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Abstract: Multilevel survival data is time-to-event data with a 

hierarchical or nested structure. This study aims to model the data 

using the Covariate-Adjusted Frailty Proportional Hazards method, 

which is an extension of the Cox proportional hazards model with the 

addition of random effects (frailty). Parameter estimation is performed 

using a Bayesian approach via Markov Chain Monte Carlo (MCMC). 

This method is applied to analyze repeated observations of Chronic 

Granulomatous Disease (CGD) infections, with frailty represented by 

the hospital and the patient. The results of the data analysis indicate 

that both hospital and patient frailty significantly influence the time to 

infection, with patient frailty having a greater effect. Additionally, the 

treatment variable rINF-g significantly in reducing the risk of serious 

infection for CGD patients by 64.44%. 

 

1. INTRODUCTION 

Survival analysis models the time-to-event outcome, widely applied across various 

fields (Kleinbaum & Klein, 2005). Data often features a multilevel structure (e.g., patients 

nested within hospitals), which induces dependence. Ignoring this hierarchy violates the 

independence assumption and results in biased estimates (Hox, 2002). 

To address this, the frailty model introduces a random effect that accounts for 

unobserved heterogeneity among individuals or groups (Vaupel et al., 1979). The Cox 

proportional hazards model with frailty is widely used to analyze multilevel survival data, 

allowing for variation in risk between groups. In medical research, the frailty model is 

essential for differentiating between the observed effect of covariates and the unobserved 

heterogeneity (such as genetic factors or lifestyle) that can bias parameter estimates if 

ignored (Kiprotich et al., 2025; Yslas, 2025). By incorporating the frailty term, the model 

accurately captures the variation in risk that is not explained by the observed covariates, thus 

leading to more reliable inferences in survival studies (Kiprotich et al., 2025). Subsequent 

developments led to the Covariate-Adjusted Frailty model, where the frailty variance 

flexibly depends on cluster-level covariates, estimated using a Bayesian approach (Zhang et 

al., 2020). 

Previous studies have demonstrated the effectiveness of these models. Noh et al. 

(2006) applied hierarchical generalized linear models to analyze kidney disease data, 

meanwhile, Liu et al. (2011) used a shared frailty model on organ transplant data. Zhou et 

al. (2015) developed a covariate-adjusted frailty proportional hazards model for breast 

cancer survival data in Iowa, United States, and highlighted the importance of covariate 

effects at the regional level. 
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This study aims to apply the Covariate-Adjusted Frailty Proportional Hazards model 

with a Bayesian approach to multilevel survival data of patients with Chronic Granulomatous 

Disease (CGD). This method was chosen because of its ability to handle hierarchical data 

structures, accommodate heterogeneity at the patient and hospital levels, and flexibly model 

the influence of covariates at the cluster level. It is expected that this analysis will provide a 

deeper understanding of the factors influencing the time to infection in CGD patients and 

demonstrate the advantages of the multilevel survival approach further. This study 

contributes by incorporating cluster-level covariates (hospital categories) into the frailty 

variance, extending standard applications to recurrent event data in CGD, unlike previous 

single-event focuses (Zhou et al., 2015). 

 

2. LITERATURE REVIEW 

2.1. Covariate-Adjusted Frailty Proportional Hazards Model  

The Covariate-Adjusted Frailty Proportional Hazards model extends the Cox 

Proportional Hazards model by incorporating random effects (frailty) to account for 

unobserved heterogeneity between individuals or groups (Vaupel et al., 1979). In this model, 

frailty variance can be influenced by covariates at the cluster level, providing greater 

flexibility in multilevel survival data analysis (Zhou et al., 2015). Recent advancements 

include the multivariate shared truncated normal frailty model with application to medical 

data (Diego et al., 2025) and Bayesian multivariate survival tree approach based on three 

frailty models (Porndumnernsawat et al., 2025). Additionally, neural network-based frailty 

models have been proposed for complex correlated outcomes (Lee et al., 2025). 

Multilevel survival data is time-to-event data with a nested structure, where units at 

the lower level (e.g., patients) are grouped at a higher level (e.g., hospitals) (Hox, 2002). For 

example, in health studies, patients are grouped based on the hospital where they were 

treated. This type of data structure requires a special model so that the analysis 

accommodates the dependence between observations within a group. 

