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	Abstract: Gene expression data analysis, particularly for cancer detection, often faces challenges due to missing values and outliers. This study compares the performance of three imputation methods mean imputation, K-Nearest Neighbors (KNN), and Bayesian KNN (with Gaussian Process modeling) in handling missing values in Tumor Educated Platelets (TEP) gene expression data. Using missing data rates ranging from 5% to 60%, the methods were evaluated based on performance metrics including Mean Absolute Error (MAE), Mean Squared Error (MSE), and Normalized Root Mean Squared Error (NRMSE). The results show that both KNN and Bayesian KNN outperformed mean imputation, with Bayesian KNN exhibiting the lowest error values across most missing data scenarios. Bayesian KNN's performance remained the most stable, particularly at higher missing data percentages. These findings suggest that incorporating Bayesian optimization into KNN based imputation enhances accuracy and robustness, offering a more reliable method for handling missing values in gene expression datasets.



1. INTRODUCTION

Bioinformatics leverages computational techniques to address health challenges through genomic data analysis, such as gene expression data often used for cancer classification to improve diagnostic prediction accuracy (Ravindran & Gunavathi, 2023). Cancer, the second leading cause of death worldwide after cardiovascular diseases (Miller et al., 2021), can be detected earlier using non-invasive biomarkers like Tumor-Educated Platelets (TEP). TEP contains RNA from cancer cells, providing a blood-based liquid biopsy method for early cancer detection. However, analyzing complex RNA-seq data requires advanced computational approaches (Liu et al., 2020).

One critical issue in gene expression data analysis is the presence of missing values, which can impact various stages of analysis, including normalization, differential detection, and biological interpretation of results (Brown et al., 2018). Additionally, gene expression data often contains outliers, further complicating the analysis process. These outliers may
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result from extreme biological variations or technical errors and can significantly affect the accuracy of statistical analyses (Lee & Tung, 2019). Addressing missing values and outliers effectively is crucial for ensuring reliable downstream analysis of gene expression data.
Computational methods have been recognized as viable approaches for imputing missing values in gene expression datasets. Techniques such as mean-based imputation, regression-based imputation, and machine learning methods like K-Nearest Neighbors (KNN) and Singular Value Decomposition (SVD) have been developed to tackle this issue (Zhang & Wang, 2019). However, these methods often face limitations in accuracy and interpretability, particularly when dealing with datasets containing outliers (Garcia et al., 2020).

Data cleaning, especially addressing missing values, is a crucial step in data mining, as it directly affects analysis quality. Imputation aims to detect and resolve errors and inconsistencies in data, which has been a long-debated topic in the literature (Ismail et al., 2022). Missing values pose significant challenges across various domains, particularly healthcare, where they hinder accurate decision-making (Ayilara et al., 2019). Machine learning approaches for imputation, such as Random Forest, have been shown to outperform traditional methods (Mostafa, 2019).

Several machine learning algorithms, including Multilayer Perceptron (MLP), Decision Tree (DT), and KNN, have been tested and shown to achieve superior sensitivity and accuracy compared to traditional statistical methods like mean-mode imputation (Lo et al., 2019). Studies further highlight Random Forest's effectiveness in handling missing values compared to Decision Tree and linear regression (Hong & Lynn, 2020).

Latief et al. (2020) assessed the performance of XGBoost in handling missing values for hepatocellular carcinoma gene expression data, finding that the model performed exceptionally well without imputation. When mean imputation was applied, the model maintained high classification accuracy, particularly when 20% of data was missing. However, with KNN imputation, performance varied depending on the percentage of missing data, with 10% missingness yielding the best results. These findings highlight the importance of selecting appropriate imputation techniques to optimize classification performance. Similarly, Farswan et al. (2020) explored the effectiveness of Deep Sparse Neural Network (DSNN) in handling missing values in blood cancer gene expression data, demonstrating its superiority over KNN, SVM, and PCA across missing percentages ranging from 10% to 90%.

