PERFORMANCE OF NEURAL NETWORK IN PREDICTING MENTAL HEALTH STATUS OF PATIENTS WITH PULMONARY TUBERCULOSIS: A LONGITUDINAL STUDY

Lalu Ramzy Rahmanda¹, Adji Achmad Rinaldo Fernandes¹, Solimun¹, Lucius Ramifidisoa², Armando Jacquis Federal Zamelinia¹
¹Department of Statistics, Brawijaya University, Indonesia
²Department of Mathematical Informatics, University of Antsiranana, Madagascar
e-mail: ramzyrahmanda@student.ub.ac.id
DOI: 10.14710/medstat.16.2.124-135

Abstract: Comorbidity between pulmonary tuberculosis and mental health status requires effective psychiatric treatment. This study aims to predict anxiety and depression levels in patients with pulmonary tuberculosis and consider future mental health treatment for patients. A sample of 60 pulmonary tuberculosis patients in Malang were involved and evaluated longitudinally every two weeks over 13 periods. In this study, we use the Generalized Neural Network Mixed Model (GNMM) to obtain better results in predicting anxiety and depression levels in patients with pulmonary tuberculosis and compare the results with the Generalized Linear Mixed Model (GLMM). The flexibility of GLMM in modeling longitudinal data, and the power of neural network in performing a prediction makes GNMM a powerful tool for predicting longitudinal data. The result shows that neural network’s prediction performance is better than the classical GLMM with a smaller MSPE and fairly accurate prediction. The MSPEs of the three compared models: 1-Layer GNMM, 2-Layer, and GLMM, respectively are 0.0067, 0.0075, 0.0321 for the anxiety levels, and 0.0071, 0.0002, and 0.0775 for the depression levels. Furthermore, future research needs to investigate the data with a larger sample size or high dimensional data with large network architectures to prove the robustness of GNMM.

1. INTRODUCTION

Tuberculosis (TB) contributes considerably to the human disease burden and remains one of the world’s deadliest infectious diseases. World Health Organization (WHO) (2022) reported that tuberculosis disease in Indonesia had the second highest TB burden globally, after India. The number of tuberculosis cases in Indonesia is estimated at 969 thousand cases. This is increasing from cases in 2020 with 824 thousand cases. Of the estimated tuberculosis cases reported in Indonesia, 92% were confirmed to be pulmonary tuberculosis. However, controlling pulmonary tuberculosis relies heavily on accurate diagnosis, appropriate treatment, effective monitoring, and evaluation of treatment.

Mental health is a significant factor that complicates treatment outcomes for people with infectious diseases like tuberculosis, and chronic diseases such as HIV/AIDS and...
cancer. Previous research has examined the impact of mental health on tuberculosis patients, identifying anxiety and depression as major mental health problems associated with the tuberculosis disease. Anxiety, as described by Gumantan et al. (2020), is a mental health disorder marked by intense feelings of worry, distress, or fear that can impede daily functions and ultimately weaken the immune system. Moynihan et al. (2022) also stated that anxiety can result from disappointment, discontent, and insecurity. Notably, anxiety is separate from fear. Depression is a mental illness defined by symptoms such as diminished interest or pleasure, decreased energy, feelings of guilt or low self-worth, sleep and appetite disturbances, tiredness, and impaired concentration. It can have a chronic or recurrent course and significantly impact an individual's daily activities. In extreme cases, depression can result in suicide (Suryani et al., 2016). Depression is a severe medical disorder that affects behaviour, emotions, and cognition, and requires formal treatment from various sources for improvement, but it is not inherently permanent.

For patients with pulmonary tuberculosis to successfully complete their treatment, they must enrol in the Directly Observed Treatment Short Course (DOTS) program, which is designed to help them adhere to their medication regimen (Rahmi et al., 2017). The Health Research and Development Agency of the Republic of Indonesia has discovered that non-adherence among TB patients is a significant factor in the low rate of cure coverage. The article by Jong highlights the psychosocial impact, which includes emotional issues such as boredom, lack of motivation, and more severe mental disorders, such as depression (Suryani et al., 2016). Screening for depression and anxiety is crucial in identifying patients requiring further psychiatric treatment and support (Wang et al., 2018). Agbeko et al. (2022) found that mental health had a significant impact on tuberculosis outcomes, particularly in relation to anxiety and depression. Similarly, Hayward et al. (2021) reported an increase in tuberculosis incidence among patients with mental illnesses, such as depression and schizophrenia.

