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Abstract: Adaptive Social Protection (ASP) is a framework that 

integrates social protection, disaster risk reduction, and climate 

change adaptation to enhance resilience against shocks and 

hazards. As a country vulnerable to earthquakes, Indonesia faces 

threats of losses due to seismic disasters. The national budget 

available to cover these losses can only address 13.6% of the 

total disaster-related losses. This study proposes an earthquake 

insurance scheme to protect all residences in Indonesia as part 

of the ASP framework, followed by the calculation of premium 

rates for this insurance scheme. This study utilizes the built-in 

OpenQuake calculator known as the probabilistic event-based 

risk calculator to simulate annual earthquake losses over a 

period of 10,000 years. The negative binomial distribution and 

the Pareto IV distribution are assessed as the most optimal 

models in modeling frequency and severity through distribution 

fitting. The application of collective risk models and the 

principle of pure premium results in a pure premium rate of 

0.3994073 ‰. This pure premium rate can serve as a starting 

point in the establishment of comprehensive residential 

earthquake insurance in Indonesia. 

 

1. INTRODUCTION 

The concept of adaptive social protection (ASP) is a response to the multidimensional 

risks encountered by the poor and vulnerable population (Arnall et al., 2010). ASP integrates 

elements of social protection (SP), disaster risk reduction (DRR), and climate change 

adaptation (CCA) (Davies et al., 2008). As part of ASP, DRR aims to prepare communities 

for hazards before events occur (Davies et al., 2008). Disaster risk financing strategies 

represent a shift in perspective by viewing natural disasters not as unpredictable crises but 

as events with impacts that can be mitigated. (Bowen et al., 2020). 

The Sendai Framework for Disaster Risk Reduction (SFDRR) 2015-2030 assesses 

disaster risk transfer and insurance as important instruments for reducing financial impacts 

on governments and communities (UNISDR, 2015). Insurance integrated into social 

protection is considered capable of protecting vulnerable households from falling into the 

poverty trap due to significant shocks (Jensen et al., 2017), as impacts such as asset loss 

during natural disasters can push the poor into a downward spiral of deepening poverty 

(Davies et al., 2008). 
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Indonesia's position above and as a meeting point of several tectonic plates makes it 

highly vulnerable to earthquakes (Hutchings & Mooney, 2021; Verstappen, 2010). This is 

evident from recent seismic events that have resulted in substantial economic losses, such as 

the 2004 Sumatra-Andaman earthquake, which caused economic losses of 41.4 trillion IDR, 

the 2006 Yogyakarta earthquake (29.15 trillion IDR in losses), the 2018 Lombok earthquake 

(7.45 trillion IDR in losses), and the 2018 Palu-Donggala earthquake (10 trillion IDR in 

losses) (Sagala et al., 2020).  

In facing disasters, the Indonesian government allocates an average disaster reserve 

fund of Rp 3.1 trillion per year in the state budget (BKF, 2018). With an average annual loss 

due to natural disasters amounting to Rp 22.8 trillion during the period of 2000–2016, it 

indicates that only about 13.6% of the losses from natural disasters can be covered by the 

state budget (BKF, 2018). This demonstrates the limitations of fiscal capacity in addressing 

disaster risks in Indonesia, thus necessitating other instruments such as risk transfer 

mechanisms and insurance in efforts to finance disaster risks. 

In this paper, we propose the establishment of comprehensive residential earthquake 

insurance in Indonesia as part of adaptive social protection by addressing the pure premium 

rates of this insurance. The seismic risk and hazard assessment software named OpenQuake 

is utilized as a tool in this research. The built-in calculator inside the OpenQuake Engine, 

named the probabilistic event-based (PEB) risk calculator, is specifically used to produce 

scenarios of earthquake disasters for 10,000 years. With the collective risk model method, 

the output of the PEB risk calculator is then modeled by performing a fitting distribution for 

frequency and severity. Using the pure premium principle, the premium of this insurance is 

then calculated by multiplying the expected frequency and severity of earthquake losses. 

 

2. LITERATURE REVIEW 

In several countries with high earthquake disaster risk, residential earthquake 

insurance is implemented as a form of risk transfer through the collection of funds by 

government-owned entities to finance post-disaster losses, as practiced by the Earthquake 

Commission (EQC) in New Zealand, the Taiwan Residential Earthquake Insurance Fund 

(TREIF), and the Turkish Catastrophe Insurance Pool (TCIP) (GFDRR, 2011; New Zealand 

Government, 2015; TREIF, 2024). The Government of Japan takes a different approach by 

providing government-owned reinsurance through the Japanese Earthquake Reinsurance 

(JER) Company, while the insurance is written by private companies (GIROJ, 2022). In 

contrast, Mexico established FONDEN, a disaster fund used to finance recovery and 

reconstruction of public infrastructure through Mexico’s Federal Budget allocations and 

catastrophe bonds (Cat MEX) (World Bank, 2012). 