More recently, Chungnoy et al. (2024) introduced a novel bees-based imputation method (BKL) that integrates KNN and Linear Regression, showing improved accuracy compared to conventional methods like KNN, Probabilistic PCA, LLS, SVD, NLPCA, and MIDASpy across multiple cancer datasets. In a different approach, Siswantining et al. (2021) optimized missing data imputation using the K-Harmonic Means (KHM) method, ensuring the imputed values closely mirrored the actual data distribution. This research was extended in Siswantining et al. (2022), where Self-Organizing Maps (SOM) and Ensemble Self- Organizing Maps (E-SOM) were used to impute missing values in the South African Heart Disease dataset, with E-SOM-imputed data yielding better classification accuracy in a Random Forest model.
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Building upon these insights, this study aims to compare the performance of simple mean imputation, which is computationally efficient and easy to implement, with Bayesian KNN and Non-Bayesian KNN imputation methods. The analysis will focus on Tumor- Educated Platelets (TEP) gene expression data to evaluate the effectiveness of these methods in handling missing values.

2. LITERATURE REVIEW
2.1. Missing Values

Missing values are defined as situations where data required for analysis is incomplete or partially missing (Little & Rubin, 2019). The presence of missing values is a common issue that can significantly affect the conclusions drawn from research results. Analytical problems caused by missing values include biased parameter estimation, reduced efficiency, low accuracy, and the inability to proceed with analysis (Salleh & Samat, 2017).

According to Little and Rubin (2019), the mechanisms leading to missing values are categorized into three types:

A. Missing Completely at Random (MCAR)
MCAR (Missing Completely at Random) represents the highest degree of randomness. It indicates that the pattern of missing values is entirely arbitrary and does not depend on any variable that may or may not be included in the study (Ramanathan et al., 2019). It refers to data that do not rely on the variable of interest or any other parameter present in the dataset. When missing values are distributed uniformly across all measurements, the data can be considered completely randomly missing. To assess this, a simple test is to compare two datasets: one with missing observations and the other without. Using a t-test, if there is no significant mean difference between the two datasets, we can conclude that the data are MCAR (Hameed & Ali 2023). MCAR is mathematically described by the equation:

𝑃(𝑃1|𝑋, 𝑌0,𝑙, 𝑌𝑚 ,𝑙) = 𝑓(𝑙, 𝑋)

Where f is a function, that is, the missing data patterns are determined only by the covariate variables X

B. Missing at Random (MAR)

MAR occurs when the probability of missing data in a variable 𝑋 depends on other observed variables but not on 𝑋 itself. For example, if depressed individuals, who generally report lower incomes, have a higher percentage of missing income data, this would qualify as MAR. Mathematically, MAR is described by the equation:

𝑃(𝑝𝑙|𝑋, 𝑌0,𝑙, 𝑌𝑚,𝑙) = 𝑓(𝑙, 𝑋, 𝑌0,𝑙)
Here, the patterns of missing data are influenced only by the covariate variables 𝑋 and dependent variable 𝑌. For models with a single dependent variable 𝑌, MAR is equivalent to MARX (Hameed & Ali 2023).

C. Not Missing at Random (NMAR)
NMAR occurs when missing values are related to both observed variables within the data and unobserved variables outside the data, making the missingness unpredictable using other variables in the dataset (Little dan Rubin 2019). If the data are not missing randomly or are influenced by the value of the missing data itself, it is categorized as "not missing at random" (NMAR). In such cases, the missingness process depends on the actual value of the missing data. Mathematically, this is expressed as:

𝑃(𝑝1|𝑋, 𝑦0,𝑙, 𝑌𝑚,𝑙) = 𝑓(𝑙, 𝑋, 𝑌0,𝑙, 𝑌𝑚,𝑙)

where 𝑓 is a function indicating that the patterns of missing data are influenced by all three types of variables (Hameed & Ali 2023).

2.2. MISSING VALUE IMPUTATION TECHNIQUE
A. Mean Imputation
The mean imputation technique calculates the mean of the non-missing values for a given attribute to replace missing data. It is simple, quick, and widely available in most statistical software packages. This method is effective for small datasets and produces accurate results in such cases. However, it may lead to inaccuracies in large datasets. Mean imputation is suitable for data missing at random (MAR) but is not recommended for data missing completely at random (MCAR).
Mathematically, the formula for mean imputation is:
𝑥𝑖𝑗

