BibTex Citation Data :
@article{Medstat9202, author = {Marita Saptyani and Winita Sulandari and Pangadi Pangadi}, title = {PERAMALAN PENGGUNAAN BEBAN LISTRIK JANGKA PENDEK GARDU INDUK BAWEN DENGAN DSARIMA}, journal = {MEDIA STATISTIKA}, volume = {8}, number = {1}, year = {2015}, keywords = {}, abstract = { Bawen substation is a part of electrical distribution system. Forecasting load demand is required for power planning. Data used in this research are an hourly load demand of Bawen, Salatiga for 3 months, from February 2, 2013 to April 29, 2013, measured in Megawatt (MW).A half hourly load demand forecasting is needed for real time controlling and short-term maintenance schedulling. Since the data have two seasonal periods, i.e. daily and weekly seasonality with length 48 and 336 respectively, the model of double seasonal ARIMA (DSARIMA) is proposed as the most appropriate model for the case. Initial model is determined by the pattern of the data, based on the autocorrelation function plot. Some experiments was done by choosing several periods data. The most suitable model is chosen based on the outsample mean absolute percentage error (MAPE). The current study shows that the DSARIMA (0 , 1 , [1 , 20 , 47])(0 , 1 , 1) 48 (0 , 1 , 0) 336 is the best model to forecast 336 next period. Keywords : DSARIMA, MAPE, Electricity, Bawen }, issn = {2477-0647}, pages = {41--48} doi = {10.14710/medstat.8.1.41-48}, url = {https://ejournal.undip.ac.id/index.php/media_statistika/article/view/9202} }
Refworks Citation Data :
Bawen substation is a part of electrical distribution system. Forecasting load demand is required for power planning. Data used in this research are an hourly load demand of Bawen, Salatiga for 3 months, from February 2, 2013 to April 29, 2013, measured in Megawatt (MW).A half hourly load demand forecasting is needed for real time controlling and short-term maintenance schedulling. Since the data have two seasonal periods, i.e. daily and weekly seasonality with length 48 and 336 respectively, the model of double seasonal ARIMA (DSARIMA) is proposed as the most appropriate model for the case. Initial model is determined by the pattern of the data, based on the autocorrelation function plot. Some experiments was done by choosing several periods data. The most suitable model is chosen based on the outsample mean absolute percentage error (MAPE). The current study shows that the DSARIMA (0, 1, [1, 20, 47])(0, 1, 1)48(0, 1, 0)336 is the best model to forecast 336 next period.
Keywords: DSARIMA, MAPE, Electricity, Bawen
Article Metrics:
Last update:
Last update: 2024-12-23 09:13:19
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Media Statistika journal and Department of Statistics, Universitas Diponegoro as the publisher of the journal. Copyright encompasses the rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms, and any other similar reproductions, as well as translations.
Media Statistika journal and Department of Statistics, Universitas Diponegoro and the Editors make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in Media Statistika journal are the sole and exclusive responsibility of their respective authors and advertisers.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form Media Statistika]. The copyright form should be signed originally and send to the Editorial Office in the form of original mail, scanned document or fax :
Dr. Di Asih I Maruddani (Editor-in-Chief) Editorial Office of Media StatistikaDepartment of Statistics, Universitas DiponegoroJl. Prof. Soedarto, Kampus Undip Tembalang, Semarang, Central Java, Indonesia 50275Telp./Fax: +62-24-7474754Email: maruddani@live.undip.ac.id
Media Statistika
Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro
Gedung F Lantai 3, Jalan Prof Jacub Rais, Kampus Tembalang
Semarang 50275
Indexing: