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Abstract: Analysis of gene expression data, particularly in 

cancer data, often faces challenges due to the presence of 

missing values. One approach to overcome this is data 

imputation. This study evaluates the performance of three 

imputation methods, namely mean imputation, K-Nearest 

Neighbors (KNN), and KNN with Bayesian optimization using 

Gaussian Process modeling, on Tumor Educated Platelets (TEP) 

gene expression data. Missing values were introduced using 

Missing Completely at Random (MCAR) gradually at levels of 

5%, 10%, 15%, and up to 60%, and performance was evaluated 

using three metrics: Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and Normalized Root Mean Squared 

Error (NRMSE). The results show that the three methods 

produce relatively similar performance, with differences in 

MAE, MSE, and NRMSE values only at a small decimal scale. 

Although Bayesian Optimization is expected to improve the 

accuracy of KNN, the resulting improvement on this dataset is 

not significant. These findings indicate that simple imputation 

such as the average and KNN-based methods still provide 

competitive results on TEP data with data characteristics that 

have 14,020,496 zeros out of a total of 16,512,496 existing 

values, which is approximately 84.91% of the total data. 

 

1. INTRODUCTION  

Bioinformatics is a field that uses computational techniques to analyze biological 

data, such as gene expression data. This data is often used to help classify cancer types and 

improve diagnostic accuracy (Ravindran & Gunavathi, 2023). Cancer is the second leading 

cause of death worldwide after cardiovascular disease (Miller et al., 2021). Early detection 

of cancer can be done through non-invasive biomarkers, one of which is Tumor Educated 

Platelets (TEP). TEP carries RNA from cancer cells and plays an important role in liquid 

biopsy methods, which is the examination of cancer through blood samples without surgery. 

However, RNA-seq data is complex, so it requires a robust and accurate analysis method to 

process it (Liu et al., 2020). 

The presence of missing values in gene expression data poses a major obstacle in the 

analysis process, as it can affect the results of normalization, feature selection, and even the 

final biological interpretation (Brown et al., 2018). Therefore, the proper handling of missing 

values is essential to ensure the reliability of further analysis of gene expression data. 
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Imputation aims to detect and correct errors in data, which has long been a topic of 

debate in health and biological data literature, especially in relation to large data sets such as 

gene expression data or medical records (Ismail et al., 2022). The presence of missing values 

poses a major challenge in various fields, especially in health, as it can hinder accurate 

decision-making (Ayilara et al., 2019). Machine learning approaches such as Random Forest 

have been proven to outperform traditional methods in the imputation process (Mostafa, 

2019). 

In addition, Latief et al. (2020) evaluated the performance of XGBoost in handling 

missing values in liver cancer (hepatocellular) gene expression data and found that this 

model continued to perform very well even without imputation.  However, when using KNN-

based imputation, model performance varied depending on the percentage of missing values, 

with the best results obtained when missing values were 10%. These findings emphasize the 

importance of selecting the appropriate imputation technique to optimize classification 

performance. In line with this, Farswan et al. (2020) investigated the effectiveness of the 

Deep Sparse Neural Network (DSNN) method in handling missing values in blood cancer 

gene expression data. The results showed that DSNN outperformed the KNN, SVM, and 

PCA methods, even under conditions of missing values varying from 10% to 90%. 

In a different approach, Siswantining et al. (2021) optimized missing data imputation 

using the K-Harmonic Means (KHM) method, so that the imputed values approximated the 

actual data distribution. Then, recent research by Jafrasteh et al. (2023) introduced the 

Missing Gaussian Process (MGP) approach, a hierarchical composition of variational 

sparsity Gaussian Processes inspired by deep GP and recurrent GP, which showed superior 

performance compared to other imputation methods such as KNN, multiple imputations 

using chained equations (MICE), generative adversarial network (GAIN), deep belief 

networks (DBN), variational Auto-encoders (VAE), deep gaussian process (DGP), and 

sparse variational gaussian process (SVGP) in terms of RMSE and classification accuracy. 

MGP performs very well when the proportion of missing data is not too high, making it one 

of the models that can be used for gene expression data imputation. 