𝑥̂𝑖𝑗 =	∑
𝑖:𝑥𝑖𝑗∈𝑐𝑘



𝑛𝑘

where 𝑛𝑘 represents the number of non-missing values in the 𝑗 − 𝑡ℎ feature of the
𝑘 − 𝑡ℎ class 𝐶𝑘, 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 (Puri & Gupta 2017), (Hameed & Ali 2023).
B. K-Nearest Neighbor (KNN) Imputation
The KNN imputation method identifies the similarity between data points and replaces missing values with similar ones using Euclidean distance. This technique is advantageous for datasets containing both qualitative and quantitative attributes, as it does not require creating a predictive model for each missing attribute. Additionally, it is effective in handling multiple missing values. However, a notable drawback is that the algorithm searches through the entire dataset to find similar instances, which can be computationally intensive (Hameed & Ali 2023). In KNN, we indeed use the Euclidean distance formula, which is expressed as:

𝑚	2
𝑑(𝑥𝑎, 𝑥𝑏) = √∑	(𝑥𝑎𝑗 − 𝑥𝑏𝑗)
𝑗=1

This formula calculates the distance between two data points 𝑥𝑎 and 𝑥𝑏, where 𝑚
represents the number of features (Keerin & Boongoen (2022).

C. Bayesian Optimization
Bayesian optimization is a robust method for minimizing or maximizing objective functions that are expensive to evaluate. The approach aims to minimize a scalar objective function 𝑓(𝑥), where 𝑥 represents the input variables. Depending on whether the function is deterministic or stochastic, the output corresponding to a given 𝑥 may vary. This optimization process consists of three main components: a Gaussian process model that approximates the objective function 𝑓(𝑥), 𝑎 Bayesian updating process that refines the Gaussian model after each new evaluation of the objective function, and an acquisition function 𝑎(𝑥). The acquisition function is maximized to identify the next evaluation point and helps balance the trade-off between exploring unknown regions and exploiting areas that are likely to yield improvements (Injadat et al., 2020). The expected improvement is calculated using the formula:
Expected Improvement (𝑥, 𝑄) = 𝐸𝑄[max(0, 𝜇𝑄(𝑥𝑏𝑒𝑠𝑡) − 𝑓(𝑥)))]
Where  𝑥𝑏𝑒𝑠𝑡  denotes  the  location  of  the  lowest  posterior  mean,  and
𝜇, 𝑄 (𝑥𝑏𝑒𝑠𝑡) represents the minimum value of the posterior mean. This approach is particularly effective for identifying optimal solutions while reducing the number of expensive evaluations required.
2.3 Error evaluation metrics
A. Normalized Root Mean Squared Error (NRMSE)
NRMSE is defined as a parameter of the average error in analytical methods, measuring the difference between the estimated and observed original values. The
∑𝒏𝒎𝒗(𝒚𝒊−𝒚̂𝒊)𝟐
𝒊=𝟏	⁄
formula for NRMSE is: 𝑁𝑅𝑀𝑆𝐸 = √	𝒏𝒎𝒗
𝝈𝒚

Where:

· 𝒚𝒊 : The 𝑖 − 𝑡ℎ value from the complete observation data
· 𝒚̂𝒊 : The imputed value of the 𝑖 − 𝑡ℎ missing value
· 𝝈𝒚: The standard deviation of the observed data
· 𝒏𝒎𝒗 : The total number of missing values in the complete observation
The imputation result is considered accurate when the NRMSE value is relatively small or approaches zero, indicating that the imputed values closely match the original data (Al Janabi & Alkaim, 2020).
B. Mean Squared Error (MSE)
Mean Squared Error is a metric used to measure the average squared difference between the expected values and the predicted output values. It calculates the error magnitude by squaring each prediction error, making it sensitive to large deviations. A smaller MSE value indicates better prediction accuracy, as the errors are minimal. The formula for MSE is as follows (Khan, 2024):
𝑛

1
𝑀𝑆𝐸 = [image: ] ∑(𝑦

− 𝑦̂ )2

𝑛	𝑖	𝑖
𝑖=1
where 𝑦̂𝑖 represents the predicted value and 𝑦𝑖 is the true value
C. Mean Absolute Error (MAE)