2.2. Specifications of the Covariate-Adjusted Frailty Proportional Hazards Model in 

Multilevel Survival Data 

The Covariate-Adjusted Frailty PH model was used to analyze multilevel survival 

data with three levels, repeated observation time (level 1) nested within patients (level 2), 

nested within hospitals (level 3). This model makes it possible to identify unobserved 

heterogeneity at the patient and hospital levels, and allows for hospital-level frailty variance 

to be influenced by group covariates. 

Let 𝑖 = 1, … , 𝑛𝑗  denote the number of patients admitted to hospital 𝑗 = 1, … , 𝐽 and 

𝑘 = 1, … , 𝐾𝑖𝑗 denote the random number of observations of several failure times for patient 

𝑖 in hospital 𝑗, the hazard function of the frailty proportional hazard model is as follows: 

ℎ(𝑡; 𝑖, 𝑗, 𝑘) = ℎ0(𝑡) exp(𝒙𝑢𝑗𝑘
𝑇 𝜷 + 𝑢𝑖𝑗 + 𝑣𝑗) (1) 

with: ℎ0: baseline hazard function; 𝒙𝑖𝑗𝑘: covariate vector for patient 𝑖 in hospital 𝑗 at 

observation 𝑘 corresponding to parameter 𝜷; 𝑢𝑖𝑗~𝑁(0, 𝜎𝑢
2): patient frailty; 𝑣𝑗~𝑁(0, 𝜎𝑣

2): 

hospital frailty. 
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The baseline hazard ℎ0(𝑡) follows the Weibull distribution. This choice is preferred 

for its flexibility, allowing the hazard rate to increase (𝜌 > 1), decrease (𝜌 < 1), or remain 

constant (𝜌 = 1) over time (Kleinbaum & Klein, 2005; Carroll, 2003). 

The Weibull hazard baseline function is expressed as: 

ℎ0(𝑡) = 𝜆𝜌𝑡𝜌−1 (2) 

with 𝜆: scale parameter and 𝜌: shape parameter. 

The survival function for the Weibull distribution is: 

𝑆(𝑡) = exp(−𝜆𝑡𝜌) (3) 

Thus, the hazard function for the multilevel survival model with frailty is: 

ℎ𝑖𝑗𝑘(𝑡) = 𝜆𝜌𝑡
𝜌−1

exp(𝒙𝑖𝑗𝑘
𝑇 𝜷 + 𝑢𝑖𝑗 + 𝑣𝑗) (4) 

 The survival function for observation 𝑘 in patient 𝑖 at hospital 𝑗 is obtained from the 

hazard function above, as follows: 

𝑆𝑖𝑗𝑘(𝑡) = exp(− exp(𝜂𝑖𝑗𝑘)𝜆𝑡𝜌) (5) 

with 𝜂𝑖𝑗𝑘 = 𝒙𝑖𝑗𝑘
𝑇 𝜷 + 𝑢𝑖𝑗 + 𝑣𝑗 . 

This survival function expresses the probability that the time to event for observation 

𝑘 in patient 𝑖 at hospital 𝑗 is greater then 𝑡, taking into account the effects of covariates, 

patient frailty, and hospital frailty. Frailty variance at the hospital level was adjusted for 

center-level covariates, specifically the proportion of hospital category per center (𝑍𝑗), 

reflecting genetic heterogeneity across hospitals, modeled as 𝜎𝑣𝑗
= exp(𝛼 + 𝜸𝑇𝒛𝑗). 

Parameters 𝛼 and 𝜸𝑇 were estimated using Bayesian MCMC, with priors 𝛼 ∼ 𝑁(0,1) and 

𝜸𝑇 ∼ 𝑁(0,1). 

In the proportional hazards model, the effect of covariates on hazard is measured 

using the hazard ratio (HR). The hazard ratio is calculated as: 

𝐻𝑅 = exp(𝛽) (6) 

where 𝛽 is the regression coefficient of the relevant covariate. The value HR < 1 indicates a 

decrease in risk, while HR > 1 indicates an increase in risk (Kleinbaum & Klein, 2005).  

