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Hazards; Bayesian MCMC. the hospital and the patient. The results of the data analysis indicate

that both hospital and patient frailty significantly influence the time to
infection, with patient frailty having a greater effect. Additionally, the
treatment variable rINF-g significantly in reducing the risk of serious
infection for CGD patients by 64.44%.

1. INTRODUCTION

Survival analysis models the time-to-event outcome, widely applied across various
fields (Kleinbaum & Klein, 2005). Data often features a multilevel structure (e.g., patients
nested within hospitals), which induces dependence. Ignoring this hierarchy violates the
independence assumption and results in biased estimates (Hox, 2002).

To address this, the frailty model introduces a random effect that accounts for
unobserved heterogeneity among individuals or groups (Vaupel et al., 1979). The Cox
proportional hazards model with frailty is widely used to analyze multilevel survival data,
allowing for variation in risk between groups. In medical research, the frailty model is
essential for differentiating between the observed effect of covariates and the unobserved
heterogeneity (such as genetic factors or lifestyle) that can bias parameter estimates if
ignored (Kiprotich et al., 2025; Yslas, 2025). By incorporating the frailty term, the model
accurately captures the variation in risk that is not explained by the observed covariates, thus
leading to more reliable inferences in survival studies (Kiprotich et al., 2025). Subsequent
developments led to the Covariate-Adjusted Frailty model, where the frailty variance
flexibly depends on cluster-level covariates, estimated using a Bayesian approach (Zhang et
al., 2020).

Previous studies have demonstrated the effectiveness of these models. Noh et al.
(2006) applied hierarchical generalized linear models to analyze kidney disease data,
meanwhile, Liu et al. (2011) used a shared frailty model on organ transplant data. Zhou et
al. (2015) developed a covariate-adjusted frailty proportional hazards model for breast
cancer survival data in Iowa, United States, and highlighted the importance of covariate
effects at the regional level.
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This study aims to apply the Covariate-Adjusted Frailty Proportional Hazards model
with a Bayesian approach to multilevel survival data of patients with Chronic Granulomatous
Disease (CGD). This method was chosen because of its ability to handle hierarchical data
structures, accommodate heterogeneity at the patient and hospital levels, and flexibly model
the influence of covariates at the cluster level. It is expected that this analysis will provide a
deeper understanding of the factors influencing the time to infection in CGD patients and
demonstrate the advantages of the multilevel survival approach further. This study
contributes by incorporating cluster-level covariates (hospital categories) into the frailty
variance, extending standard applications to recurrent event data in CGD, unlike previous
single-event focuses (Zhou et al., 2015).

2. LITERATURE REVIEW
2.1. Covariate-Adjusted Frailty Proportional Hazards Model

The Covariate-Adjusted Frailty Proportional Hazards model extends the Cox
Proportional Hazards model by incorporating random effects (frailty) to account for
unobserved heterogeneity between individuals or groups (Vaupel et al., 1979). In this model,
frailty variance can be influenced by covariates at the cluster level, providing greater
flexibility in multilevel survival data analysis (Zhou et al., 2015). Recent advancements
include the multivariate shared truncated normal frailty model with application to medical
data (Diego et al., 2025) and Bayesian multivariate survival tree approach based on three
frailty models (Porndumnernsawat et al., 2025). Additionally, neural network-based frailty
models have been proposed for complex correlated outcomes (Lee et al., 2025).

Multilevel survival data is time-to-event data with a nested structure, where units at
the lower level (e.g., patients) are grouped at a higher level (e.g., hospitals) (Hox, 2002). For
example, in health studies, patients are grouped based on the hospital where they were
treated. This type of data structure requires a special model so that the analysis
accommodates the dependence between observations within a group.

2.2. Specifications of the Covariate-Adjusted Frailty Proportional Hazards Model in
Multilevel Survival Data

The Covariate-Adjusted Frailty PH model was used to analyze multilevel survival
data with three levels, repeated observation time (level 1) nested within patients (level 2),
nested within hospitals (level 3). This model makes it possible to identify unobserved
heterogeneity at the patient and hospital levels, and allows for hospital-level frailty variance
to be influenced by group covariates.

Let i = 1,...,n; denote the number of patients admitted to hospital j = 1, ...,] and
k =1,...,K;j denote the random number of observations of several failure times for patient
i in hospital j, the hazard function of the frailty proportional hazard model is as follows:

h(t;i,j, k) = ho(t) exp(xL ;B + uij + v)) (1)

with: hg: baseline hazard function; x;j: covariate vector for patient i in hospital j at
observation k corresponding to parameter B; u;;~N (0, 02): patient frailty; v;~N (0, 02):
hospital frailty.
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The baseline hazard h,(t) follows the Weibull distribution. This choice is preferred
for its flexibility, allowing the hazard rate to increase (p > 1), decrease (p < 1), or remain
constant (p = 1) over time (Kleinbaum & Klein, 2005; Carroll, 2003).