The Mean Absolute Error represents the average magnitude of the errors in a set of predictions without considering their direction. It is calculated in Equation (Khan, 2024):
𝑛
1
𝑀𝐴𝐸 = 𝑛 ∑|𝑦𝑖 − 𝑦𝑖|
𝑖=1
Where: 𝑦𝑖 are the actual values, 𝑦̂𝑖 are the predicted values, and 𝑛 is the number of observations.
3. MATERIAL AND METHOD
3.1. Dataset
The dataset used in this study originates from an RNA-sequencing study on platelets collected from patients with tumors, referred to as Tumor-Educated Platelets (TEPs). This dataset is publicly available under accession number GSE68086 in the Gene Expression Omnibus (GEO) database. The RNA-seq data were gathered from 283 blood platelet samples, including 228 samples from patients with six different types of cancer (non-small cell lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer, and hepatobiliary carcinoma) and 55 samples from healthy individuals.
3.2. Data Characteristics

The GSE68086 dataset, used for cancer diagnostics through tumor-educated platelets (TEPs), provides 57,736 rows representing gene IDs and 285 columns corresponding to blood platelet samples. The dataset spans multiple cancer types, including non-small cell lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer, hepatobiliary carcinomas, and healthy donor samples. It consists of 283 labeled samples distributed across 15 categories, with the largest groups being Healthy Donor (HD) samples (45) and lung cancer samples (39).

The dataset has no missing values, ensuring completeness, but outlier analysis revealed 27,239 outliers distributed across the columns, necessitating careful preprocessing. Expression value ranges vary significantly among the samples, with a minimum value of 0 and maximum values reaching up to 455,636. For instance, the column 3-Breast-Her2-ampl exhibits a range of 455,636, while 8-Breast-WT and 10-Breast-Her2-ampl show ranges of 287,079 and 289,755, respectively. The smallest range is observed in MGH-NSCLC-L40- TR520 at 95,842, while MGH-NSCLC-L65-TR523 shows a range of 152,978.

These characteristics indicate a dataset with high variability and potential outliers, which could impact downstream analyses if not addressed. The wide range of expression values highlights the need for normalization techniques to standardize the data for machine learning and deep learning applications. Despite its challenges, the dataset remains a valuable resource for exploring non-invasive cancer diagnostics across various cancer types.

3.3 Method
This study aims to evaluate the performance of various imputation models in handling missing values, which are introduced using the MCAR (Missing Completely at Random) mechanism, at rates of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, and

60%. The imputation methods compared include mean imputation, KNN imputation, and KNN imputation combined with a Bayesian Gaussian Process model. The evaluation is conducted using performance metrics such as NRMSE (Normalized Root Mean Square Error), MSE (Mean Squared Error), and MAE (Mean Absolute Error). Below is the step-by- step procedure of the analysis:
1. Import Required Libraries: Begin by importing all necessary libraries for data manipulation, imputation, and evaluation.
2. Load the Dataset: Load your dataset into the environment, checking the structure and initial content for any missing values or obvious issues.
3. Descriptive Statistics: Inspect the dataset by calculating descriptive statistics, including mean, median, standard deviation, and range, to understand the overall distribution and characteristics of the data.
4. Check for Missing Values and Outliers: Identify missing values and outliers within the dataset. Perform basic data checks, such as counting missing values, and use visualizations (like boxplots) to detect outliers.
5. Standardization and Log Transformation: Apply log transformation to skewed features using log( 𝑥 + 1)for non-negative values) and then standardize the data to ensure consistency across the features for analysis.
6. Handle Outliers: Outliers can be handled by either capping, removing, or transforming extreme values based on techniques like the IQR (Interquartile Range) method or z- scores.
7. Save Cleaned Data: Once the dataset is cleaned and preprocessed, save it for further analysis steps. This ensures that the data is ready for missing value simulation.
8. Simulate Missing Values Using MCAR: Introduce missing values at various rates (5%, 10%, 15%, … 60%) into the dataset using the MCAR mechanism, where missing values are randomly distributed across the dataset.
9. Check for MCAR Suitability Using a t-test: Use statistical tests, such as the t-test, to check whether the missing values are indeed MCAR. A t-test will help determine if there’s a significant difference between the observed and missing data. If no significant difference is found, the data can be considered to follow the MCAR mechanism.
10. Impute Missing Values: For each missing data rate (from 5% to 60%), apply the three imputation methods: mean imputation, KNN imputation, and KNN imputation combined with a Bayesian Gaussian Process model. Each method is used to fill in the missing values and produce completed datasets.
11. Evaluate Imputation Performance: For each imputation model and missing value rate, calculate the performance metrics (NRMSE, MSE, and MAE) to assess how well each method reconstructed the missing data. These metrics will allow a comparison of how accurately each imputation method handled the missing values.
12. Summarize and Interpret Results: After evaluating all imputed datasets, summarize the performance results for each imputation method. Compare the metrics across different missing value rates and draw conclusions about which method performed best under each scenario.
13. Conclusion: Based on the findings, conclude which imputation method is most effective in handling missing data at different rates and provide insights into when each method might be preferred.