A catastrophe model is developed to produce unbiased estimates of financial risk 

across the risk spectrum (Guin, 2018). The four basic modules of a catastrophe model are 

hazard, inventory, vulnerability, and loss (Grossi et al., 2005). All these components are 

illustrated in Figure 1. 

In the context of catastrophe modeling for earthquake disasters, hazard is defined 

through seismic hazard. Seismic hazard refers to the probability of damaging earthquakes 

occurring within a specified time frame and geographic location (Bommer, 2002). Seismic 

hazard involves two main components, namely the seismic source model and ground motion 

prediction equations. The seismic source model describes the location, geometry, and 

activity of seismic sources represented through a magnitude-frequency distribution (Silva et 
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al., 2014). Meanwhile, the ground motion prediction equations relate the intensity measure 

of ground motion to variables associated with seismic hazard (Stewart et al., 2015). 

 

Figure 1. Modules in The Catastrophe Models 

The vulnerability module provides a relationship between the expected level of 

damage to buildings and the external forces generated by earthquakes. These external forces 

are expressed as measures of ground motion intensity, such as Peak Ground Acceleration 

(PGA) or Spectral Acceleration (SA) (Grossi et al., 2005).  

The inventory module contains detailed information related to the insured exposure 

such as location, building value, occupancy, construction type, and other relevant details 

(Grossi et al., 2005). This information is important as the damage caused by disasters is 

highly dependent on the location and the strength of the construction of the exposure. 

The loss module is then modeled by the Collective Risk Model, as described by 

Klugman et al. (2019). This model represents aggregate losses as a sum, denoted as S, of a 

random discrete number, N, from individual payment amounts (𝑋1, 𝑋2, … , 𝑋𝑁) as expressed 

by the following equation.  

𝑆 = 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑁, 𝑁 = 0, 1, 2, …   

where 𝑆 = 0 when 𝑁 = 0. The expected aggregate loss is calculated using: 

𝐸(𝑆) = 𝐸(𝑁)𝐸(𝑋)  

Using the Pure Premium Principle proposed by Dickson (2005), the pure premium 
(Π) is determined by the insurer’s expected claims under the risk, defined as: 

Π = 𝐸(𝑆)  

Through this modeling process, the calculation of pure premium can be 

systematically conducted, providing a consistent approach to determine earthquake 

insurance premiums based on the expected aggregate losses. 

 

3. MATERIAL AND METHOD 

3.1. Data Sources 

In this study, we use a seismic hazard model and ground motion prediction equation 

referenced from Irsyam et al. (2020) and Irsyam et al. (2023), respectively. The vulnerability 

model used is a model from Martins & Silva (2023). Exposure data from Yepes-Estrada et 

al. (2023) is utilized for the inventory module, with an additional step of disaggregating the 

originally aggregated exposure at the provincial level into the regency/city level based on 

the population percentage in each regency/city, obtained from the BPS-Statistics Indonesia. 

This results in aggregated residential exposure data for each regency/city, as shown in Figure 

2. Furthermore, the coordinates of the Regent/Mayor's office are used as reference points 

representing each regency/city. 
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Figure 2. Residential Exposure in Indonesia Aggregated at The City/Regency Level 

3.2. OpenQuake and Probabilistic Event–Based (PEB) Risk Calculator 

OpenQuake is an open-source software developed by the Global Earthquake Model 

(GEM) Foundation for seismic hazard and risk assessment, providing tools to model, 

calculate, and visualize earthquake risk at various scales (Silva et al., 2014). One of the 

OpenQuake calculators called the Probabilistic Event-Based (PEB) calculator is widely used 

to produce various outputs related to hazards and losses (Hosseinpour et al., 2021). Monte 

Carlo simulations, along with a logic tree calculator, are used in PEB to process Seismic 

Source Models (SSM). Each source model is utilized to generate a list of all possible future 

events, known as the Stochastic Event Set (SES). Ground motion fields are then produced 

for each event within the SES. These ground motion fields, together with the vulnerability 

model and exposure, are combined to calculate the loss values for each asset in each ground 

motion field. (Hosseinpour et al., 2021; Silva et al., 2014). 

