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Abstract: Analysis of gene expression data, particularly in

’Qeﬂf;fv'ﬁd':”f“ cancer data, often faces challenges due to the presence of
Accepted: missing values. One approach to overcome this is data
Available Online: imputation. This study evaluates the performance of three

imputation methods, namely mean imputation, K-Nearest
Keywords: Neighbors (KNN), and KNN with Bayesian optimization
Mean Absolute Error; Mean using Gaussian Process modeling, on Tumor Educated

Squared Error; Normalized
Root Mean Squared Error;
Gaussian Process; Optimization

Platelets (TEP) gene expression data. Missing values were
introduced using Missing Completely at Random (MCAR)
gradually at levels of 5%, 10%, 15%, and up to 60%, and
performance was evaluated using three metrics: Mean
Absolute Error (MAE), Mean Squared Error (MSE), and
Normalized Root Mean Squared Error (NRMSE). The
results show that the three methods produce relatively
similar performance, with differences in MAE, MSE, and
NRMSE values only at a small decimal scale. Although
Bayesian Optimization is expected to improve the
accuracy of KNN, the resulting improvement on this
dataset is not significant. These findings indicate that
simple imputation such as the average and KNN-based
methods still provide competitive results on TEP data with
data characteristics that have 14,020,496 zeros out of a
total of 16,512,496 existing values, which is approximately
84.91% of the total data.

1. INTRODUCTION

Bioinformatics is a field that uses computational techniques to analyse biological data,
such as gene expression data. This data is often used to help classify cancer types and
improve diagnostic accuracy (Ravindran & Gunavathi, 2023). Cancer is the second leading
cause of death worldwide after cardiovascular disease (Miller et al., 2021). Early detection
of cancer can be done through non-invasive biomarkers, one of which is Tumour Educated
Platelets (TEP). TEP carries RNA from cancer cells and plays an important role in liquid
biopsy methods, which is the examination of cancer through blood samples without surgery.
However, RNA-seq data is complex, so it requires a robust and accurate analysis method to
process it (Liu et al., 2020).
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The presence of missing values in gene expression data poses a major obstacle in the
analysis process, as it can affect the results of normalisation, feature selection, and even the
final biological interpretation (Brown et al., 2018). Therefore, the proper handling of missing
values is essential to ensure the reliability of further analysis of gene expression data.

Imputation aims to detect and correct errors in data, which has long been a topic of
debate in health and biological data literature, especially in relation to large data sets such as
gene expression data or medical records (Ismail et al., 2022). The presence of missing values
poses a major challenge in various fields, especially in health, as it can hinder accurate
decision-making (Ayilara et al., 2019). Machine learning approaches such as Random Forest
have been proven to outperform traditional methods in the imputation process (Mostafa,
2019).

Various computational methods have been recognised as viable approaches for
imputing missing values in gene expression datasets. Techniques such as mean-based
imputation, regression, and machine learning-based methods such as K-Nearest Neighbours
(KNN) and Singular Value Decomposition (SVD) have been developed to address this
problem (Zhang & Wang, 2019). However, these methods still have limitations in terms of
accuracy and interpretability, especially when faced with data containing outliers (Garcia et
al., 2020).

In addition, Latief et al. (2020) evaluated the performance of XGBoost in handling
missing values in liver cancer (hepatocellular) gene expression data and found that this
model continued to perform very well even without imputation. However, when using
KNN-based imputation, model performance varied depending on the percentage of missing
values, with the best results obtained when missing values were 10%. These findings
emphasise the importance of selecting the appropriate imputation technique to optimise
classification performance. In line with this, Farswan et al. (2020) investigated the
effectiveness of the Deep Sparse Neural Network (DSNN) method in handling missing
values in blood cancer gene expression data. The results showed that DSNN outperformed
the KNN, SVM, and PCA methods, even under conditions of missing values varying from
10% to 90%.

In a different approach, Siswantining et al. (2021) optimised missing data imputation
using the K-Harmonic Means (KHM) method, so that the imputed values approximated the
actual data distribution. Then, recent research by Jafrasteh et al. (2023) introduced the
Missing Gaussian Process (MGP) approach, a hierarchical composition of variational
sparsity Gaussian Processes inspired by deep GP and recurrent GP, which showed superior
performance compared to other imputation methods such as KNN, MICE, GAIN, DBN,
VAE, DGP, and SVGP in terms of RMSE and classification accuracy. MGP performs very
well when the proportion of missing data is not too high, making it one of the models that
can be used for gene expression data imputation.