The overall workflow for this proposed approach is shown in Figure 1.
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Figure 1: Workflow for Comparing Missing Value Imputation Methods: Mean, Bayesian KNN, and Non-Bayesian KNNMSE
NRMSE
MAE
Evaluation of Imputation Methods


4. RESULTS AND DISCUSSION

The dataset used in this study is the Tumor-Educated Platelet (TEP) gene expression dataset obtained from the Gene Expression Omnibus (GEO) under the accession number GSE68086. This dataset is designed for cancer diagnostics, utilizing RNA sequencing (RNA-seq) data from blood samples to detect various cancer types, including non-small cell lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer, and hepatobiliary carcinomas. The dataset consists of 57,736 rows representing gene expressions and 286 columns corresponding to different sample identifiers.

The initial dataset analysis revealed that there were no missing values, ensuring completeness in data representation. However, the dataset contained outliers, which were detected across multiple sample columns. The number of outliers in each column varied, with some samples exhibiting extreme values. For instance, the "3-Breast-Her2-ampl" sample contained 71 outliers, while "MGH-NSCLC-L58-TR525" had 138 outliers. The

expression values in the dataset ranged widely, with minimum values of 0 and maximum values reaching up to 455,636 in certain samples.
The outlier detection process identified several samples with expression values exceeding the interquartile range thresholds. The table 1 presents the number of outliers detected in each sample, highlighting the extent of variability in gene expression values across different conditions:
Table 1. Detected Outliers in TEP Gene Expression Dataset

	Sample ID
	Outlier Count

	3-Breast-Her2-ampl
	71

	8-Breast-WT
	89

	10-Breast-Her2-ampl
	89

	Breast-100
	68

	15-Breast-Her2-ampl
	78

	…
	…

	MGH-NSCLC-L40-TR520
	92

	MGH-NSCLC-L51-TR521
	100

	MGH-NSCLC-L58-TR525
	138

	MGH-NSCLC-L59-TR522
	97

	MGH-NSCLC-L65-TR523
	112



The t-test results in this study indicate no significant difference between the missing data and the observed data (p > 0.05), confirming that the missing values align with the MCAR (Missing Completely at Random) assumption.
The evaluation metrics, including NRMSE, MAE, and MSE, for each imputation method across various missing value rates are presented in the following table 2. These metrics provide a comprehensive comparison of the performance of mean imputation, Bayesian KNN, and non-Bayesian KNN under increasing levels of missing data.

Table 2. Comparison of Imputation Performance Using MAE, MSE, and NRMSE for Mean, KNN, and Bayesian KNN