 
Figure 3. Procedure of The Probabilistic Event-Based Risk Calculator (adapted from 

(Silva et al., 2014)) 
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The PEB calculator produces a series of outputs that describe the risks and potential 

losses associated with a given exposure. Pagani et al. (2022) mentioned that one of the 

outputs generated by the PEB calculator is the stochastic event loss table, which contains 

event id, rupture id, year, and the resulting losses.  

 

4. RESULTS AND DISCUSSION 

The PEB calculator produces loss module outputs using input data related to hazards, 

vulnerabilities, and inventories, as described in the previous section. The output is then 

transformed into a frequency and severity table that includes annual frequency, annual 

severity, and average annual severity. Table 1 summarizes the descriptive statistics for 

annual frequency and average annual severity. Figure 4 and Figure 5 illustrate the annual 

frequency and severity, respectively. 

Table 1. Descriptive Statistics of Frequency and Severity 

 Annual Frequency Average Annual Severity 

n 10000 10000 

Mean 22.3519 12089545.17 

Standard deviation 7.541256755 45878147.43 

Median 21 2448107.865 

Min 2 2.613305 

Max 55 1534340249 

Skewness 0.862277119 15.9308925 

Kurtosis 0.91009821 369.0641848 

 

  
Figure 4. Annual Frequency Plot Figure 5. Annual Average Severity Plot 

Frequency modeling is conducted by estimating parameters for each candidate 

distribution using the maximum likelihood estimation method. Discrete distributions should 

be chosen due to the natural counting distribution of frequency. The estimated parameters 

for each distribution can be found in Table 2.  

Table 2. The Estimated Parameter Value Using MLE for Frequency 

No Distribution Parameter(s) 

1 Uniform 𝑎 = 2, 𝑏 = 55 

2 Geometric 𝑝 = 0.04282307 

3 Poisson 𝜆 = 22.3519 

4 Negative Binomial 𝑛 =  15.53945, 𝜇 =  22.35257 

After the parameter estimation has been conducted, a chi-squared test is performed 

to assess the goodness-of-fit of the distribution. Additionally, the Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC) are also considered in 
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determining the most suitable distribution of the data. A summary of the chi-squared 

statistics, AIC, and BIC values for each candidate distribution can be found in Table 3. 

Table 3. Chi-squared statistic, AIC, and BIC for the frequency distribution candidates 

No Distribution Chi-squared Statistic 
Goodness-of-fit Criteria 

AIC BIC 

1 Uniform 11978.68 79409.84 79424.26 

2 Geometric 14514.43 82581.09 82588.30 

3 Poisson 43675.1 73436.70 73443.91 

4 Negative Binomial 308.3991 67754.64 67769.06 

As shown in Table 3, it is obtained that the negative binomial distribution has the 

smallest chi-squared statistic, AIC, and BIC values compared to the uniform, geometric, and 

Poisson distributions. This finding suggests that the negative binomial distribution is the 

most suitable model for modeling annual frequency compared to other distributions. 

Similar to frequency modeling, severity modeling begins with estimating parameters 

using the maximum likelihood estimation method. Candidate distributions are selected from 

continuous and non-negative distributions. The result of the parameter estimates for each 

distribution can be found in Table 4. 

Table 4. The Estimated Parameter Value Using MLE For Severity 

No Distribution Parameter(s) 

1 Lognormal 𝜇 =  14.566614 𝜎 =  1.9944808 

2 Gamma 𝛼 =  134852056 𝜆 =  11.435729 

3 Log-gamma 𝛼 =  49.176614 𝜆 =  3.375875 

4 Weibull 𝛼 =  0.5455472 𝜎 =  6032236.1 

5 Log-logistic 𝛾 =  0.8857917 𝜃 =  2263969.4 

6 Fatigue Life 𝛼 =  373.13822 𝛽 =  70.11781 

7 Generalized Extreme Value 𝜇 =  1726915 𝜎 =  9277407 

8 Generalized Pareto 𝜇 =  −54339.09 𝜎 =  11527695 

9 Pareto 𝛼 =  0.8931397 𝜃 =  1893957.4 

10 Pareto III 𝜇 =  2.4380314 𝛾 =  0.8851209 

  𝜃 =  2265013.5  

11 Pareto IV 𝜇 =  2.48264 𝛼 =  2.09745 

  𝛾 =  0.73175 𝜃 =  8924963 

12 Rayleigh 𝜎 =  12400786  

After parameter estimation, the Kolmogorov-Smirnov (KS) test and the Cramér-von 

Mises (CvM) test were conducted to evaluate the goodness of fit for each candidate 

distribution. Additionally, the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) were calculated to identify the most appropriate distribution for the data. A 

summary of the KS statistics, CvM statistics, AIC, and BIC values for each candidate 

distribution is provided in Table 5.  

