; 𝑵𝑇𝜸 = 𝑷𝑇𝒙;  

 �̅�𝑇𝒙 + 𝒉𝑇𝝀 ≤ 𝒃; 𝑯𝑇𝝀 = 𝑸𝑇𝒙;  

 𝒄𝑙
𝑇𝒙 = 𝒄𝑙

∗, 𝑙 = 1,2, … , (𝑘 − 1); 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑝) ≥ 0;  

 𝛿𝑘
(1)

= (𝛿1
(1)

, 𝛿2
(1)

, … , 𝛿𝑚
(1)

) ≥ 0; 𝛿𝑘
(2)

= (𝛿1
(2)

, 𝛿2
(2)

, … , 𝛿𝑚
(2)

) ≥ 0;  

 𝜸 = (𝛾1, 𝛾2, … , 𝛾𝑗) ≥ 0; 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑟) ≥ 0.  

The objective and constraint function in (32) are linear functions, so it is clear that the 

functions are differential and continuous. 

4.3 Convexity Analysis on Objective Functions 

Known the objective functions 𝑓(𝛿𝑘
(1)

, 𝛿𝑘
(2)

) = 𝛿𝑘
(1)

− 𝛿𝑘
(2)

 that will be proven is a 

convex function.  

Proof: Take two points 𝒙, 𝒚 ∈ ℝ2, let 𝒙 = (𝑥1, 𝑥2) and 𝒚 = (𝑦1, 𝑦2) for any 𝜆 ∈ [0,1], then: 

𝑓(𝜆𝑓(𝒙) + (1 − 𝜆)𝑓(𝒚)) = 𝑓((𝜆𝑥1 + (1 − 𝜆)𝑦1), (𝜆𝑥2 + (1 − 𝜆)𝑦2)) = 𝜆𝑥1 + (1 −

𝜆)𝑦1 − (𝜆𝑥2 + (1 − 𝜆)𝑦2) = 𝜆𝑥1 + (1 − 𝜆)𝑦1 − 𝜆𝑥2 − (1 − 𝜆)𝑦2 = 𝜆(𝑥1 − 𝑥2) + (1 −
𝜆)(𝑦1 − 𝑦2) = 𝜆𝑓(𝑥1, 𝑥2) + (1 − 𝜆)𝑓(𝑦1, 𝑦2) = 𝜆𝑓(𝒙) + (1 − 𝜆)𝑓(𝒚)∎   

4.4 Convexity Analysis on Constraint Function 

Known the first of constraint function 𝑐̅𝑇𝒙 + 𝑛𝑇𝜸 − 𝛿𝑘
(1)

𝒐 + 𝛿𝑘
(2)

𝒑 ≤ 0, with 𝒐 and 

𝒑 is a vector whose elements are one. It will be proven that the constraint is a convex 

function. 

Proof: Take any 𝒄𝐴 = (𝑥1, 𝛾1, 𝒐1, 𝒑1), 𝒄𝐵 = (𝑥2, 𝛾2, 𝒐2, 𝒑2) with 𝑐𝐴, 𝑐𝐵 ∈ ℝ4, and 𝜆 ∈ [0,1]: 

𝑐̅𝑇(𝜆𝑥2 + (1 − 𝜆)𝑥1) + 𝑛𝑇(𝜆𝛾2 + (1 − 𝜆)𝛾1) − 𝛿𝑘
(1)(𝜆𝒐2 + (1 − 𝜆)𝒐1) + 𝛿𝑘

(2)(𝜆𝒑2 + (1 − 𝜆)𝒑1)  

= 𝜆𝑐̅𝑇𝑥2 + (1 − 𝜆)𝑐̅𝑇𝑥1 + 𝜆𝑛𝑇𝛾2 + (1 − 𝜆)𝑛𝑇𝛾1 − 𝜆𝛿𝑘
(1)

𝒐2 − (1 − 𝜆)𝛿𝑘
(1)

𝒐1 + 𝛿𝑘
(2)

𝒑2 + (1 −

𝜆)𝛿𝑘
(2)

𝒑1 = 𝜆 (𝑐̅𝑇𝑥2 + 𝑛𝑇𝛾2 − 𝛿𝑘
(1)

𝒐𝟐 + 𝛿𝑘
(2)

𝒑𝟐) + (1 − 𝜆) (𝑐̅𝑇𝑥1 + 𝑛𝑇𝛾1 − 𝛿𝑘
(1)

𝒐𝟏 + 𝛿𝑘
(2)

𝒑𝟏) . ∎  

Known the second of constraint function is �̅�𝑇𝑥 + ℎ𝑇𝜆 − 𝑏𝒐 ≤ 0 with 𝒐 is a vector 

whose elements are all worth one. It will be proven that constraint is a convex function. 