2.3. Estimation of Covariate-Adjusted Frailty Proportional Hazards Model 

Parameters 

Parameter estimation in the three-level Covariate-Adjusted Frailty Proportional 

Hazards model was performed using a Bayesian approach. This approach was chosen 

because of the complex structure of the model, involving frailty at the patient and hospital 

levels, making the classical approach difficult to apply. 

2.3.1 Likelihood 

The likelihood function for all three levels of data is formulated as follows: 

𝐿(𝛽, 𝜆, 𝜌 , {𝑢𝑖𝑗}, {𝑣𝑗}) 

= ∏ ∏ ∏[𝜆𝜌𝑡𝑖𝑗𝑘
𝜌−1

exp(𝜂𝑖𝑗𝑘)]
𝛿𝑖𝑗𝑘

 exp(− exp(𝜂𝑖𝑗𝑘)𝜆𝑡𝑖𝑗𝑘
𝜌

)

𝐾𝑖𝑗

𝑘=1

𝑛𝑗

𝑖=1

𝐽

𝑗=1

 
(7) 



76 Krismona Sandelvia (Analysis Multilevel Survival Data) 

In the Bayesian approach, the likelihood function is used to form a posterior distribution 

together with the prior. 

2.3.2 Prior and Posterior Distributions 

In the Bayesian approach, each model parameter is given a prior distribution. The 

prior used for parameters (𝜷, 𝜆, 𝜌, {𝑢𝑖𝑗}, {𝑣𝑗}) are as follows: 

(1) Prior for Regression Coefficient (𝜷) 

The regression coefficient 𝜷 is assumed to follow a multivariate normal distribution, 

which is: 

𝜋(𝜷) =
1

(2𝜋𝜏2)𝑝/2
exp (−

1

2𝜏2
𝜷𝑻𝜷) (8) 

where 𝑝 is the dimension of the parameter vector 𝜷, which is the number of regression 

coefficients in that vector. 

(2) Prior for Individual Frailty (𝑢𝑖𝑗) 

Individual frailty 𝑢𝑖𝑗 is assumed to be normal distribution, i.e., 𝑢𝑖𝑗~𝑁(0, 𝜎𝑢
2). The 

standard deviation of individual frailty 𝜎𝑢 follows a positive Cauchy distribution with 

scale 2,5 (𝜎𝑢~Cauchy+(0 , 2.5)). The prior distribution for frailty 𝑢𝑖𝑗 and 𝜎𝑢 can be 

written as: 

𝜋(𝑢𝑖𝑗|𝜎𝑢) = ∏ ∏
1

√2𝜋𝜎𝑢
2

exp (−
𝑢𝑖𝑗

2

2𝜎𝑢
2

)

𝐽

𝑗=1

𝑛𝑗

𝑖=1

 (9) 

𝜋(𝜎𝑢) =
2

𝜋 ∙ 2,5 (1 + (
𝜎𝑢

2,5
)

2
)

, 𝜎𝑢 > 0 
(10) 

(3) Prior for Cluster Frailty (𝑣𝑗) 

The cluster frailty 𝑣𝑗  is also assumed to be normal distributed, i.e., 𝑣𝑗~𝑁(0, 𝜎𝑣𝑗

2 ), with 

𝜎𝑣𝑗
= exp(𝛼 + 𝜸𝑇𝒛𝑗), (𝛼 ∼ 𝑁(0,1), (𝜸𝑇 ∼ 𝑁(0,1))  The prior distribution for frailty 𝑣𝑗  

and 𝜎𝑣𝑗
 can be written as: 

𝜋(𝑣𝑗|𝛼, 𝛾) = ∏
1

√2𝜋𝜎𝑣𝑗
2

exp (−
𝑣𝑗

2

2𝜎𝑣𝑗
2

)

𝐽

𝑗=1

 

(11) 

with 
𝜋(𝛼) =

1

√2𝜋
exp (−

𝛼2

2
) 

(12) 

and 
𝜋(𝜸) =

1

(2𝜋)𝑞/2
exp (−

1

2
𝜸𝑻𝜸) 

(13) 

where 𝑞 is the dimension of the vector 𝜸 (which corresponds to the number of cluster-

level covariates).  