Table 5. KS Statistic, CvM Statistic, AIC, and BIC Values 

for The Severity Distribution Candidates 

No Distribution KS Statistic CvM Statistic Goodness-of-fit Criteria 

AIC BIC 

1 Lognormal 0.032269 62.4722 7454781 7454802 

2 Gamma 0.808817 39943.15 1.01162E+14 1.01162E+14 

3 Log-gamma 0.051140 189.2154 7469962 7469983 

4 Weibull 0.054173 267.4754 7466728 7466749 

5 Log-logistic 0.023398 52.9332 7455641 7455662 

6 Fatigue Life 0.505375 15756.5 7833092 7833112 
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7 Generalized 

Extreme Value 

0.299814 3634.7322 7984909 7984929 

8 Generalized 

Pareto 

0.308725 10012.49 7710871 7710891 

9 Pareto 0.041563 163.5812 7460073 7460094 

10 Pareto III 0.023192 52.3394 7455637 7455668 

11 Pareto IV 0.018677 16.1662 7450851 7450892 

12 Rayleigh 0.573525 30687.76 10912214 10912224 

As shown in Table 5, the Pareto IV distribution exhibits the smallest values for the 

KS statistic, CvM statistic, AIC, and BIC compared to the other candidate distributions. This 

suggests that the Pareto IV distribution is the most suitable model for representing the annual 

average severity. 

Modeling frequency and severity as separate components facilitates the application 

of the collective risk model for premium calculation. By assuming 𝐸(𝑆) in the collective risk 

model as pure premium, 𝐸(𝑁) as the expected value of frequency, and 𝐸(𝑋) as the expected 

value of severity, the following results are obtained: 

𝐸(𝑁) =  22.35257 

𝐸(𝑋) =  12994053 

𝐸(𝑆) = 𝐸(𝑁)𝐸(𝑋) = (22.35257)(12994053) = 290450487 

This indicates that the annual pure premium for the structural residential exposure in 

Indonesia amounts to 290,450,487 USD, based on the total structural residential value of 

727,203,792,016.315 USD. Consequently, the rate per unit of exposure (𝑅) can be calculated 

as follows: 

𝑅 =
290450487

727203792016.315
=  0.0003994073 = 0.3994073‰ 

To evaluate the variance of aggregate loss (𝑆), the variances of frequency and 

severity distributions are required. The variance of the frequency distribution can be 

calculated analytically using the equation: 

𝑉𝑎𝑟(𝑁) = 𝜇 +
𝜇2

𝑛
=  22.35257 +

22.352572

15.53945
=  54.5054 

Unlike the frequency variance for which an analytical solution can be obtained, the variance 

of the severity distribution requires a numerical approach such as Monte Carlo simulation to 

achieve the results. Using this approach, the variance of severity is calculated as: 

𝑉𝑎𝑟(𝑋) =  1.115971 × 1017. 

Since both the frequency variance and severity values have been obtained, the 

aggregate loss variance can be derived using the following equation: 

𝑉𝑎𝑟(𝑆) = 𝐸(𝑁)𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑁)[𝐸(𝑋)]2 =  2.503686 × 1018 

In addition, the Value at Risk (VaR) can also be obtained through a numerical 

approach in the form of Monte Carlo simulation. The VaR value for aggregate loss can be 

seen in Figure 6. Table 6 shows the VaR values at selected quantile points. 

Research related to earthquake insurance premium prices within the scope of social 

insurance as part of social protection is still lacking. However, there is a standard earthquake 

insurance policy in Indonesia that has been a reference for commercial insurance companies. 

By assuming a loading factor of 40% proportional to the premium rate, the total rate for this 

social insurance scheme is 0.5591702. Then, we can compare this value with premium rates 
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of the Indonesian Earthquake Insurance Standard Policy (Polis Standar Asuransi Gempa 

Bumi Indonesia-PSAGBI), as referenced in Otoritas Jasa Keuangan (2017), and shown in 

Table 7. 