Proof: Take any 𝒄𝐶 = (𝑥1, 𝜆1, 𝒐1), 𝒄𝐷 = (𝑥2, 𝜆2, 𝒐2) with 𝑐𝐶 , 𝑐𝐷 ∈ ℝ3, for any 𝜏 ∈ [0,1]: 

�̅�𝑇(𝜏𝑥2 + (1 − 𝜏)𝑥1) + ℎ𝑇(𝜏𝛾2 + (1 − 𝜏)𝛾1) − 𝑏(𝜏𝒐2 + (1 − 𝜏)𝒐1) = 𝜏�̅�𝑇𝑥2 + (1 −
𝜏)�̅�𝑇𝑥1 + 𝜏ℎ𝑇𝜆2 + (1 − 𝜏)𝑛𝑇𝜆1 − 𝜏𝑏𝒐2 − (1 − 𝜏)𝑏𝒐1 = 𝜏(𝑐̅𝑇𝑥2 + 𝑛𝑇𝜆2 − 𝑏𝒐𝟐) + (1 −
𝜏)(𝑐̅𝑇𝑥1 + 𝑛𝑇𝜆1 − 𝑏𝒐𝟏). ∎   

Known the third of constraint function is 𝑵𝑇𝜸 − 𝑷𝑇𝒙 = 0. It will be proven that the 

constraint is an affine function.  

Proof   𝑵𝑇𝜸 − 𝑷𝑇𝒙 = 0 → [𝑵 −𝑷]𝑇 [
𝜸
𝒙

] = [
0
0

],    (33) 

let [𝑵 −𝑷]𝑇 = 𝑨, [
𝜸
𝒙

] = 𝒗, [
0
0

] = 𝑜 then (33) become 

𝑨𝒗 = 0;  𝑨 ∈  ℝ𝑚 × 𝑛, 𝒗 ∈  ℝ𝑛, 𝑜 ∈ ℝ𝑚∎ (34) 

Known the fourth of constraints function 𝑯𝑇𝝀 − 𝑸𝑇𝒙 = 0. The structure of this 

constraint as same as the form of third constraint, so the same way the constraint function is 

an affine function. 
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Known the fifth of constraint function 𝒄1
𝑇𝒙 − 𝒄1

∗ = 0. It will be proven that the 

constraint is an affine function. 

Proof: let 𝑪 = [𝒄1
𝑇] is a matrix with vectors entry 𝒄1, 𝒚 = 𝒙, and 𝑏 = 𝒄1

∗ , then 𝒄1
𝑇𝒙 − 𝒄1

∗ =
𝑪𝒚 − 𝑏 = 0, with 𝑪 ∈ ℝ𝑚 × 𝑛, 𝒚 ∈ ℝ𝑛, and 𝑏 ∈ ℝ𝑚. ∎  

4.5 Analysis based on the Karush-Kuhn-Tucker Method 

 In this section, the solution of the model formulation obtained (32) is determined 

using the KKT Method, and its Lagrangian functions are as follows: 

𝐿(𝒙, 𝜸, 𝝀, 𝛿𝑘
(1)

, 𝛿𝑘
(2)

, 𝜇, 𝜈, 𝜎, 𝛽, 𝜃) =  𝛿𝑘
(1)

−  𝛿𝑘
(2)

   

+𝜇(�̅�𝑇𝒙 +  𝒏𝑇𝜸 − 𝛿𝑘
(1)

+  𝛿𝑘
(2)

) + 𝜈(𝑵𝑇𝜸 −  𝑷𝑇𝒙)  

+𝜎(�̅�𝑇𝒙 + 𝒉𝑇𝝀 −  𝑏) + 𝛽(𝑯𝑇𝝀 − 𝑸𝑇𝒙) + ∑ 𝜃(𝒄𝑙
𝑇𝒙 − 𝒄𝑙

∗)𝑘−1
𝑙=1 ,  

(35) 

where 𝜇, 𝜈, 𝜎, 𝛽, 𝜃 is a vector of Lagrange multipliers that correspond to each of the 

constraints. The conditions of the KKT consist of: 