Research on data imputation continues, and Chungnoy et al. (2024) introduced a new
bee-based imputation method, namely Bees-based KNN Linear regression (BKL), which
integrates KNN and Linear Regression. This method demonstrates improved accuracy
compared to conventional methods such as KNN, Probabilistic PCA, LLS, SVD, NLPCA,
and MIDASpy across various cancer datasets.
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From the above studies, there are several models for imputing missing values, ranging
from the simplest, namely mean imputation, DSNN, optimised KNN model, Gaussian
Process, and so on. From the tumour-educated platelet dataset, which has different
characteristics and consists of many zeros that are not missing values, this study compares
the simple mean imputation and KNN methods and optimised KNN with Gaussian processes
for imputing tumour-educated platelet (TEP) data.

2. LITERATURE REVIEW
2.1 Tumour-Educated Platelets (TEP)

Tumour-Educated Platelets (TEP) are platelets that undergo changes due to interaction
with tumours in the body. TEP function as an important component in the body's response
to tumour growth. They are influenced by the tumour environment and can absorb genetic
information, such as messenger RNA (mRNA), which can be used to detect the presence
and type of cancer. TEP have become a major focus in cancer diagnostic research due to
their role in detecting and monitoring cancer progression and response to therapy (In 't Veld
& Waurdinger, 2019).

2.1. Missing Values

Missing values are incomplete or partially missing data (Little & Rubin, 2019). The
existence of missing values is common and can have a significant impact on the conclusions
of research results. Problems in analysis that can be caused by the existence of missing values
include biased parameter estimation, reduced effectiveness, low accuracy of conclusions,
and the inability to continue the analysis process (Salleh & Samat, 2017).

According to Little and Rubin (2019), the mechanisms of missing values are divided
into three categories, namely:

A. Missing Completely at Random (MCAR)

Missing Completely at Random (MCAR) is a high level of randomness in missing
data, indicating that the pattern of missing data is completely random and independent of
any variables (Ramanathan et al., 2019). In other words, the missing data is independent of
the variables being studied and other parameters in the dataset. When missing values are
evenly distributed across measurements, the data can be categorised as MCAR. To test this,
a comparison can be made between two datasets, one with missing data and one without
missing data. If the t-test results show no significant difference in the means between the
two datasets, it can be concluded that the data is MCAR (Hameed & Ali, 2023).

Mathematically, MCAR can be expressed as:

P(Py|X, Yo, Y ) = F(LX)

Where f is a function, that is, the missing data patterns are determined only by the
covariate variables X

Media Statistika XX(X) XXXX: XX-XX 3



B. Missing at Random (MAR)

MAR occurs when the probability of missing data in a variable X depends on other
observed variables but not on X itself. For example, if depressed individuals, who
generally report lower incomes, have a higher percentage of missing income data, this
would qualify as MAR. Mathematically, MAR is described by the equation:

P(pi|X, You, Y1) = F(LX,Yo,)
Here, the patterns of missing data are influenced only by the covariate variables X and
dependent variable Y. For models with a single dependent variable Y, MAR is
equivalent to MARX (Hameed & Ali 2023).

C. Not Missing at Random (NMAR)

NMAR occurs when missing values are related to both observed variables within the
data and unobserved variables outside the data, making the missingness unpredictable
using other variables in the dataset (Little dan Rubin 2019). If the data are not missing
randomly or are influenced by the value of the missing data itself, it is categorized as
"not missing at random” (NMAR). In such cases, the missingness process depends on
the actual value of the missing data. Mathematically, this is expressed as:

P(ps|X,y01, Yimy) = F(LX, Yo 1, Yiny)

where f is a function indicating that the patterns of missing data are influenced by all
three types of variables (Hameed & Ali 2023).