Longitudinal studies are critical for enhancing the understanding of the development and persistence of disease in the health sciences. These studies can address fundamental questions by assessing within-individual changes in the response variable through repeated measurements of the same individuals over time (Fitzmaurice et al., 2004). Verbeke and Molenberghs (2000) introduced the Generalized Linear Mixed Model (GLMM) analysis method for longitudinal data. The GLMM model calculates two effects: the initial one being a fixed effect, which analyzes the influence of treatment and concomitant variables. The second effect is random, accounting for individual subject differences (subject-specific).

In recent years, there has been a swift increase in the development of Artificial Neural Networks (ANN), including within the statistical field. ANN are highly effective predictive models that can handle the size and intricacy of big datasets, but they presume that input observations are independent. Because mental health data are frequently collected over time, the use of neural network models that disregard the correlation structure may introduce bias when predicting future health outcomes. Most existing neural network architectures lack the ability to model longitudinal data collected from repeated measurements in the same subject. While a GLMM is powerful in modeling longitudinal data, it falls short in terms of predictive power. On the other hand, ANN are powerful prediction tools, but they assume that input observations are independent. GNMM expands on the conventional feed-forward neural network structure by introducing a random effect element, which improves the accuracy of longitudinal and other correlated data forecasts. The model is organized like a GLMM, the linear fixed effect of which is replaced by a feed-forward neural network. With ANNs' predictive ability and the GLMM's adaptability to handle non-independent data, GNMM has
become a powerful tool for forecasting correlated data.

However, GLMM has limitations as the researcher needs to specify a parametric form for the relationships between all variables. Typically, these relationships are not known before conducting the analysis, making it challenging to capture high nonlinear relationships (Cascarano et al., 2023). In contrast, neural networks are well-suited for modeling complex nonlinear relationships.

2. LITERATURE REVIEW
2.1. Longitudinal Data

Longitudinal data combines cross-sectional and time series data, providing observations from \( N \) independent subjects observed repeatedly over \( T \) periods. In contrast, cross-sectional studies only collect a single data point from each subject (Diggle et al., 2006; Wu & Zhang, 2006). Thus, the essential distinction between longitudinal and cross-sectional data is that longitudinal data tend to exhibit correlation within a subject and independence between subjects, whereas cross-sectional data generally exhibit independence. The notation for longitudinal data is as follows: Given \( i = 1, 2, ..., m \) individuals, each with repeated observations \( j = 1, 2, ..., n_i \). The number of repeated observations for individuals does not have to be the same, resulting in \( N = \sum_{i=1}^{m} n_i \) total observations the time of observation denoted by \( t_{ij} \), the response variable expressed as \( Y_{ij} \), which is a vector of size \( n_i \) with the observation value \( y_{ij} \). The explanatory factors are represented as a matrix \( X_i \) with the dimension of \( n_i \times p \), where \( p \) denotes the number of predictors. \( Y_i = (Y_{i1}, ..., Y_{in})^T \) is the vector of repeated measures.

2.2. Generalized Linear Mixed Model (GLMM)

Longitudinal data in practice often lacks balance, leading to the adoption of a two-stage analysis approach. In this method, a linear regression function is fitted specifically for each subject. The two-stage model is described as follows:

(1) Stage 1: In this stage, \( Y_{it} \) represents the observed response for the \( i \)-th individual/subject at the \( t \)-th period, where \( i = 1, ..., N \); and \( t = 1, ..., T \) is presented in Equation (1).

\[
Y_{it} = Z_{it}\beta_i + \epsilon_{it}
\]

(2) Stage 2: In the second stage, The multivariable regression model used to explain within-subject variability is associated with subject-specific regression coefficients \( \beta_i \), as presented in Equation (2).