1. Stationary Conditions: 
𝜕ℒ

𝜕𝒙
= 0, ⟹ ∑ 𝜃𝑖𝒄𝑖 + 𝜇�̅� + 𝜈(−𝑷) + 𝜎�̅� + 𝛽(−𝑸) = 0𝑘−1

𝑖=1      

𝜕ℒ

𝜕𝜸
= 0, ⇒ 𝒏𝜇 + 𝑵𝜈 = 0   

𝜕ℒ

𝜕𝝀
= 0, ⇒ 𝒉𝜎 + 𝑯𝛽 = 0   

𝜕ℒ

𝜕𝛿
𝑘
(1) = 0, ⇒ 1 − 𝜇 = 0 ⇒ 𝜇 = 1   

𝜕ℒ

𝜕𝛿
𝑘
(2) = 0, ⇒ −1 + 𝜇 = 0 ⇒ 𝜇 = 1  (36) 

2.  Feasibility Conditions: all of the constraint functions in (32). 

3.  Complementary Duality, and Non-negativity Conditions: 

𝜇𝑖(�̅�𝑇𝒙 + 𝒏𝑇𝜸 − 𝛿𝑘
(1)

+ 𝛿𝑘
(2)

) = 0,   

𝜎𝑖(�̅�𝑇𝒙 + 𝒉𝑇𝝀 − 𝒃) = 0, 𝑖 = 1,2, … , 𝑟.   

𝜇 ≥ 0, 𝜎 ≥ 0  (37) 

By solving the equations system, the optimal solution is: 𝒙 =
𝑐𝑙

�̅�
, 𝜇 = 1, 𝜎 = −𝒂, 𝜈 =

−𝑵−1𝒏, 𝜃 = −(∑ 𝒄𝑖
𝑘−1
𝑖=1 )(�̅� + 𝑷(𝑵−1𝒏)),𝜸 =

(𝑵𝑇)
−1

𝑷𝑇𝒄𝑙

�̅�
, 𝝀 =

𝒃−𝒄𝑙

𝒉
, 𝜷 = 𝑯−1𝒉�̅�,𝛿𝑘

(1)
=

�̅�𝑇 (
𝒄𝑙

�̅�
) + 𝒏𝑇(𝑵𝑇)−1𝑷𝑇 (

𝒄𝑙

�̅�
), and 𝛿𝑘

(2)
= − (�̅�𝑇 (

𝒄𝑙

�̅�
) + 𝒏𝑇(𝑵𝑇)−1𝑷𝑇 (

𝒄𝒍

�̅�
)). Because the 

solution to each variable does not depend on the other variables, the solution must be unique. 

4.6. Discussion of Gap Analysis 

Based on the results of SLR using the PRISMA method, four main clusters were 

found in the literature, namely "RO," "Multi-Objective Optimization," "Convex 

Optimization," and "Linear Programming," which showed a strong relationship between 

keywords. Although "Lexicographic Method" and "Optimization Model" are rarely found, 

topics such as "Multi-Objective Optimization" and "RO" are increasingly relevant, 

especially in the 2021-2022 period. Further analysis shows that there is a research gap related 

to the application of lexicographic methods in the linear robust optimization model, which 

has not been discussed in depth, especially with the use of polyhedral uncertainty sets. This 

study seeks to fill this gap by analyzing the existence and uniqueness of the solution through 

the KKT method and convex analysis, making a new contribution in the combination of 
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lexicographic methods with a robust multi-objective linear optimization model. This 

research has the potential for novelty because it fills in the gaps in the related literature. 

4.7. Discussion of Research Analysis 

This discussion reviews in detail the application of the Lexicographic Method and 

the formulation of the RC model in the problem of multi-objective robust linear optimization, 

with a focus on the existence, singularity, and stability of the solution. The Lexicographic 

Method addresses multi-objective optimization by sorting objective functions by priority, 

completing them sequentially, and ensuring solutions that meet the constraints from highest 

to lowest priority. The RC formulation aims to address parameter uncertainty in 

optimization, ensuring the optimal solution remains valid under the worst-case scenario. The 

use of polyhedral uncertainty sets in RC models allows for more flexible and realistic 

representation of uncertainty, so that the resulting solution is more stable and efficient. 

Analysis of the existence and singularity of the solution using the KKT method and convex 

analysis guarantees that the optimal solution obtained is unique, globally optimized, and 

meets all constraints.   

 

5. CONCLUSION 

Based on SLR, the problem of robust multi-objective linear optimization models with 

the Lexicographic Method is an important novelty implemented in the field. The application 

of Lexicographic Methods in robust multi-objective linear optimization provides the ability 

to deal effectively with data uncertainty, through an objective-prioritizing approach. RC 

formulations with polyhedral uncertainty sets are able to accommodate data variations, 

providing a flexible and adaptive structure for various uncertainty conditions. The convexity 

study and application of the KKT method proves that the solution resulting from this model 

not only exists but is also unique, thus guaranteeing an optimal solution. 
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