(4) Prior for Scale Parameter (𝜆) 

The scale parameter 𝜆 of the Weibull distribution is assumed to follow a Gamma 

distribution, i.e., 𝜆~Gamma(𝑎𝜆, 𝑏𝜆). 
(5) Prior for Shape Parameter (𝜌) 

The shape parameter 𝜌 of the Weibull distribution is also assumed to follow the Gamma 

distribution, i.e., 𝜌~Gamma(𝑎𝜌, 𝑏𝜌). 
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Based on Bayes' Theorem (Berger, 1985), the posterior distribution of the model parameters 

combines the prior distribution and the likelihood function, as follows: 

(𝜋(𝜷, {𝑢𝑖𝑗}, {𝑣𝑗}, 𝜆, 𝜌, 𝜎𝑢, 𝛼, 𝜸|𝑑𝑎𝑡𝑎) ∝ 𝐿(𝑑𝑎𝑡𝑎|𝜷, {𝑢𝑖𝑗}, {𝑣𝑗}, 𝜆, 𝜌) ·  𝜋(𝜷) (14) 

∝ 𝐿(𝑑𝑎𝑡𝑎|𝜷, {𝑢𝑖𝑗}, {𝑣𝑗}, 𝜆, 𝜌) ·  𝜋(𝛽)  

By substituting the likelihood function and prior distribution of all parameters into equation 

(13), the joint posterior distribution is: 

(𝜋(𝜷, {𝑢𝑖𝑗}, {𝑣𝑗}, 𝜆, 𝜌, 𝜎𝑢 , 𝛼, 𝜸|𝑑𝑎𝑡𝑎)

∝ ∏[𝜆𝜌𝑡𝑖𝑗𝑘
𝜌−1

exp(𝜂𝑖𝑗𝑘)]
𝛿𝑖𝑗𝑘

exp(− exp(𝜂𝑖𝑗𝑘𝜆𝑡𝑖𝑗𝑘
𝜌

))

𝑗,𝑖,𝑘

· exp  (−
1

2𝜏2
 𝜷𝑻𝜷) ∙ ∏

1

√𝜎𝑢
2

exp (−
𝑢𝑖𝑗

2

2𝜎𝑢
2

)

𝑖,𝑗

∙
1

1 + (
𝜎𝑢

2,5
)

2

∙ ∏
1

√𝜎𝑣
2

exp (−
𝑣𝑗

2

2𝜎𝑣𝑗
2

)

𝐽

𝑗=1

∙
1

√2𝜋
exp (−

𝛼2

2
) ∙ 𝜋(𝜸)

=
1

(2𝜋)𝑞/2
exp (−

1

2
𝜸𝑻𝜸) ∙ 𝜆𝑎𝜆−1𝑒−𝑏𝜆𝜆 ∙ 𝜌𝑎𝜌−1𝑒−𝑏𝜌𝜌 

(15) 

Since the posterior distribution has a complex analytical form, posterior sampling is 

performed using the Markov Chain Monte Carlo (MCMC) numerical method. 

2.3.3 Estimation Process with Markov Chain Monte Carlo (MCMC) 

Model parameter estimation is performed using the Markov Chain Monte Carlo (MCMC) 

method. In general, the MCMC steps for posterior sampling are as follows: 

1. Initialize all model parameters with initial values 

𝜷(0), 𝑢𝑖𝑗
(0)

 , 𝑣𝑗
(0)

 , 𝜆(0), 𝜌(0), 𝜎𝑢
(0)

 , 𝛼(0), 𝜸(0).  

2. For each iteration 𝑡, update the parameters alternately 

(𝜷(𝑡), 𝑢𝑖𝑗
(𝑡)

 , 𝑣𝑗
(𝑡)

 , 𝜆(𝑡), 𝜌(𝑡), 𝜎𝑢
(𝑡)

 , 𝛼(𝑡), 𝜸(𝑡)) 

3. Repeat step two for many iterations until the Markov chain reaches convergence. 

4. Discard a number of initial iterations (burn-in) to eliminate the influence of initial values 

and use samples after burn-in for parameter inference. The final estimate is obtained 

from the posterior sample after burn-in. 