Research on data imputation continues, and Chungnoy et al. (2024) introduced a new 

bee-based imputation method, namely Bees-based KNN Linear regression (BKL), which 

integrates KNN and Linear Regression. This method demonstrates improved accuracy 

compared to conventional methods such as KNN, Probabilistic PCA, LLS, SVD, NLPCA, 

and MIDASpy across various cancer datasets.  

Based on previous studies, various models have been developed for imputing missing 

values, ranging from the simplest approach, mean imputation, to more complex methods 

such as Deep Sparse Neural Network (DSNN), optimized K-Nearest Neighbors (KNN), and 

Gaussian Process. Previous research has explored methods including Random Forest 

(Mostafa, 2019), XGBoost (Latief et al., 2020), DSNN (Farswan et al., 2020), K-Harmonic 

Means (Siswantining et al., 2021), and Missing Gaussian Process (Jafrasteh et al., 2023). 

Although these methods have demonstrated good performance, most studies focus on 

applying a single model without adaptive parameter optimization tailored to the data 

characteristics. In addition, many studies use gene expression data from common cancers, 

such as liver or blood cancers, which do not contain many non-missing zero values, leaving 

the challenge of imputing data with high zero distributions less explored. 

Most missing value imputation studies focus on general gene expression data, with 

little attention to Tumor-Educated Platelets (TEP), which have unique biological 

characteristics such as a high proportion of valid zero values. These zeros can influence 
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distance calculations in KNN or bias mean estimates in simple imputation methods. Existing 

methods, including mean imputation, KNN, and Bayesian KNN, have not been 

systematically compared on TEP data, despite its growing use in cancer diagnostics. 

Previous research on genomic data has shown that ensemble approaches, which integrate 

multiple imputation methods, can achieve higher accuracy, robustness, and generalization 

than single-method imputations (Zhu et al., 2021). This study addresses the gap by 

evaluating and comparing mean, KNN, and Bayesian KNN specifically for TEP gene 

expression data, aiming to improve imputation accuracy while preserving the original 

biological patterns.  

 

2. LITERATURE REVIEW 

2.1. Tumor-Educated Platelets (TEP) 

Tumor-Educated Platelets (TEP) are platelets that undergo changes due to interaction 

with tumors in the body. TEP function as an important component in the body's response to 

tumor growth. They are influenced by the tumor environment and can absorb genetic 

information, such as messenger RNA (mRNA), which can be used to detect the presence and 

type of cancer. TEP have become a major focus in cancer diagnostic research due to their 

role in detecting and monitoring cancer progression and response to therapy (In 't Veld & 

Wurdinger, 2019). 

2.2. Missing Values 

Missing values are incomplete or partially missing data (Little & Rubin, 2019). The 

existence of missing values is common and can have a significant impact on the conclusions 

of research results. Problems in analysis that can be caused by the existence of missing values 

include biased parameter estimation, reduced effectiveness, low accuracy of conclusions, 

and the inability to continue the analysis process (Salleh & Samat, 2017). 

According to Little & Rubin (2019), the mechanisms for missing values are divided 

into three categories: missing completely at random (MCAR), missing at random (MAR), 

and not missing at random (NMAR). This study uses MCAR. Missing Completely at 

Random (MCAR) is a high level of randomness in missing data, indicating that the pattern 

of missing data is completely random and independent of any variables (Ramanathan et al., 

2019). In other words, the missing data is independent of the variables being studied and 

other parameters in the dataset. When missing values are evenly distributed across 

measurements, the data can be categorised as MCAR. To test this, a comparison can be made 

between two datasets, one with missing data and one without missing data. If the t-test results 

show no significant difference in the means between the two datasets, it can be concluded 

that the data is MCAR (Hameed & Ali, 2023). Mathematically, MCAR can be expressed as: 

𝑃(𝑃1|𝑋, 𝑌0,𝑙, 𝑌𝑚 ,𝑙) = 𝑓(𝑙, 𝑋)  

where 𝑃(𝑃1|𝑋, 𝑌0,𝑙, 𝑌𝑚 ,𝑙) represents the probability of missingness in the 𝑙  variable, 

conditional on the covariates 𝑋, the observed part of the data (𝑌(0,𝑙)), and the missing part 