The Weibull hazard baseline function is expressed as:
ho(t) = AptP~? (2)

with A: scale parameter and p: shape parameter.

The survival function for the Weibull distribution is:

S(t) = exp(—AtP) 3)
Thus, the hazard function for the multilevel survival model with frailty is:
hije(t) = Apt” ™" exp(xfjp B + uyy + v) @)

The survival function for observation k in patient i at hospital j is obtained from the
hazard function above, as follows:

Sijk(t) = exp(— exp(m;jx ) AtP) (5)

with 7 = X7 B + wij + v;.
This survival function expresses the probability that the time to event for observation
k in patient i at hospital j is greater then t, taking into account the effects of covariates,
patient frailty, and hospital frailty. Frailty variance at the hospital level was adjusted for
center-level covariates, specifically the proportion of hospital category per center (Z;),
reflecting genetic heterogeneity across hospitals, modeled as Oy, = exp(a + yTZj).

Parameters a and Y7 were estimated using Bayesian MCMC, with priors @ ~ N(0,1) and
YT ~ N(0,1).

In the proportional hazards model, the effect of covariates on hazard is measured
using the hazard ratio (HR). The hazard ratio is calculated as:

HR = exp(p) (6)

where [ is the regression coefficient of the relevant covariate. The value HR < 1 indicates a
decrease in risk, while HR > 1 indicates an increase in risk (Kleinbaum & Klein, 2005).

2.3. Estimation of Covariate-Adjusted Frailty Proportional Hazards Model
Parameters

Parameter estimation in the three-level Covariate-Adjusted Frailty Proportional
Hazards model was performed using a Bayesian approach. This approach was chosen
because of the complex structure of the model, involving frailty at the patient and hospital
levels, making the classical approach difficult to apply.

2.3.1 Likelihood

The likelihood function for all three levels of data is formulated as follows:

LB, A4 p {ui}{v})
J Ky
=11 1] [Pethet explnupdl™ exp(=exp(mi)aes)

j=1i=1 k=1

(7
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In the Bayesian approach, the likelihood function is used to form a posterior distribution
together with the prior.

2.3.2 Prior and Posterior Distributions

In the Bayesian approach, each model parameter is given a prior distribution. The
prior used for parameters (ﬁ', Ap, {ui j}, {vj}) are as follows:
(1) Prior for Regression Coefficient (f)

The regression coefficient 8 is assumed to follow a multivariate normal distribution,
which is:

_ 1 1 T
n(B) —Wexp<—ﬁﬁ ﬁ) (8)

where p is the dimension of the parameter vector B, which is the number of regression
coefficients in that vector.

(2) Prior for Individual Frailty (u;;)
Individual frailty u;; is assumed to be normal distribution, i.e., u;;~N (0, 02). The
standard deviation of individual frailty a,, follows a positive Cauchy distribution with
scale 2,5 (o, ~Cauchy™(0,2.5)). The prior distribution for frailty u;; and o, can be

written as:
o u?
n(uij |0u) = 1_[ 1_[ exp <— —UZ> 9)
i=1 =1V 2mof 204
2
T[(O-u) , 0y > 0

(10)

(3) Prior for Cluster Frailty (v;)
The cluster frailty v; is also assumed to be normal distributed, i.e., v;~N (0, 05].), with
Oy, = exp(a + ysz), (a ~ N(0,1), (yT ~N (0,1)) The prior distribution for frailty v;
and ay; can be written as:

n(vﬂa,y)znrexp(—ZG]Z)
j=1 Znagj Yj
with (@ = L (_ a_2> (12)
m(a) = mexp >
d 1 1 13
o) = emaz P (‘EYTY) "

where q is the dimension of the vector ¥y (which corresponds to the number of cluster-
level covariates).

(4) Prior for Scale Parameter (1)
The scale parameter A of the Weibull distribution is assumed to follow a Gamma
distribution, i.e., A~Gamma(ay, b,).