\[
\beta_i = K_i\beta + b_i
\]

By combining the two-stage analysis into a single statistical model, i.e., by substituting \( \beta_i \) in Equation (2) into Equation (1), a GLMM is obtained. The GLMM obtained from the combination of the two-stage analysis is given by Equation (3) below.

\[
Y_i = X_i\beta + Z_i b_i + \epsilon_i
\]

Where \( X_i = Z_iK_i \) is a matrix of known independent variables with dimensions \( (n_i \times p) \). The model assumes a vector of repeated measurements that follows a linear regression model with a population-specific parameter, \( \beta \) (i.e., the same for all subjects), and a subject-specific parameter, \( b_i \). \( b_i \) is considered random and is therefore referred to as a random effect (Verbeke & Molenberghs, 2000).

The assumptions that must be met for GLMM are the assumption of residual normality. GLMM assumes that the random effects \( b_i (i = 1, 2, ..., m) \) are independent and
identically distributed (Rohmaniah & Chandra, 2018). Several statistical tests have been developed to assess the normality of residuals, including the Anderson-Darling, Shapiro-Wilk, and Kolmogorov-Smirnov tests. To test the normality assumption of residuals using the Shapiro-Wilk test, follow these steps: (Hanusz & Tarasińska, 2014).

\[ H_0 : \varepsilon_i \sim \text{N}(0, \sigma^2) \text{ vs } H_1 : \varepsilon_i \neq \text{N}(0, \sigma^2) \]

The Equation (4) presented the test statistic.

\[ W = \frac{(\sum_{i=1}^{n} a_i X_{i:n})^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \]  

(4)

Description: \( X_{i:n} \) is order statistics \( X_{1:n} \leq X_{2:n} \leq \cdots \leq X_{n:n} \) for random sample \( X_1, X_2, \ldots, X_n \); \( \bar{X} \) is mean of sample.

\[ a_i; a_1, a_2, \ldots, a_n = \frac{m^T v^{-1}}{(m^T v^{-1} v^{-1} m)^{1/2}} \]

2.3. Generalized Neural Network Mixed Model (GNMM)

Many prior studies have utilized neural networks for prediction. For instance, Poli and Jones (2012) suggested a neural network approach to prediction using Bayesian inferential procedures for algorithmic derivation with respect to the Newton algorithm. Efron (2020) employed neural networks for prediction, estimation, and attribution, with the study conducted using a small sample size. Finally, Mandel et al. (2021) proposed a novel technique known as the GNMM for analyzing longitudinal and clustered data. The GNMM model shows high potential in accurately predicting outcomes and addressing underlying noise in complex datasets without requiring strong assumptions.

Based on the equation (3), \( y_{it} \) are conditionally independent with means \( E(y_{it}|b_l) = \mu_{it}^b \) and variances \( \text{var}(y_{it}|b_l) = \phi a_{it} \nu(\mu_{it}^b) \), where \( \nu(\cdot) \) is a known variance function, \( a_{it} \) is a known constant, and \( \phi \) is a fixed dispersion parameter. In generalized linear models, the mean is related to a linear predictor through a link function. The goal of the GNMM is to modify this formulation for neural networks by substituting the fixed effect part of the linear predictor with the output of a feed-forward neural network.

Consider a feed-forward ANN with \( L \) hidden layers, \( x_{it} \) as the \( p \) inputs, and a single output with \( \mu_{it}^b \). The neural network’s output \( \mu_{it}^b \) is a nonlinear function of the predictors \( x_{it} \), with the network weights \( \omega^{(l)} \), and biases \( \delta^{(l)} \). This is achieved through a series of nested activation functions \( g_l(.) \) for each layer \( l \), where \( l = 0, 1, \ldots, L \). The input enters the neural network through the \( L \)-th hidden layer, which consists of nodes that produce:

\[ a_{it}^{(L)} = g_L(\omega^{(L)} x_{it} + \delta^{(L)}) \]  

(5)

With \( \omega^{(L)} \) is a \( k_L \times p \) weight matrix; \( \delta^{(L)} \) is a bias vector of length \( k_L \); \( g_L(.) \) is the input vector undergoes an element-wise application of the activation function \( g_l(.) \).