( 𝑌(𝑚 ,𝑙)); 𝑋 denotes the set of covariate variables or explanatory variables in the dataset; 

𝑌(0,𝑙) refers to the observed portion of the data in the 𝑙𝑡ℎ variable; 𝑌(𝑚,𝑙) refers to the missing 

portion of the data in the 𝑙𝑡ℎvariable; 𝑓(𝑙, 𝑋) is a function indicating that the pattern of 

missingness depends only on the covariates 𝑋 and is not influenced by the observed or 

unobserved values of 𝑌, where  𝑓 is a function, that is, the missing data patterns are 

determined only by the covariate variables 𝑋. 
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2.3. Missing Value Imputation Technique 

A. Mean Imputation 

The mean imputation technique calculates the mean of the non-missing values for a 

given attribute to replace missing data. It is simple, quick, and widely available in most 

statistical software packages. This method is effective for small datasets and produces 

accurate results in such cases. However, it may lead to inaccuracies in large datasets. Mean 

imputation is suitable for data missing at random (MAR) but is not recommended for data 

missing completely at random (MCAR). Mathematically, the formula for mean imputation 

is: 

𝑥̂𝑖𝑗 = ∑
𝑥𝑖𝑗

𝑛𝑘
𝑖:𝑥𝑖𝑗∈𝑐𝑘

 
 

where 𝑛𝑘 represents the number of non-missing values in feature 𝑗 of class 𝑘 (𝐶𝑘) (Puri & 

Gupta, 2017; Hameed & Ali, 2023). 

B. K-Nearest Neighbor (KNN) Imputation 

The KNN imputation method identifies the similarity between data points and 

replaces missing values with similar ones using Euclidean distance. This technique is 

advantageous for datasets containing both qualitative and quantitative attributes, as it does 

not require creating a predictive model for each missing attribute. Additionally, it is effective 

in handling multiple missing values. However, a notable drawback is that the algorithm 

searches through the entire dataset to find similar instances, which can be computationally 

intensive (Hameed & Ali, 2023). In KNN, we indeed use the Euclidean distance formula, 

which is expressed as: 

𝑑(𝑥𝑎, 𝑥𝑏) = √∑ (𝑥𝑎𝑗 − 𝑥𝑏𝑗)
2𝑚

𝑗=1
  

with 𝑑(𝑥𝑎, 𝑥𝑏) is the Euclidean distance between gen 𝑥𝑎 (containing missing values) and 

gene 𝑥𝑏 (with complete data); 𝑥𝑎𝑗 is the expression value of gene 𝑥𝑎in sample j; 𝑥𝑏𝑗 is the 

expression value of gene  𝑥𝑏 in sample j; 𝑚 is the number of observations used in the distance 

calculation, i.e., samples that contain complete data for both genes  𝑥𝑎 and  𝑥𝑏 (Foud et al., 

2021). 

C. Bayesian Optimization  

Missing Not at Random (MNAR or NMAR) occurs when the probability of 

missingness is related to unobserved information, meaning that the likelihood of data being 

missing depends on the actual unobserved value itself or on variables outside the dataset 

(Little & Rubin, 2019). In this case, the missing data pattern cannot be fully explained or 

predicted using other observed variables. For example, in a depression study, data may be 

considered MNAR if participants with more severe depression are more likely to refuse 

completing a survey on depression severity. 

In MNAR settings, the missingness mechanism is systematically linked to the 

unobserved data, which makes handling this type of missingness particularly challenging. 

As in the MAR case, complete-case analysis may or may not produce bias. However, when 

bias occurs under MNAR, it generally cannot be resolved analytically because the cause of 

missingness is itself unmeasured. A common misconception is that complete-case analysis 

always produces unbiased estimates in MCAR and always biased estimates in MNAR. 

In fact, whether bias arises depends on the causal structure of the missingness process. 