2.2. MISSING VALUE IMPUTATION TECHNIQUE
A. Mean Imputation

The mean imputation technique calculates the mean of the non-missing values for a
given attribute to replace missing data. It is simple, quick, and widely available in
most statistical software packages. This method is effective for small datasets and
produces accurate results in such cases. However, it may lead to inaccuracies in large
datasets. Mean imputation is suitable for data missing at random (MAR) but is not
recommended for data missing completely at random (MCAR).
Mathematically, the formula for mean imputation is:

o Xij

xl-j = Z Tl—;

i:xijeck

Where n;, represents the number of non-missing values in feature j of class k (Cy)
(Puri & Gupta, 2017; Hameed & Ali, 2023).

B. K-Nearest Neighbor (KNN) Imputation
The KNN imputation method identifies the similarity between data points and
replaces missing values with similar ones using Euclidean distance. This technique
is advantageous for datasets containing both qualitative and quantitative attributes,
as it does not require creating a predictive model for each missing attribute.
Additionally, it is effective in handling multiple missing values. However, a notable
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drawback is that the algorithm searches through the entire dataset to find similar
instances, which can be computationally intensive (Hameed & Ali 2023). In KNN,
we indeed use the Euclidean distance formula, which is expressed as:

d(xq,xp) = \[Z;n_l(xaj - xbj)z

Description:

e d(x4, xp) : Euclidean distance between gen x, (containing missing values) and
gene x; (with complete data)

e Xxg;: expression value of gene x, in sample

» xp;. expression value of gene x,, in sample j

e m: the number of samples used in the distance calculation, i.e., samples that
contain complete data for both genes x, and x;, (Foud et al., 2021).

C. Bayesian Optimization

Missing Not at Random (MNAR or NMAR) occurs when the probability of
missingness is related to unobserved information, meaning that the likelihood of data
being missing depends on the actual unobserved value itself or on variables outside
the dataset (Little & Rubin, 2019). In this case, the missing data pattern cannot be
fully explained or predicted using other observed variables. For example, in a
depression study, data may be considered MNAR if participants with more severe
depression are more likely to refuse completing a survey on depression severity.

In MNAR settings, the missingness mechanism is systematically linked to the
unobserved data, which makes handling this type of missingness particularly
challenging. As in the MAR case, complete-case analysis may or may not produce
bias. However, when bias occurs under MNAR, it generally cannot be resolved
analytically because the cause of missingness is itself unmeasured. A common
misconception is that complete-case analysis always produces unbiased estimates in
MCAR and always biased estimates in MNAR.

In fact, whether bias arises depends on the causal structure of the missingness
process. As shown in Daniel et al. and Westreich, complete-case analysis can remain
unbiased if missingness is independent of the outcome variable, a situation that can
occur under both MAR and MNAR. If missingness is not independent of the outcome,
bias can only be addressed analytically when the missingness is MAR, but not under
MNAR.

Mathematically, MNAR can be expressed as:

P(p1|X, yo1 Yma) = F(LX, Yo, Y1)

where f is a function indicating that the patterns of missing data are influenced by
all three types of variables (Hameed & Ali 2023).
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2.3 Error evaluation metrics
A. Normalized Root Mean Squared Error (NRMSE)
NRMSE is defined as a parameter of the average error in analytical methods,
measuring the difference between the estimated and observed original values. The

Y (yi-9i)?
formula for NRMSE is: NRMSE = Tmy

gy

Where:

e y;:Thei— thvalue from the complete observation data

e ¥;: The imputed value of the i — th missing value

» 0, The standard deviation of the observed data

e M, The total number of missing values in the complete observation

The imputation result is considered accurate when the NRMSE value is relatively
small or approaches zero, indicating that the imputed values closely match the
original data (Al Janabi & Alkaim, 2020).

B. Mean Squared Error (MSE)
Mean Squared Error is a metric used to measure the average squared difference
between the expected values and the predicted output values. It calculates the error
magnitude by squaring each prediction error, making it sensitive to large deviations.
A smaller MSE value indicates better prediction accuracy, as the errors are minimal.
The formula for MSE is as follows (Khan, 2024):
n

1
MSE = EZ(yi —9)?
i=1

where y; represents the predicted value and y; is the true value

C. Mean Absolute Error (MAE)
The Mean Absolute Error represents the average magnitude of the errors in a set of
predictions without considering their direction. It is calculated in Equation (Khan,
2024):

n
1
MAE:_Z P
" 1Iyl il
1=

Where: y; are the actual values, y; are the predicted values, and n is the number of
observations.

3. MATERIAL AND METHOD
3.1. Dataset

The dataset used in this study originates from an RNA-sequencing study on platelets
collected from patients with tumors, referred to as Tumor-Educated Platelets (TEPS). This
dataset is publicly available under accession number GSE68086 in the Gene Expression
Omnibus (GEO) database. The RNA-seq data were gathered from 283 blood platelet
samples, including 228 samples from patients with six different types of cancer (non-small
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cell lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer, and
hepatobiliary carcinoma) and 55 samples from healthy individuals.

3.2. Data Characteristics

The GSE68086 dataset, used for cancer diagnostics through tumor educated platelets
(TEPSs), provides 57,736 rows representing gene IDs and 285 columns corresponding to
blood platelet samples. The dataset spans multiple cancer types, including non-small cell
lung cancer, colorectal cancer, pancreatic cancer, glioblastoma, breast cancer, hepatobiliary
carcinomas, and healthy donor samples. It consists of 283 labeled samples distributed across
15 categories, with the largest groups being Healthy Donor (HD) samples (45) and lung
cancer samples (39).

This dataset has no missing values, but it does have 27,239 outliers spread across all
columns, requiring careful preprocessing. The range of expression values varies significantly
between samples, with a minimum value of 0 and a maximum value of 455,636. The range
of values for each variable is between 4.97 and 6.01 units, with minimum values ranging
from 1.60 to 3.25 and maximum values between 7.05 and 8.31. This consistency is evident
from the relatively minor differences in range between columns, with the lowest variation
being 4.97 units and the highest 6.01 units.

These stable characteristics are very beneficial for the process of imputing missing
data. The uniformity of the value range indicates that all variables are on a comparable scale,
so that similarity-based methods such as KNN can work optimally without requiring
complex standardisation. Furthermore, this consistency ensures that the relationship patterns
between variables are sufficiently stable, so that the imputed values will be more accurate
and will not disrupt the basic structure of the dataset. Such data conditions facilitate the
selection of imputation methods because there are no significant scale imbalances between
columns that could affect the analysis results.

3.3 Method

This study aims to evaluate the performance of the mean imputation model, K-Nearest
Neighbours (KNN), and KNN with Gaussian process optimisation in handling missing
values, which were introduced using the MCAR (Missing Completely at Random)
mechanism at rates of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, and
60%. The evaluation is based on performance metrics including NRMSE (Normalised Root
Mean Square Error), MSE (Mean Squared Error), and MAE (Mean Absolute Error). The
step-by-step analysis procedure is described as follows:

e Import Required Libraries (Import Libraries):
All Python libraries required for data manipulation, imputation, statistical analysis, and
performance evaluation are imported at an early stage.

o Load the Dataset (Read Dataset):
The dataset is loaded into the Python environment, and the structure and initial content
of the data are examined.

o Descriptive Statistics (Check Descriptive Statistics):
Calculate descriptive statistics such as mean, median, standard deviation, and range.
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e Check for Missing Values and Outliers (Check Dataset for Missing Values and
Outliers):

Missing values are identified and outliers are detected using visualizations (e.g.,
boxplots).

o Handle Qutliers (ldentification and Handling of Outliers with IQR and Z-score):
Outliers are treated using methods such as the interquartile range (IQR) or Z-score,
either by capping extreme values or applying suitable transformations.

 Standardization and Log Transformation:

A log transformation (log (x + 1)) is applied to skewed features, followed by
standardization to ensure that all features are on a comparable scale.

o Save Cleaned Data (Data Backup — Preservation):

The cleaned dataset is saved to provide a reliable version for subsequent missing value
simulations.

e Simulate Missing Values Using MCAR (Insertion of Missing Values):
Missing values are randomly introduced into the dataset under the MCAR assumption
at levels ranging from 5% to 60%.

e Check for MCAR Suitability Using t-test (t-Test for MCAR Validation):
A t-test is performed to validate whether the missing values are truly MCAR by
comparing observed and missing data distributions.