For the \( l \)-th hidden layer \((l=1, \ldots, L-1)\) with \( kl \) nodes, the layer’s output is:

\[ a_{it}^{(l)} = g_l(\omega^{(l)} a_{it}^{(l+1)} + \delta^{(l)}) \]  

(6)

Where \( \omega^{(l)} \) is a \( k_l \times k_{l+1} \) matrix; \( \delta^{(l)} \) is length of \( k_l \). Finally, the univariate neural network output is related to the outcome’s conditional mean.

\[ \mu_{it}^b = g_0(\omega^{(0)} a_{it}^{(1)} + \delta^{(0)} + z_{it}^T b_l) \]  

(7)

where \( \omega^{(0)} \) is \( 1 \times k_1 \). This is similar to the classical GLMM framework (Breslow & Clayton, 1993), with the exception that the linear predictor portion for the fixed effects is substituted.
with $\omega^{(0)}\alpha_{it}^{(1)} + \delta^{(0)}$, the output of a feed-forward neural network and a non-linear function of a specified variable $x_{it}$ described by Equations (1)-(3). The final activation function $g_0(.)$ serves a similar role to the inverse of the link function in GLMM. Figure 1 illustrates the overall architecture of GNMM.

![Figure 1. The General Architecture of Generalized Neural Network Mixed Model with Multi-layer Network](image)

The model assumes that $\mathbf{b} = (b_1, b_2, \ldots, b_m)^T$ follows a multivariate normal distribution with mean $\mathbf{0}$ and covariance $\mathbf{D}(\mathbf{0})$, which may be dependent on an unknown vector of variance components $\mathbf{\theta}$. The quasi-likelihood function is utilized to estimate the model parameters as described in Equation (8).

$$
|\mathbf{D}|^{-1/2} \int \exp \left( \frac{1}{\phi} \sum_{i=1}^{N} \sum_{t=1}^{T} \int \mathbf{y}_{it} - \mathbf{u} \mathbf{v}(\mathbf{u}) \mathbf{d}u - \frac{1}{2} \mathbf{b}^T \mathbf{D}^{-1} \mathbf{b} - \lambda (\omega^T \omega + \delta^T \delta) \mathbf{d}b \right)
$$

(8)

Where $\omega$ represents the combined vectorization of the matrices $\omega^{(0)}, \omega^{(1)}, \ldots, \omega^{(L)}$ into a single column vector, $\delta$ represents the concatenation of the matrices $\delta^{(0)}, \delta^{(1)}, \ldots, \delta^{(L)}$ into a column vector, and $\lambda$ is the regularization parameter used for a ridge penalty.

We compare the prediction accuracy of GLMM and GNMM using their respective mean square prediction errors (MSPEs), which are provided below.

$$
\text{MSPE}_{\text{GNMM}} = E \left( \mathbf{y}_{it} - \mathbf{g}_0(\mathbf{N}_{it}) \right)^2
$$

$$
\text{MSPE}_{\text{GLMM}} = E \left( \mathbf{y}_{it} - \mathbf{g}_0(\mathbf{M}_{it}) \right)^2
$$

(9)

where, $\mathbf{N}_{it} = \tilde{\omega}^{(0)}\alpha_{it}^{(1)} + \delta^{(0)} + \mathbf{z}_{it}^T \mathbf{b}_i$ and $\mathbf{M}_{it} = \mathbf{x}_{it}^T \mathbf{\beta} + \mathbf{z}_{it}^T \mathbf{b}_i$

3. MATERIAL AND METHOD
3.1. Data and Participants

This study was conducted over 13 periods. The patients’ evaluations were executed every 2 weeks during the 6-month treatments (weeks 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24). The data was collected from the Saiful Anwar General Hospital, Malang (2022). This longitudinal study enrolled 60 patients with pulmonary tuberculosis disease, for individuals who met the criteria as follows:

(1) The data is complete and balanced, indicating that patients were routinely monitored throughout the 13 observation periods
Only patients with new cases of pulmonary tuberculosis, not relapse cases, were included in this study.