As shown in Daniel et al. (2012) and Westreich (2012), complete case analysis can remain 
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unbiased if missingness is independent of the outcome variable, a situation that can occur 

under both MAR and MNAR. If missingness is not independent of the outcome, bias can 

only be addressed analytically when the missingness is MAR, but not under MNAR. 

Mathematically, MNAR can be expressed as: 

𝑃(𝑝1|𝑋, 𝑦0,𝑙 , 𝑌𝑚,𝑙) = 𝑓(𝑙, 𝑋, 𝑌0,𝑙 , 𝑌𝑚,𝑙)  
 

 

where 𝑓 is a function indicating that the patterns of missing data are influenced by all three 

types of variables (Hameed & Ali, 2023). 

2.3. Error Evaluation Metrics 

A. Normalized Root Mean Squared Error (NRMSE) 

NRMSE is defined as a parameter of the average error in analytical methods, 

measuring the difference between the estimated and observed original values. The formula 

for NRMSE is 

√
∑ (𝑥𝑖 − 𝑥𝑖𝑗)

2𝑛𝑚𝑣
𝑖=1

𝑛𝑚𝑣
⁄

𝜎𝑥𝑗

 
 

where 𝑥𝑖𝑗  is the 𝑖 − 𝑡ℎ value from the complete observation data; 𝑥̂𝑖𝑗  is the imputed value of 

the  𝑖 − 𝑡ℎ missing value; 𝜎𝑥𝑗 is the standard deviation of the observed data; 𝑛𝑚𝑣 is the total 

number of missing values in the complete observation. 

The imputation result is considered accurate when the NRMSE value is relatively 

small or approaches zero, indicating that the imputed values closely match the original data 

(Al Janabi & Alkaim, 2020). 

B. Mean Squared Error (MSE) 

Mean Squared Error is a metric used to measure the average squared difference 

between the expected values and the predicted output values. It calculates the error 

magnitude by squaring each prediction error, making it sensitive to large deviations. A 

smaller MSE value indicates better prediction accuracy, as the errors are minimal. The 

formula for MSE is as follows (Khan, 2024): 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

  

where 𝑦̂𝑖  represents the predicted value and 𝑦𝑖 is the true value  

C. Mean Absolute Error (MAE) 

The Mean Absolute Error represents the average magnitude of the errors in a set of 

predictions without considering their direction. It is calculated in Equation (Khan, 2024): 

𝑀𝐴𝐸 =
1

𝑛
 ∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

  

where 𝑦𝑖 are the actual values, 𝑦̂𝑖  are the predicted values, and 𝑛 is the number of 

observations. 

 

3. MATERIAL AND METHOD  

3.1. Dataset 

The dataset used in this study originates from an RNA-sequencing study on platelets 

collected from patients with tumors, referred to as Tumor-Educated Platelets (TEPs). This 
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dataset is publicly available under accession number GSE68086 in the Gene Expression 

Omnibus (GEO) database. The RNA-seq data were gathered from 283 blood platelet 

samples, including 228 samples from patients with six different types of cancer (non-small 

cell lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer, and 

hepatobiliary carcinoma) and 55 samples from healthy individuals. 

3.2. Data Characteristics 

The GSE68086 dataset, used for cancer diagnostics through Tumor-Educated 

Platelets (TEPs), provides 57,736 rows representing gene IDs and 285 columns 

corresponding to blood platelet samples. The dataset spans multiple cancer types, including 

non–small cell lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer, 

hepatobiliary carcinomas, and healthy donor samples. It consists of 283 labeled samples 

distributed across 15 categories, with the largest groups being Healthy Donor (HD) samples 

(45) and lung cancer samples (39).  

This dataset contains no missing values; however, it includes 27,239 outliers 

distributed across all columns, which requires careful preprocessing. The range of expression 

values varies significantly between samples, with a minimum value of 0 and a maximum 

value of 455,636. The range of values for each variable is between 4.97 and 6.01 units, with 

minimum values ranging from 1.60 to 3.25 and maximum values between 7.05 and 8.31. 

This consistency is evident from the relatively minor differences in range between columns, 

with the lowest variation being 4.97 units and the highest 6.01 units. 