 

3. MATERIAL AND METHOD 

3.1. Data 

This study uses secondary data from a study on chronic granulomatous disease 

(CGD) by Fleming and Harrington (1991) obtained from the R software in the survival 

package. The dataset includes 128 patients across 13 hospitals over a period of one year. 

Each hospital had between 4 and 26 patients. The data has a three-level structure: repeated 

event observations (level 1), patients (level 2), and hospitals (level 3). The outcome is time 

to serious infection (tstop - tstart). Data were right-censored at the end of the one-year 

follow-up period or upon loss to follow-up, with approximately 63% censored observations 

assumed to be non-informative (independent of the event risk). 
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3.2. Research Variables 

This study involved two types of variables, independent variables and dependent 

variables. There are six independent variables used in this study: patient ID, center (hospital 

number), treatment (category of treatment, either gamma interferon (γ-INF) or placebo), sex 

(category of gender), age (category of patient age), hospital category (cluster-level covariate: 

US:NIH, US:other, Europe:Amsterdam, Europe:other) , and status (indicating censoring, 

where 1 = uncensored data and 0 = censored data). The dependent variable in this study is 

the time to recurrence of survival in infected patients. In this case, t-start indicates the start 

of the time interval, and t-stop indicates the end of the time interval. 

Table 1. Baseline Characteristics by Treatment 

Variable 𝛾-IFN Placebo 

Age (mean, SD) 14.3 (10.1) 15.0 (9.6) 

Sex (Male, %) 81 81.5 

Hospital Category   

US:NIH 15 11 

US:other 31 32 

Europe:Amsterdam 9 10 

Europe:other 8 12 

Table 1 presents baseline characteristics of CGD patients by treatment group (γ-IFN 

vs. placebo). The mean age is 14.3 years in the γ-IFN group and 15.0 years in the placebo 

group. The percentage of male patients is 81% in the γ-IFN group and 81.5% in the placebo 

group, with females comprising 19% and 18.5%, respectively. The distribution of hospital 

categories is as follows: US:NIH (23.8% in γ-IFN and 16.9% in placebo), US:other (49.2% 

in both groups), Europe:Amsterdam (14.3% in γ-IFN and 15.4% in placebo), and 

Europe:other (12.7% in γ-IFN and 18.5% in placebo). 

3.3. Data Analysis Methods 

The data were analyzed using the Covariate-Adjusted Frailty Proportional Hazards 

model for multilevel survival data. In general, the steps for data analysis are as follows: 

1. Define the multilevel frailty model with Weibull baseline hazard. 

2. Estimate parameters using Bayesian MCMC (50,000 iterations, 25,000 burn-in). 

3. Perform posterior predictive checks and test proportional hazards using Schoenfeld 

residuals.   

4. Interpret hazard ratios and frailty variances 

 

4. RESULTS AND DISCUSSION  

Multilevel survival data analysis was performed with two frailties (patients and 

hospitals) and three covariates: treatment, sex, and age. The two random frailties are patients 

and hospitals, with hospital frailty variance adjusted by hospital category. 

A sufficiently large burn-in period (initial iterations) is essential to ensure that the 

sampling chain has reached its stationary distribution (Gelman et al., 2013). Furthermore, 

convergence diagnostics, such as the potential scale reduction factor (𝑅̂ statistic), must be 

assessed, typically requiring 𝑅̂ values close to 1.0, to confirm the reliability of the posterior 

estimates across multiple chains (Brooks & Gelman, 1998). 

The MCMC analysis was based on 50,000 iterations (25,000 burn-in). The posterior 

parameter estimates are summarized as follows: 
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Table 2. Parameter Estimation Results 