(5) Prior for Shape Parameter (p)
The shape parameter p of the Weibull distribution is also assumed to follow the Gamma
distribution, i.e., p~Gamma(a,, b,).
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Based on Bayes' Theorem (Berger, 1985), the posterior distribution of the model parameters
combines the prior distribution and the likelihood function, as follows:

(T[(ﬁ' {uij}' {vj}) /1) p, oy, &, Y|data) X L(datalﬂ' {uij}r {vj}' /1' p) : ﬂ(ﬁ) (14)
« L(data|B,{u;;},{v;}, A, p) - m(B)

By substituting the likelihood function and prior distribution of all parameters into equation
(13), the joint posterior distribution is:

(@(B,{u;;},{vj}, 4, p, oy, @, ¥|data)
8
l_[[lptuk eXp(mjk)] jk eXp(— exp(nijk,ltfjk))

J.ik

1 u?; 1
- exp (_FﬂTﬂ> 1_[ ,— < L) 1+(%)2
L v} 1 a?
: 1_[ — exp <— 20%) -\/T_nexp <— 7) ~1t(y)

1 1
— T . -1,-by1 . -1,-b
= Gy (=g ¥Ty) AT gt e

Since the posterior distribution has a complex analytical form, posterior sampling is
performed using the Markov Chain Monte Carlo (MCMC) numerical method.

2.3.3 Estimation Process with Markov Chain Monte Carlo (MCMC)

Model parameter estimation is performed using the Markov Chain Monte Carlo (MCMC)
method. In general, the MCMC steps for posterior sampling are as follows:

1. Initialize all model parameters with initial values
BOuY v@ 2@, p® 5 q© y©

2. For each iteration t, update the parameters alternately

BO,uP ,v® 10, p®,50 ¢®,y0)

Repeat step two for many iterations until the Markov chain reaches convergence.

4. Discard a number of initial iterations (burn-in) to eliminate the influence of initial values

and use samples after burn-in for parameter inference. The final estimate is obtained
from the posterior sample after burn-in.

[99)

3. MATERIAL AND METHOD
3.1. Data

This study uses secondary data from a study on chronic granulomatous disease
(CGD) by Fleming and Harrington (1991) obtained from the R software in the survival
package. The dataset includes 128 patients across 13 hospitals over a period of one year.
Each hospital had between 4 and 26 patients. The data has a three-level structure: repeated
event observations (level 1), patients (level 2), and hospitals (level 3). The outcome is time
to serious infection (tstop - tstart). Data were right-censored at the end of the one-year
follow-up period or upon loss to follow-up, with approximately 63% censored observations
assumed to be non-informative (independent of the event risk).

Media Statistika 18(1) 2025: 73-82 77



3.2. Research Variables

This study involved two types of variables, independent variables and dependent
variables. There are six independent variables used in this study: patient ID, center (hospital
number), treatment (category of treatment, either gamma interferon (y-INF) or placebo), sex
(category of gender), age (category of patient age), hospital category (cluster-level covariate:
US:NIH, US:other, Europe:Amsterdam, Europe:other) , and status (indicating censoring,
where 1 = uncensored data and 0 = censored data). The dependent variable in this study is
the time to recurrence of survival in infected patients. In this case, t-start indicates the start
of the time interval, and t-stop indicates the end of the time interval.

Table 1. Baseline Characteristics by Treatment

Variable y-IFN Placebo
Age (mean, SD) 14.3 (10.1) 15.0 (9.6)
Sex (Male, %) 81 81.5
Hospital Category
US:NIH 15 11
US:other 31 32
Europe: Amsterdam 9 10
Europe:other 8 12

Table 1 presents baseline characteristics of CGD patients by treatment group (y-IFN
vs. placebo). The mean age is 14.3 years in the y-IFN group and 15.0 years in the placebo
group. The percentage of male patients is 81% in the y-IFN group and 81.5% in the placebo
group, with females comprising 19% and 18.5%, respectively. The distribution of hospital
categories is as follows: US:NIH (23.8% in y-IFN and 16.9% in placebo), US:other (49.2%
in both groups), Europe:Amsterdam (14.3% in y-IFN and 15.4% in placebo), and
Europe:other (12.7% in y-IFN and 18.5% in placebo).

3.3. Data Analysis Methods

The data were analyzed using the Covariate-Adjusted Frailty Proportional Hazards
model for multilevel survival data. In general, the steps for data analysis are as follows:
1. Define the multilevel frailty model with Weibull baseline hazard.
2. Estimate parameters using Bayesian MCMC (50,000 iterations, 25,000 burn-in).
3. Perform posterior predictive checks and test proportional hazards using Schoenfeld
residuals.
4. Interpret hazard ratios and frailty variances

4. RESULTS AND DISCUSSION

Multilevel survival data analysis was performed with two frailties (patients and
hospitals) and three covariates: treatment, sex, and age. The two random frailties are patients
and hospitals, with hospital frailty variance adjusted by hospital category.

A sufficiently large burn-in period (initial iterations) is essential to ensure that the
sampling chain has reached its stationary distribution (Gelman et al., 2013). Furthermore,
convergence diagnostics, such as the potential scale reduction factor (R statistic), must be
assessed, typically requiring R values close to 1.0, to confirm the reliability of the posterior
estimates across multiple chains (Brooks & Gelman, 1998).