These stable characteristics are very beneficial for the process of imputing missing 

data. The uniformity of the value range indicates that all variables are on a comparable scale, 

so that similarity-based methods such as KNN can work optimally without requiring 

complex standardisation. Furthermore, this consistency ensures that the relationship patterns 

between variables are sufficiently stable, so that the imputed values will be more accurate 

and will not disrupt the basic structure of the dataset. Such data conditions facilitate the 

selection of imputation methods because there are no significant scale imbalances between 

columns that could affect the analysis results. 

3.3. Method 

This study aims to evaluate the performance of mean imputation, K-Nearest 

Neighbours (KNN), and KNN optimised using Gaussian Process–based Bayesian 

optimisation in handling missing values introduced under the MCAR (Missing Completely 

at Random) mechanism at rates from 5% to 60% (in 5% increments). Evaluation metrics are 

Normalised Root Mean Square Error (NRMSE), Mean Squared Error (MSE), and Mean 

Absolute Error (MAE). The step-by-step analysis procedure is described below: 

(1) Import Required Libraries (Import Libraries): All Python libraries required for data 

manipulation, imputation, statistical analysis, and performance evaluation are imported 

at an early stage. 

(2) Load the Dataset (Read Dataset): The dataset is loaded into the Python environment, 

and the structure and initial content of the data are examined. 

(3) Descriptive Statistics (Check Descriptive Statistics): Calculate descriptive statistics 

such as mean, median, standard deviation, and range. 

(4) Check for Missing Values and Outliers (Check Dataset for Missing Values and 

Outliers: Missing values are identified and outliers are detected using visualizations 

(e.g., boxplots). 
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(5) Handle Outliers (Identification and Handling of Outliers with IQR and Z-score): 

Outliers are treated using methods such as the interquartile range (IQR) or Z-score, 

either by capping extreme values or applying suitable transformations. 

(6) Standardization and Log Transformation: A log transformation (log (𝑥 + 1)) is applied 

to skewed features, followed by standardization to ensure that all features are on a 

comparable scale. 

(7) Save Cleaned Data (Data Backup – Preservation): The cleaned dataset is saved to 

provide a reliable version for subsequent missing value simulations. 

(8) Simulate Missing Values Using MCAR (Insertion of Missing Values): 

Missing values are randomly introduced into the dataset under the MCAR assumption 

at levels ranging from 5% to 60%. This ensures that the missingness occurs completely 

at random, meaning that the probability of a value being missing is the same for all 

entries and is independent of both observed and unobserved data. 

(9) Check for MCAR Suitability Using t-test (t-Test for MCAR Validation): 

A t-test is performed to validate whether the missing values are truly MCAR by 

comparing observed and missing data distributions. 

(10) Data Imputation Stage: Missing values are imputed using three methods: 

(a) Mean imputation 

(b) K-Nearest Neighbors (KNN) imputation 

(c) KNN Bayesian imputation (KNN combined with Gaussian Process Bayesian 

optimization) 

(11) Evaluate Imputation Performance: The performance of each imputation method is 

evaluated using the following metrics: 

(a) MAE (Mean Absolute Error) 

(b) NRMSE (Normalized Root Mean Square Error) 

(c) MSE (Mean Squared Error) 

(12) Summarize and Interpret Results: Comparative results for each missing value level are 

recorded and interpreted. 

(13) Conclusion (End): A conclusion is drawn to determine which imputation method is the 

most effective under different missing value conditions. 

The flowchart of the comparative study of missing value imputation methods using 

Mean, Bayesian KNN, and Non-Bayesian KNN on TEP gene expression data is shown in 

Figure 1. 

 

Figure 1. Workflow for Comparing Missing Value Imputation Methods: Mean, Bayesian 

KNN, and Non-Bayesian KNN 
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4. RESULTS AND DISCUSSION 

The data set used in this study is the Tumor-Educated Platelet (TEP) gene expression 

data obtained from Gene Expression Omnibus (GEO) with access number GSE68086. This 

data set consists of 57,736 rows representing gene expression and 286 columns 

corresponding to individual sample identifications. 