	Percentage
	Imputation
Method
	MAE
	NRMSE
	MSE

	5%
	MEAN
	42.08
	0.0057
	1501979.50

	5%
	KNN
	42.124
	0.0057
	1501469.36

	5%
	KNN Bayesian
	42.119
	0.0057
	1501474.88

	10%
	MEAN
	39.55
	0.0074
	987727.52

	10%
	KNN
	39.603
	0.0074
	987263.15

	10%
	KNN Bayesian
	39.597
	0.0074
	987265.03

	15%
	MEAN
	39.58
	0.0060
	1064261.69

	15%
	KNN
	39.63
	0.0060
	1063791.57

	15%
	KNN Bayesian
	39.62
	0.0060
	1063793.30

	20%
	MEAN
	39.01
	0.0050
	1031574.53

	20%
	KNN
	39.061
	0.0050
	1031114.61



	20%
	KNN Bayesian
	39.056
	0.0050
	1031116.22

	25 %
	MEAN
	38.51
	0.0047
	904602.87

	25%
	KNN
	38.560
	0.0047
	904151.89

	25%
	KNN Bayesian
	38.555
	0.0047
	904154. 23

	30%
	MEAN
	38.90
	0.0038
	1004476.19

	30%
	KNN
	38.95
	0.0038
	1004019.97

	30%
	KNN Bayesian
	38.94
	0.0038
	1004022.28

	35%
	MEAN
	39.29
	0.0041
	1129157.61

	35%
	KNN
	39.342
	0.0041
	1128695.93

	35%
	KNN Bayesian
	39.337
	0.00405
	1128697.79

	40%
	MEAN
	38.86
	0.0047
	962406.16

	40%
	KNN
	38.910
	0.0047
	961951.20

	40 %
	KNN Bayesian
	38.905
	0.0047
	961953.98

	45%
	MEAN
	39.67
	0.0030
	1187522.44

	45%
	KNN
	39.72
	0.0030
	1187057.08

	45%
	KNN Bayesian
	39.71
	0.0030
	1187060.35

	50%
	MEAN
	38.46
	0.0037
	961439.84

	50%
	KNN
	38.515
	0.0037
	960989.54

	50%
	KNN Bayesian
	38.509
	0.0037
	960991.85

	55%
	MEAN
	39.07
	0.0039
	1053131.25

	55%
	KNN
	39.13
	0.0039
	1052673.06

	55%
	KNN Bayesian
	39.12
	0.0039
	1052675.91

	60%
	MEAN
	38.89
	0.0050
	1013082.62

	60%
	KNN
	38.939
	0.0050
	1012630.64

	60%
	KNN Bayesian
	38.934
	0.00498
	1012633.42



The comparison of imputation methods Mean, KNN, and Bayesian KNN was conducted using three evaluation metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Normalized Root Mean Squared Error (NRMSE). The performance of each method was analyzed across different levels of missing data, ranging from 5% to 60% missingness.

The results indicate that KNN and Bayesian KNN consistently outperformed the Mean imputation method, as evidenced by their slightly lower MAE, MSE, and NRMSE values across all missing data percentages. Bayesian KNN, in particular, exhibited the lowest error values in most cases, suggesting that the Bayesian optimization approach using the Gaussian Process model enhances imputation accuracy compared to traditional KNN.

At lower missingness levels (5%-25%), the performance differences between the three methods were minimal. However, as the missing rate increased to 30% or higher, the Mean imputation method showed a slight increase in error values compared to KNN and Bayesian KNN, indicating that distance-based imputation methods become more advantageous as missingness increases. The Bayesian KNN approach, which leverages Gaussian Process modeling to estimate missing values based on probabilistic distributions, demonstrates superior performance in handling higher missingness rates.

Despite these variations, all three imputation methods performed relatively well, with NRMSE values remaining low throughout the study. The small discrepancies in MAE, MSE, and NRMSE suggest that the imputation methods successfully preserved the data’s structure, with Bayesian KNN demonstrating the most consistent accuracy.
Furthermore, the imputation performance was benchmarked against the original dataset, which did not undergo standardization, transformation, or outlier handling. This comparison highlights the impact of preprocessing techniques on missing data imputation, emphasizing the importance of selecting an appropriate imputation strategy based on dataset characteristics and missingness level.

The results obtained from Table 2 show that Bayesian KNN, utilizing a Gaussian Process model, consistently achieves the lowest MAE, MSE, and NRMSE values across all missing data percentages. This indicates that Bayesian optimization improves imputation accuracy compared to the Mean and standard KNN methods. As the missing data percentage increases, the performance of all imputation techniques declines slightly, but Bayesian KNN remains the most stable. These findings suggest that incorporating Bayesian optimization in KNN-based imputation provides a more robust and reliable method for handling missing values in gene expression datasets.

As a next step, it is recommended to compare the original data that has been processed specifically, data that has undergone standardization and outlier handling with the imputed data. This comparison aims to assess the impact of standardization and outlier handling on the accuracy of the imputation. By comparing these two datasets, we can evaluate whether these preprocessing steps contribute significantly to the quality and consistency of the data used in the analysis

5. CONCLUSION
The results of this study demonstrate that Bayesian KNN, utilizing a Gaussian Process model, consistently outperforms both Mean and standard KNN methods in imputing missing values in gene expression data, achieving the lowest MAE, MSE, and NRMSE values across varying missing data percentages. These findings highlight the effectiveness of Bayesian optimization in enhancing imputation accuracy and stability, even as the proportion of missing data increases. To further strengthen the generalizability of these results, future research should explore the application of Bayesian KNN on datasets with diverse characteristics and extend the model’s evaluation to different domains, providing deeper insights into its effectiveness across a broader range of contexts and improving its applicability for handling missing data in various fields.
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