The MCMC analysis was based on 50,000 iterations (25,000 burn-in). The posterior
parameter estimates are summarized as follows:
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Table 2. Parameter Estimation Results

Parameters Estimate 95% Credible interval (2.5% - 97.5%) R-hat
Treatment (y-INF) -1.0338 [-1.6435, -0.4072] 1.002
Sex (Female) -0.1436 [-0.9063, 0.5995] 1.000
Age -0.0329 [-0.0986, 0.0015] 1.002
Baseline Hazard (1) 0.002221 [0.0003, 0.00705] 1.000
Shape (p) 1.1181 [0.8876, 1.3756] 1.000
Patient Frailty Var (g,,) 0.7855 [0.3550, 1.2343] 1.001
Hospital Frailty Base (g,) 0.5289 [0.0307, 2.1591] 1.001
Alpha Hos (ap,s) -0.5828 [-2.3374, 1.1629] 1.000
Gamma Hos [1] -0.1654 [-1.8702, 1.5501] 1.001
Gamma Hos [2] -0.1962 [-1.9994, 1.7730] 1.002
Gamma Hos [3] -0.0569 [-1.8891, 1.7472] 1,002

Based on Table 2, it can be seen that the treatment variable (y-IFN) had a negative
coefficient (-1.0338), and because the confidence interval does not exceed 0 (95% CI: [-
1.643498, -0.407252]), it is significant. This means that the treatment covariate rINF-g as
the treatment group is significant in reducing the risk of serious infection for CGD patients
compared to the placebo, which is the control group. This can also be shown through the
survival curve.

Survival Curves Prediction (without specific frailty)

10

group
Placeba

== rlFN-g

Survival Probability

08

100 2040 300 400
Time

Figure 1. Survival Curve for Treatment

From Figure 1, it can be seen that at each point in time, the group receiving rINF-g
treatment showed a higher probability of survival compared to the group receiving placebo
treatment. This indicates that rINF-g treatment has a positive effect on the survival rate of
CGD patients.

In addition, based on Table 2, it can also be seen that the confidence intervals for the
covariates sex and age exceed 0, so it can be concluded that the covariates sex and age are
not significant. This can be shown through the following posterior plot.

This posterior plot displays the estimated regression coefficients along with their
95% confidence intervals. From this plot, it can be observed that the treatment coefficient
has a confidence interval that does not include zero and is negative, indicating that the
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treatment variable has a significant effect on reducing the severity of infection in CGD
patients. Conversely, the regression coefficients for sex and age, with confidence intervals
that include zero, indicate that these two variables have no significant effect.

Posterior median and 95% credible interval

wn

age SEX freat
covariate

Figure 1. Posterior Plot of Treatment, Sex, and Age

From Table 2, it can also be seen that the baseline hazard parameter is very small,
namely 0.002221, indicating a very low baseline hazard at the beginning of time that is close
to constant. For the hazard distribution shape parameter 1.1181 > 1, this indicates that the
hazard increases over time. Both patient frailty variance (g,,: 0.7855) and hospital frailty
variance (o0,: 0.5289) were significant, confirming substantial heterogeneity between
patients and hospitals.

Based on the estimation results, the regression coefficient for the treatment covariate
rINF-g is -1.0338. Thus, the hazard ratio for treatment rINF-g is:\

HR = exp(—1.0338) ~ 0.3556 (8)

The HR value of 0.3556 indicates that patients receiving rINF-g treatment have a risk
of serious infection in CGD patients of approximately 35.56% of the risk of patients
receiving placebo treatment. In other words, rINF-g treatment reduces the risk of occurrence
by 64.44% compared to placebo.

From these results, the Covariate-Adjusted Frailty Proportional Hazards method can
be used as a reference when using multilevel survival data because it provides
comprehensive results by analyzing the influence of random effects (frailty) within the data
level or tier. The Covariate-Adjusted Frailty PH method in multilevel survival analysis
allows for the handling of complex data forms such as repeated event times for each patient
while considering variations at the patient and hospital levels. The posterior predictive check
confirmed adequate model fit (p-value=0.95>0.05), and the proportional hazards assumption
held (p-value=0.12). This model's capability to handle recurrent events offers an advantage
over single-event models (Zhou et al., 2020).
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5.  CONCLUSION

Based on a case study of factors influencing the severity of infection in CGD patients,
it was found that the rINF-g treatment variable was significant in reducing the severity of
infection in CGD patients. The hazard ratio (HR) value showed that rINF-g treatment had a
64.44% effect in reducing the risk of occurrence. In addition, the random effects of patients
and hospitals were also significant. This means that there is heterogeneity between patients
and between hospitals.
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