Preliminary analysis showed that the dataset did not contain missing values, but it 

did contain outliers that needed to be addressed, and the data was not normally distributed. 

Gene expression values also showed a wide range, with minimum values of 0 and maximum 

values reaching up to 455,636 in certain samples. The outlier detection process highlighted 

samples with expression values exceeding the interquartile range thresholds. Table 1 

presents the number of outliers detected in each sample, illustrating the variability of gene 

expression across different cancer conditions. 

Information on the distribution of cancer types is crucial for mapping biological 

variations in the dataset and for anticipating the potential influence of cancer types on gene 

expression patterns in subsequent analyses. By understanding the proportion and diversity 

of samples based on cancer type, the developed imputation models and methods can be 

adjusted to be more accurate and relevant to existing biological characteristics. Table 1 

presents the number of samples based on the cancer types identified in the dataset. 

Table 1. Detected Outliers in TEP Gene Expression Dataset 

Sample ID Outlier Count 

3-Breast-Her2-ampl 71 

8-Breast-WT 89 

10-Breast-Her2-ampl 89 

Breast-100 68 

15-Breast-Her2-ampl 78 

… … 

MGH-NSCLC-L40-TR520 92 

MGH-NSCLC-L51-TR521 100 

MGH-NSCLC-L58-TR525 138 

MGH-NSCLC-L59-TR522 97 

MGH-NSCLC-L65-TR523 112 

The t-test results showed no significant difference between the missing data and the 

observed data (p > 0.05), supporting the assumption that the missing values follow the 

MCAR (Missing Completely at Random) mechanism. The evaluation metrics, including 

NRMSE, MAE, and MSE, for each imputation method across different missing value rates 

are summarized in Table 2. These metrics provide a comparative assessment of the 

performance of Mean Imputation, KNN, and Bayesian KNN under increasing levels of 

missing data. 

From the application of the mean imputation model, KNN and Bayesian KNN to 

TEP data that still contains 0 values (not missing values), the results of the comparison of 

imputation methods are shown in Table 2 above. Performance is calculated from three 

metrics, namely Mean Absolute Error (MAE), Mean Squared Error (MSE), and Normalised 

Mean Squared Error (NRMSE). The performance of each method was analysed at various 

levels of missing data, ranging from 5%, 10%, 15% to 60%. 

The results of the imputation evaluation based on the MAE metric show that the 

average absolute error value ranges from 38.4 to 42.1. In general, the MAE value tends to 
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decrease as the percentage of missing values increases from 5% to 60%, indicating that all 

three imputation methods are able to maintain stability even though more data is missing. 

The differences between the methods are very small, only about 0.01–0.05 at each 

percentage level, so no single method is truly dominant in terms of MAE. 

Table 2. Comparison of Imputation Performance Using MAE, MSE, and NRMSE 

for Mean, KNN, and Bayesian KNN 

Rate of Missing 

Value 

Imputation 

Method 

MAE NRMSE MSE 

5% MEAN 42.08 0.0057 1501979.50 

5% KNN 42.124 0.0057 1501469.36 

5% KNN Bayesian 42.119 0.0057 1501474.88 

10% MEAN 39.55 0.0074 987727.52 

10% KNN 39.603 0.0074 987263.15 

10% KNN Bayesian 39.597 0.0074 987265.03 

15% MEAN 39.58 0.0060 1064261.69 

15% KNN 39.63 0.0060 1063791.57 

15% KNN Bayesian 39.62 0.0060 1063793.30 

20% MEAN 39.01 0.0050 1031574.53 

20% KNN 39.061 0.0050 1031114.61 

20% KNN Bayesian 39.056 0.0050 1031116.22 

25 % MEAN 38.51 0.0047 904602.87 

25% KNN 38.560 0.0047 904151.89 

25% KNN Bayesian 38.555 0.0047 904154. 23 

30% MEAN 38.90 0.0038 1004476.19 

30% KNN 38.95 0.0038 1004019.97 

30% KNN Bayesian 38.94 0.0038 1004022.28 

35% MEAN 39.29 0.0041 1129157.61 

35% KNN 39.342 0.0041 1128695.93 

35% KNN Bayesian 39.337 0.00405 1128697.79 

40% MEAN 38.86 0.0047 962406.16 

40% KNN 38.910 0.0047 961951.20 

40 % KNN Bayesian 38.905 0.0047 961953.98 

45% MEAN 39.67 0.0030 1187522.44 

45% KNN 39.72 0.0030 1187057.08 

45% KNN Bayesian 39.71 0.0030 1187060.35 

50% MEAN 38.46 0.0037 961439.84 

50% KNN 38.515 0.0037 960989.54 

50% KNN Bayesian 38.509 0.0037 960991.85 

55% MEAN 39.07 0.0039 1053131.25 

55% KNN 39.13 0.0039 1052673.06 

55% KNN Bayesian 39.12 0.0039 1052675.91 

60% MEAN 38.89 0.0050 1013082.62 

60% KNN 38.939 0.0050 1012630.64 

60% KNN Bayesian 38.934 0.00498 1012633.42 

For the NRMSE metric, the values obtained are relatively very small, ranging from 

0.0030 to 0.0074. The highest value was at 10% missing values (0.0074) and the lowest at 

45% missing values (0.0030). The difference in values between methods was again almost 

identical, differing only by three to four decimal places. This shows that MEAN, KNN, and 

Bayesian KNN produce almost the same level of error in the data after the imputation 

process. 
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When viewed from the MSE, the values are on a fairly large scale, around 9.0×10⁵ 

to 1.5×10⁶. The pattern formed is also unclear, with no consistent upward or downward trend 

in the percentage of missing data. However, the differences between the methods remain 

very small. For example, at 25% missing values, the difference in MSE between MEAN, 

KNN, and Bayesian KNN is only about 450 points out of a total of more than 900 thousand, 

so it can be said that the three methods produce almost identical performance. 

Overall, the three imputation methods used, namely MEAN, KNN, and Bayesian 

KNN, show very similar performance at all levels of missing values. Although in theory 

MEAN is usually considered simpler and prone to bias, in this TEP dataset the results are 

not inferior to KNN-based methods. Meanwhile, Bayesian KNN, which is expected to 

provide additional optimisation, does not provide a significant improvement over regular 

KNN. Thus, the selection of imputation methods in this TEP data can consider computational 

efficiency factors, as the accuracy of the three methods is relatively comparable. 

Most studies on missing value imputation have focused on general gene expression 

datasets, whereas Tumor-Educated Platelets (TEP) data possess distinct biological and 

statistical characteristics that may influence imputation behavior. Despite the increasing use 

of TEP in cancer diagnostics and biomarker discovery, there has been limited investigation 

into how common imputation techniques perform on such data. Moreover, comparative 

evaluations between conventional approaches (such as mean and KNN) and their optimized 

variants (like Bayesian KNN) on TEP datasets remain scarce. This study addresses this gap 

by systematically evaluating and comparing these methods on TEP gene expression data, 

aiming to determine whether method complexity provides a tangible benefit or if simpler 

approaches are sufficient for accurate imputation in TEP-based analyses. 

 

5. CONCLUSION 

The results of this study indicate that the three imputation methods, namely Mean, 

KNN, and Bayesian KNN with optimisation using the Gaussian process, produce relatively 

similar performance in filling in missing values. The MAE, MSE, and NRMSE values 

obtained from the three methods are within a very close range, with differences only in small 

decimal places, so that no method is consistently superior. These findings show that although 

Bayesian Optimisation is expected to improve the accuracy of KNN, the improvement is not 

significant in this dataset. To strengthen the generalisation, future research could use TEP 

data with more in-depth pre-processing, for example by removing zero values in the original 

dataset, handling outliers correctly, and performing standardisation with log transformation 

correctly so that the MAE value is not too high and the MSE and NRMSE values have a 

visible distance to clearly compare the results. Additionally, if these steps do not produce the 

expected results, the Bayesian KNN method with Gaussian Process optimisation can be 

applied to datasets with other characteristics, which may highlight the benefits of 

optimisation in handling missing values. 
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