The patient is following anti-tuberculosis drug therapy.

Patients aged between 25 – 50 years.

3.2. Psychiatric Tools

In this study, the Indonesian version of the Hospital Anxiety and Depression Scale (HADS) was used to determine the levels of anxiety and depression that the patient is experiencing. The Hospital Anxiety and Depression Scale (HADS) developed by Zigmond & Snaith (1983) is a 14-item measure designed to assess anxiety and depression symptoms in medical patients, with an emphasis on reducing the impact of physical illness on the total score. The depression items tend to focus on the anhedonic symptoms of depression. The HADS produces two scales, one for anxiety (HADS–A) and one for depression (HADS–D). The validity and reliability of this questionnaire were tested by Rudy, et al. (2015) and showed that the questionnaire is valid and reliable to use in Indonesia.

3.3. Statistical Tools

To predict anxiety and depression levels in patients with pulmonary tuberculosis, we utilized Mandel et al. (2021) proposed GNMM model. Our implementation involved a 1-layer network with three nodes and a random intercept, along with a 2-layer network featuring three nodes in the first layer and two nodes in the second layer. We compared our results to those obtained from employing the GLMM, which had a main effect and random intercept. Additionally, we calculated the MSPE across all subjects. The data analysis was carried out using R Studio.

4. RESULTS AND DISCUSSION

4.1. Trajectories of Anxiety and Depression Levels Over Time

In recent years, there has been an increasing emphasis on the mental well-being of individuals with tuberculosis (TB) due to the identified link between psychiatric disorders, particularly anxiety and depression, and unfavorable treatment results in TB patients. The plot of the mean response trajectory in longitudinal data presents a graphical depiction of how the observed variable progresses and changes over time. This plot enables us to detect patterns, trends, and variations in our dataset, assisting us in answering inquiries such as whether there is a significant surge over time, a drastic modification at a specific juncture, or any unexpected oscillations. Figure 2 depicts the anxiety and depression levels’ trajectories over time.

Figures 2(a) and 2(b) show the longitudinal changes in mean response over time, showing the anxiety and depression levels of 60 patients during the 6-months treatment period. The plots shown in Figure 2 are challenging to understand because there is overplotting making it hard to see the individuals. In Figure 3 and Figure 4, we provide the individual plots of anxiety and depression levels of the first 10 patients with pulmonary tuberculosis, as 60 individual plots is too many to comprehend.

Based on Figures 3 and 4, we can monitor and learn the distribution and changes in anxiety and depression levels for each patient during the treatment phase. The mental health status of each patient appears to be different for each patient in the first measurement. In general, the plots for anxiety and depression show similar patterns across time for each individual indicating an interaction between anxiety and depression. Finally, we utilize...
GNMM to predict the anxiety and depression levels of patients afflicted with pulmonary tuberculosis.

**Figure 2.** The Trajectory of Mean Responses over Time. (a) Trajectory of Anxiety Levels Over Time; (b) Trajectory of Depression Levels Over Time

**Figure 3.** The Trajectory of Anxiety Levels of The First 10 Individuals Over Time

**Figure 4.** The trajectory of Depression Levels of The First 10 Individuals Over Time
4.2. Mental Health Prediction in Pulmonary Tuberculosis Patients

In this study, the mental health status of 60 patients with pulmonary tuberculosis who met the criteria was measured and collected continuously every two weeks over 6 months. In this study, mental health refers to the anxiety and depression levels of each patient. Lara-Espinosa & Hernández-Pando (2021) reported that there is significant comorbidity between tuberculosis and mental illness, and the treatment of patient with tuberculosis must be made integrally with the treatment of anxiety and depression. This is because anxiety and depression are factors that can influence the compliance and well-being of the patient. The mental health status is measured based on the total score of the HADS questionnaire. A total score of 0-7 shows a normal level of anxiety and depression, a total score of 8-10 indicates that the patient has a borderline case of anxiety and depression, and 11-21 indicates that the patient has a problem with their mental health (anxiety and depression). Table 2 and 3 describes the anxiety level of patients in each period.