o Data Imputation Stage:

Missing values are imputed using three methods:

o Mean imputation

o K-Nearest Neighbors (KNN) imputation

o KNN Bayesian imputation (KNN combined with Gaussian Process Bayesian
optimization)

o Evaluate Imputation Performance:

The performance of each imputation method is evaluated using the following metrics:
o MAE (Mean Absolute Error)

o NRMSE (Normalized Root Mean Square Error)

o MSE (Mean Squared Error)

e Summarize and Interpret Results:

Comparative results for each missing value level are recorded and interpreted.

e Conclusion (End):

A conclusion is drawn to determine which imputation method is the most effective under
different missing value conditions.

The flowchart of the comparative study of missing value imputation methods using
Mean, Bayesian KNN, and Non-Bayesian KNN on TEP gene expression data is shown in
Figure 1 below.
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Figure 1: Workflow for Comparing Missing Value Imputation Methods: Mean, Bayesian KNN, and Non-
Bayesian KNN

RESULTS AND DISCUSSION

The data set used in this study is the Tumor-Educated Platelet (TEP) gene expression
data obtained from Gene Expression Omnibus (GEO) with access number GSE68086. D.
This data set consists of 57,736 rows representing gene expression and 286 columns
corresponding to individual sample identifications.

Preliminary analysis showed that the dataset did not contain missing values, but it did
contain outliers that needed to be addressed, and the data was not normally distributed.

Gene expression values also showed a wide range, with minimum values of 0 and
maximum values reaching up to 455,636 in certain samples.

The outlier detection process highlighted samples with expression values exceeding
the interquartile range thresholds. Table 1 presents the number of outliers detected in each
sample, illustrating the variability of gene expression across different cancer conditions.

Information on the distribution of cancer types is crucial for mapping biological
variations in the dataset and for anticipating the potential influence of cancer types on gene
expression patterns in subsequent analyses. By understanding the proportion and diversity
of samples based on cancer type, the developed imputation models and methods can be
adjusted to be more accurate and relevant to existing biological characteristics. Table 1
below presents the number of samples based on the cancer types identified in the dataset.
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Table 1. Detected Outliers in TEP Gene Expression Dataset

Sample ID Outlier Count
3-Breast-Her2-ampl 71
8-Breast-WT 89
10-Breast-Her2-ampl 89
Breast-100 68
15-Breast-Her2-ampl 78
MGH-NSCLC-L40-TR520 92
MGH-NSCLC-L51-TR521 100
MGH-NSCLC-L58-TR525 138
MGH-NSCLC-L59-TR522 97
MGH-NSCLC-L65-TR523 112

The t-test results showed no significant difference between the missing data and the
observed data (p > 0.05), supporting the assumption that the missing values follow the
MCAR (Missing Completely at Random) mechanism.

The evaluation metrics, including NRMSE, MAE, and MSE, for each imputation
method across different missing value rates are summarized in Table 1. These metrics
provide a comparative assessment of the performance of Mean Imputation, KNN, and
Bayesian KNN under increasing levels of missing data.

Table 2. Comparison of Imputation Performance Using MAE, MSE, and NRMSE
for Mean, KNN, and Bayesian KNN