Parameters Estimate 95% Credible interval (2.5% - 97.5%) R-hat 

Treatment (𝛾-INF) -1.0338 [-1.6435, -0.4072] 1.002 

Sex (Female) -0.1436 [-0.9063, 0.5995] 1.000 

Age -0.0329 [-0.0986, 0.0015] 1.002 

Baseline Hazard (𝜆) 0.002221 [0.0003, 0.00705] 1.000 

Shape (𝜌) 1.1181 [0.8876, 1.3756] 1.000 

Patient Frailty Var (𝜎𝑢) 0.7855 [0.3550, 1.2343] 1.001 

Hospital Frailty Base (𝜎𝑣) 0.5289 [0.0307, 2.1591] 1.001 

Alpha Hos (𝛼ℎ𝑜𝑠) -0.5828 [-2.3374, 1.1629] 1.000 

Gamma Hos [1] -0.1654 [-1.8702, 1.5501] 1.001 

Gamma Hos [2] -0.1962 [-1.9994, 1.7730] 1.002 

Gamma Hos [3] -0.0569 [-1.8891, 1.7472] 1,002 

 Based on Table 2, it can be seen that the treatment variable (𝛾-IFN) had a negative 

coefficient (-1.0338), and because the confidence interval does not exceed 0 (95% CI: [-

1.643498, -0.407252]), it is significant. This means that the treatment covariate rINF-g as 

the treatment group is significant in reducing the risk of serious infection for CGD patients 

compared to the placebo, which is the control group. This can also be shown through the 

survival curve.  

 

Figure 1. Survival Curve for Treatment 

From Figure 1, it can be seen that at each point in time, the group receiving rINF-g 

treatment showed a higher probability of survival compared to the group receiving placebo 

treatment. This indicates that rINF-g treatment has a positive effect on the survival rate of 

CGD patients.  

 In addition, based on Table 2, it can also be seen that the confidence intervals for the 

covariates sex and age exceed 0, so it can be concluded that the covariates sex and age are 

not significant. This can be shown through the following posterior plot. 

This posterior plot displays the estimated regression coefficients along with their 

95% confidence intervals. From this plot, it can be observed that the treatment coefficient 

has a confidence interval that does not include zero and is negative, indicating that the 



80 Krismona Sandelvia (Analysis Multilevel Survival Data) 

treatment variable has a significant effect on reducing the severity of infection in CGD 

patients. Conversely, the regression coefficients for sex and age, with confidence intervals 

that include zero, indicate that these two variables have no significant effect.  

 

 

Figure 1. Posterior Plot of Treatment, Sex, and Age 

From Table 2, it can also be seen that the baseline hazard parameter is very small, 

namely 0.002221, indicating a very low baseline hazard at the beginning of time that is close 

to constant. For the hazard distribution shape parameter 1.1181 > 1, this indicates that the 

hazard increases over time. Both patient frailty variance (𝜎𝑢: 0.7855) and hospital frailty 

variance (𝜎𝑣: 0.5289) were significant, confirming substantial heterogeneity between 

patients and hospitals.  

Based on the estimation results, the regression coefficient for the treatment covariate 

rINF-g is -1.0338. Thus, the hazard ratio for treatment rINF-g is:\ 

𝐻𝑅 = exp(−1.0338) ≈ 0.3556 (8) 

The HR value of 0.3556 indicates that patients receiving rINF-g treatment have a risk 

of serious infection in CGD patients of approximately 35.56% of the risk of patients 

receiving placebo treatment. In other words, rINF-g treatment reduces the risk of occurrence 

by 64.44% compared to placebo. 

From these results, the Covariate-Adjusted Frailty Proportional Hazards method can 

be used as a reference when using multilevel survival data because it provides 

comprehensive results by analyzing the influence of random effects (frailty) within the data 

level or tier. The Covariate-Adjusted Frailty PH method in multilevel survival analysis 

allows for the handling of complex data forms such as repeated event times for each patient 

while considering variations at the patient and hospital levels. The posterior predictive check 

confirmed adequate model fit (𝑝-value=0.95>0.05), and the proportional hazards assumption 

held (𝑝-value=0.12). This model's capability to handle recurrent events offers an advantage 

over single-event models (Zhou et al., 2020). 
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5. CONCLUSION 

Based on a case study of factors influencing the severity of infection in CGD patients, 

it was found that the rINF-g treatment variable was significant in reducing the severity of 

infection in CGD patients. The hazard ratio (HR) value showed that rINF-g treatment had a 

64.44% effect in reducing the risk of occurrence. In addition, the random effects of patients 

and hospitals were also significant. This means that there is heterogeneity between patients 

and between hospitals. 
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