**Table 2. Anxiety and Depression Level Characteristics of Patients in Each Period**

<table>
<thead>
<tr>
<th>Period (Week-)</th>
<th>Anxiety Level</th>
<th>Total Patients</th>
<th>Percentage</th>
<th>Depression Level</th>
<th>Total Patients</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
<td>16</td>
<td>26.7%</td>
<td>Normal</td>
<td>14</td>
<td>23.3%</td>
</tr>
<tr>
<td></td>
<td>Borderline</td>
<td>28</td>
<td>30.0%</td>
<td>Borderline</td>
<td>21</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>26</td>
<td>43.3%</td>
<td>Depression</td>
<td>25</td>
<td>41.7%</td>
</tr>
<tr>
<td>2</td>
<td>Normal</td>
<td>21</td>
<td>35.0%</td>
<td>Normal</td>
<td>17</td>
<td>28.3%</td>
</tr>
<tr>
<td></td>
<td>Borderline</td>
<td>19</td>
<td>31.7%</td>
<td>Borderline</td>
<td>23</td>
<td>38.3%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>20</td>
<td>33.3%</td>
<td>Depression</td>
<td>20</td>
<td>33.3%</td>
</tr>
<tr>
<td>4</td>
<td>Normal</td>
<td>22</td>
<td>36.7%</td>
<td>Normal</td>
<td>15</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>Borderline</td>
<td>21</td>
<td>35.0%</td>
<td>Borderline</td>
<td>18</td>
<td>30.0%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>17</td>
<td>28.3%</td>
<td>Depression</td>
<td>27</td>
<td>45.0%</td>
</tr>
<tr>
<td>6</td>
<td>Normal</td>
<td>21</td>
<td>35.0%</td>
<td>Normal</td>
<td>15</td>
<td>25.0%</td>
</tr>
<tr>
<td></td>
<td>Borderline</td>
<td>15</td>
<td>25.0%</td>
<td>Borderline</td>
<td>19</td>
<td>31.7%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>24</td>
<td>40.0%</td>
<td>Depression</td>
<td>26</td>
<td>43.3%</td>
</tr>
<tr>
<td>8</td>
<td>Normal</td>
<td>19</td>
<td>31.7%</td>
<td>Normal</td>
<td>14</td>
<td>23.3%</td>
</tr>
<tr>
<td></td>
<td>Borderline</td>
<td>18</td>
<td>30.0%</td>
<td>Borderline</td>
<td>16</td>
<td>26.7%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>23</td>
<td>38.3%</td>
<td>Depression</td>
<td>30</td>
<td>50.0%</td>
</tr>
<tr>
<td>10</td>
<td>Normal</td>
<td>28</td>
<td>46.7%</td>
<td>Normal</td>
<td>14</td>
<td>23.3%</td>
</tr>
<tr>
<td></td>
<td>Borderline</td>
<td>14</td>
<td>23.3%</td>
<td>Borderline</td>
<td>16</td>
<td>26.7%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>18</td>
<td>30.0%</td>
<td>Depression</td>
<td>30</td>
<td>50.0%</td>
</tr>
<tr>
<td>12</td>
<td>Normal</td>
<td>18</td>
<td>30.0%</td>
<td>Normal</td>
<td>16</td>
<td>26.7%</td>
</tr>
<tr>
<td></td>
<td>Borderline</td>
<td>23</td>
<td>38.3%</td>
<td>Borderline</td>
<td>21</td>
<td>35.0%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>19</td>
<td>31.7%</td>
<td>Depression</td>
<td>23</td>
<td>38.3%</td>
</tr>
<tr>
<td>14</td>
<td>Normal</td>
<td>18</td>
<td>30.0%</td>
<td>Normal</td>
<td>13</td>
<td>21.7%</td>
</tr>
<tr>
<td></td>
<td>Borderline</td>
<td>19</td>
<td>31.7%</td>
<td>Borderline</td>
<td>26</td>
<td>43.3%</td>
</tr>
<tr>
<td></td>
<td>Anxiety</td>
<td>23</td>
<td>38.3%</td>
<td>Depression</td>
<td>21</td>
<td>35.0%</td>
</tr>
</tbody>
</table>
The first step of the data analysis in splitting the data into training and testing data (Nemesure, et al., 2021) to perform prediction using GLMM and GNMM. To perform GLMM, the model is made based on the training data. Next, the testing data is used to evaluate the model's ability to generalize from training data to new data and assess its performance. The normality test for random effect residual is conducted using Shapiro-Wilk test and resulting $W = 0.994$ with $p-value = 0.888$, indicating that the residual is normally distributed.