 

Figure 6. Value at Risk of Aggregate Loss 

 

Table 6. VaR Values at Specific Quantile Points 

Percentiles VaR (in USD) 

75.0 176,200,988.8 

80.0 235,888,193.9 

90.0 507,331,662.6 

95.0 964,984,447.4 

97.5 1,715,298,421.0 

99.0 3,458,119,460.0 

99.6 6,690,593,315.0 

99.8 10,816,458,879.0 

99.9 17,245,451,619.0 

 

Table 7. PSAGBI Premium Rates 

PSAGBI 
Construction Type 

Steel, Wood, RC Others 

Rate per Mille 

Zone I 0.76 0.80 

Zone II 0.79 1.00 

Zone III 1.04 1.55 

Zone IV 1.35 2.24 

Zone V 1.60 4.50 

Average 1.108 2.018 

Based on the comparison between this insurance premium rates and the values in 

Table 7, these are evidence that the premium rates generated by this model are consistently 

lower than the average premium rates established in PSAGBI across all zones. Notably, even 

in Zone I (a region with the lowest seismic risk), the proposed model still yields more 

affordable rates. This notable pricing advantage underscores the model's potential to offer a 

more accessible and comprehensive residential earthquake insurance solution. Such 

affordability serves as an effort to enhance inclusivity, aligning with the spirit of adaptive 

social protection. 

This insurance scheme does not consider risk differentiation based on construction 

class or seismic risk zones to promote inclusivity and prevent the exclusion of vulnerable 
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populations. Recognizing that vulnerable groups often live in lower-quality buildings, 

applying risk-based pricing would result in higher premiums for them. 

 

5. CONCLUSION 

This study emphasizes the integration of Social Protection (SP), Disaster Risk 

Reduction (DRR), and Climate Change Adaptation (CCA) within the Adaptive Social 

Protection (ASP) framework to enhance resilience and decrease vulnerability, particularly in 

earthquake-prone areas such as Indonesia. The country's high earthquake risk and limited 

fiscal capacity to address substantial losses underscore the pressing need for more effective 

disaster risk financing solutions.  

This research proposes a residential earthquake insurance scheme as part of ASP to 

address gaps in disaster risk financing and strengthen resilience against seismic events. 

Using the probabilistic event-based risk calculator from OpenQuake, this study simulates 

earthquake losses over a 10,000-year period to estimate the frequency and severity of 

potential future losses. The fitting distribution identifies the negative binomial distribution 

for frequency and the Pareto IV distribution for severity. Applying the Collective Risk Model 

and Pure Premium Principle, the derived premium rate is 0.3994073‰. 

In addition, this research found the potential magnitude of losses caused by 

earthquakes, with the variance of aggregate losses estimated at 2.5×10¹⁸ USD. The Value at 

Risk (VaR) analysis highlights the significant financial risks associated with extreme seismic 

events: 176.2 million USD at the 75th percentile (PML 176.2 million USD for a 4-year return 

period), 235.9 million USD at the 80th percentile (PML 235.9 million USD for a 5-year 

return period), 507.3 million USD at the 90th percentile (PML 507.3 million USD for a 10-

year return period), 965 million USD at the 95th percentile (PML 965 million USD for a 20-

year return period), 1.715 billion USD at the 97.5th percentile (PML 1.715 billion USD for 

a 40-year return period), 3.458 billion USD at the 99th percentile (PML 3.458 billion USD 

for a 100-year return period), 6.691 billion USD at the 99.6th percentile (PML 6.691 billion 

USD for a 250-year return period), 10.816 billion USD at the 99.8th percentile (PML 10.816 

billion USD for a 500-year return period), and 17.245 billion USD at the 99.9th percentile 

(PML 17.245 billion USD for a 1,000-year return period). These results emphasize the 

potentially catastrophic impact of rare but severe earthquakes, reinforcing the necessity of 

establishing a robust financial mechanism, such as the proposed insurance scheme, to 

mitigate large-scale economic losses. 

By embedding this insurance model within the broader context of ASP, the study 

highlights how this approach can bridge the gap in Indonesia's disaster risk financing and 

provide a sustainable solution to earthquake-related financial risks. This research contributes 

not only to the development of an effective earthquake insurance model but also to the 

broader discourse on ASP, offering valuable insights for other seismically vulnerable 

regions. The proposed scheme not only offers a practical and affordable way to mitigate the 

economic impact of earthquakes but also strengthens the adaptive capacity of communities 

to face future disaster risks, aligning with the goals of ASP to reduce vulnerability and 

enhance resilience. 
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