Percentage Imputation MAE NRMSE MSE
Method
5% MEAN 42.08 0.0057 1501979.50
5% KNN 42.124 0.0057 1501469.36
5% KNN Bayesian 42.119 0.0057 1501474.88
10% MEAN 39.55 0.0074 987727.52
10% KNN 39.603 0.0074 987263.15
10% KNN Bayesian 39.597 0.0074 987265.03
15% MEAN 39.58 0.0060 1064261.69
15% KNN 39.63 0.0060 1063791.57
15% KNN Bayesian 39.62 0.0060 1063793.30
20% MEAN 39.01 0.0050 1031574.53
20% KNN 39.061 0.0050 1031114.61
20% KNN Bayesian 39.056 0.0050 1031116.22
25 % MEAN 38.51 0.0047 904602.87
25% KNN 38.560 0.0047 904151.89
25% KNN Bayesian 38.555 0.0047 904154. 23
30% MEAN 38.90 0.0038 1004476.19
30% KNN 38.95 0.0038 1004019.97
30% KNN Bayesian 38.94 0.0038 1004022.28
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35% MEAN 39.29 0.0041 1129157.61
35% KNN 39.342 0.0041 1128695.93
35% KNN Bayesian 39.337 0.00405 1128697.79
40% MEAN 38.86 0.0047 962406.16
40% KNN 38.910 0.0047 961951.20
40 % KNN Bayesian 38.905 0.0047 961953.98
45% MEAN 39.67 0.0030 1187522.44
45% KNN 39.72 0.0030 1187057.08
45% KNN Bayesian 39.71 0.0030 1187060.35
50% MEAN 38.46 0.0037 961439.84
50% KNN 38.515 0.0037 960989.54
50% KNN Bayesian 38.509 0.0037 960991.85
55% MEAN 39.07 0.0039 1053131.25
55% KNN 39.13 0.0039 1052673.06
55% KNN Bayesian 39.12 0.0039 1052675.91
60% MEAN 38.89 0.0050 1013082.62
60% KNN 38.939 0.0050 1012630.64
60% KNN Bayesian 38.934 0.00498 1012633.42

From the application of the mean imputation model, KNN and Bayesian KNN to TEP
data that still contains O values (not missing values), the results of the comparison of
imputation methods are shown in Table 2 above. Performance is calculated from three
metrics, namely Mean Absolute Error (MAE), Mean Squared Error (MSE), and Normalised
Mean Squared Error (NRMSE). The performance of each method was analysed at various
levels of missing data, ranging from 5%, 10%, 15% to 60%.

The results of the imputation evaluation based on the MAE metric show that the
average absolute error value ranges from 38.4 to 42.1. In general, the MAE value tends to
decrease as the percentage of missing values increases from 5% to 60%, indicating that all
three imputation methods are able to maintain stability even though more data is missing.
The differences between the methods are very small, only about 0.01-0.05 at each
percentage level, so no single method is truly dominant in terms of MAE.

For the NRMSE metric, the values obtained are relatively very small, ranging from
0.0030 to 0.0074. The highest value was at 10% missing values (0.0074) and the lowest at
45% missing values (0.0030). The difference in values between methods was again almost
identical, differing only by three to four decimal places. This shows that MEAN, KNN, and
Bayesian KNN produce almost the same level of error in the data after the imputation
process.

When viewed from the MSE, the values are on a fairly large scale, around 9.0x10° to
1.5%10¢. The pattern formed is also unclear, with no consistent upward or downward trend
in the percentage of missing data. However, the differences between the methods remain
very small. For example, at 25% missing values, the difference in MSE between MEAN,
KNN, and Bayesian KNN is only about 450 points out of a total of more than 900 thousand,
S0 it can be said that the three methods produce almost identical performance.
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Overall, the three imputation methods used, namely MEAN, KNN, and Bayesian
KNN, show very similar performance at all levels of missing values. Although in theory
MEAN is usually considered simpler and prone to bias, in this TEP dataset the results are
not inferior to KNN-based methods. Meanwhile, Bayesian KNN, which is expected to
provide additional optimisation, does not provide a significant improvement over regular
KNN. Thus, the selection of imputation methods in this TEP data can consider computational
efficiency factors, as the accuracy of the three methods is relatively equivalent.

5. CONCLUSION

The results of this study indicate that the three imputation methods, namely Mean,
KNN, and Bayesian KNN with optimisation using the Gaussian process, produce relatively
similar performance in filling in missing values. The MAE, MSE, and NRMSE values
obtained from the three methods are within a very close range, with differences only in small
decimal places, so that no method is consistently superior. These findings show that although
Bayesian Optimisation is expected to improve the accuracy of KNN, the improvement is not
significant in this dataset. To strengthen the generalisation, future research could use TEP
data with more in-depth pre-processing, for example by removing zero values in the original
dataset, handling outliers correctly, and performing standardisation with log transformation
correctly so that the MAE value is not too high and the MSE and NRMSE values have a
visible distance to clearly compare the results. Additionally, if these steps do not produce
the expected results, the Bayesian KNN method with Gaussian Process optimisation can be
applied to datasets with other characteristics, which may highlight the benefits of
optimisation in handling missing values.
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