To perform GNMM, $\lambda$ and $\eta$ are tuned using a validation set. The one-layer GNMM is trained using $\eta = 0.005$ and $\lambda = 0.001$ for both anxiety and depression levels, while the two-layer GNMM is trained using $\eta = 0.005$ and $\lambda = 0.002$ for both anxiety and depression levels. Furthermore, we conduct a leave-one-out cross validation only on the last observation for each patient since we are interested in predicting the anxiety and depression level outcome and compare the MSPE. Hu, et al. (2022) described that There are few references about how to measure the predictive power of methods in longitudinal data. The prediction accuracy according to a cross-validation method are not reasonable. The consideration for using the leave-one-out cross validation in this study is based on Geroldinger, et al. (2023) stated that leave-one-out cross validation is a choice when analyzing longitudinal data with a small sample.

To determine the performance of GNMM in predicting the anxiety and depression levels of patients with pulmonary tuberculosis, we compare the results with the classical GLMM method. We use the shallow network architecture in this study due to a small sample size. Mandel, et al. (2021) stated that large networks are used to model highly complex systems with high-dimensional data. In studies with small data, shallow models are more appropriate due to the presence of fewer training observations. Table 2 contains the MSPE comparison for the 6 models of anxiety and depression levels.
Table 3. MSPE Comparison of GLMM, 1-layer GNMM, and 2-layer GNMM

<table>
<thead>
<tr>
<th></th>
<th>GLMM</th>
<th>1-Layer GNMM</th>
<th>2-Layer GNMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anxiety</td>
<td>0.0321</td>
<td>0.0067</td>
<td>0.0075</td>
</tr>
<tr>
<td>Depression</td>
<td>0.0775</td>
<td>0.0071</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

Based on Table 3, GNMM generally outperforms the classical GLMM. In addition to this, Jiang et al. (2022) demonstrated the superiority of machine learning over traditional methods for longitudinal data analysis. The two-layer GNMM exhibits superior performance in forecasting anxiety and depression levels among patients with pulmonary tuberculosis, with an MSPE of 0.0075 and 0.0002 for anxiety and depression, respectively, which is the smallest among other methods. The GNMM with a single layer has a similar MSPE for anxiety and depression.

The two-layer GNMM accurately predicted anxiety and depression levels with a range score of 1.36-17.02. This was compared to the actual data, which had a range score of 0-19 for anxiety levels and a range score of 1.23-16.73 for depression levels. The actual data had a range score of 0-18 for depression. Careful consideration of their future mental health status can aid in monitoring and evaluating disease progression and in providing appropriate treatments based on levels of anxiety and depression.

5. CONCLUSION

Research on analyzing longitudinal data in healthcare is crucial for comprehending disease progression, assessing treatment effectiveness, and monitoring patient outcomes. Moreover, evidence indicates that mental health has an impact on disease outcomes, emphasizing the significance of suitable treatment. This specific investigation aimed to forecast the mental health needs of psychiatric patients in the upcoming period. The comparison of the three methods showed that the GNMM with two layers produced the most accurate prediction value. Future research should explore data with larger sample sizes or high-dimensional data with large network architectures to establish the robustness of GNMM.

ACKNOWLEDGMENT

The authors want to express their appreciation to all people who were involved in this study, including the partner, for their contribution to this writings

REFERENCES


