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IDEALIZED STRESS-STRAIN RELATIONSHIP IN TENSION OF
REINFORCE CONCRETE MEMBER FOR FINITE ELEMENT MODEL

BASED ON HANSWILLE’S THEORY

 Hardi Wibowo 1

ABSTRACT

Untuk penganalisaan kontrol retak (crack control) pada model struktur beton bertulang
(reinforced concrete/RC) menggunakan software finite element seperti DIANA diperlukan
pemodelan hubungan tegangan-regangan (stress-strain relationship). Data model hubungan
tegangan-regangan ini dalam rangka mengakomodasi efek rekatan (bond-slip effect) antara
tulangan (reinforcement) dengan beton (concrete) yang melingkupinya. Hubungan tegangan-
regangan yang diperlukan adalah nilai rata-rata tegangan-regangan pada tulangan dan beton.
Data hubungan tegangan-regangan rata-rata ini bisa diturunkan dengan menggunakan teori
Hanswille. Pada tulisan ini akan diuraikan mengenai teori Hanswille untuk menentukan
hubungan tegangan-regangan tersebut dan diberikan satu contoh perhitungan dan curva
hubungan tegangan-regangan rata-rata dari sebuah batang beton bertulang.

1 Staf Pengajar Jurusan Teknik Sipil Fakultas
Teknik Universitas Diponegoro

GENERAL

To model reinforced concrete member for
finite element (FE) analysis, reinforcement
steel bars were modeled as embedded
elements. In this element, the bar elements
do not have independent degrees of
freedom. Instead, the stiffness of the bar
elements were superposed on that of
mother concrete elements. In FE model,
perfect bonding between concrete and
embedded reinforcement is assumed.

Bond-slip effect between reinforcement and
surrounding concrete can be taken into
account by using an average stress-strain

relationship of reinforced concrete including
tension stiffening effect. The average stress-
strain relation derived from the bond-slip
differential equation proposed by Hanswille
will be explained here.

Fig.1 below shows the schematic figure for
this stress-strain relationship. The state I
corresponds to perfect bonding, while the
state II to perfect cracking. The average
stress  of a RC member is expressed in

terms of average steel stress s and

average concrete stress c ,
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Fig.1 Schematic figure for Stress-strain curves of RC member in tension.
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where for a uniaxial stress state,
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Where :

LtAV  is the total volume of the RC

member with the cross-sectional area
sAcAtA   and length L.

cA
sA : reinforcement ratio

As=Cross-sectional area of reinforcement
Ac=Cross-sectional area of concrete

Under the assumption of perfect
bonding used in the present smeared crack
FE analysis, the average concrete strain
equals the average steel strain. However,

the average concrete strain c includes

contribution of crack opening in concrete.
We can separate the average strain into an
intact part and a cracking part, as
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where cm denotes the average strain over

the intact part *L ;    uuuw is the
crack width, and the summation is taken
over all cracks in L. In summary, since
normal stresses are zero in the cracking
part, we have
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where the overbar denotes averaged
quantities over the total region, while the
subscript “m” stands for averaged quantities
over the intact part. In the present smeared
FE analysis, we obtain the averaged
quantities over the total region as output.

Since the elastic perfectly plastic model is
assumed for stress-strain relation of
reinforcement steel as shown in Fig.1(b),
the stress-strain relation for concrete as
shown in Fig.1(c) was derived from the
average stress-strain relation from
Hanswille’s. The derived stress-strain

relation of concrete is modeled as a multi-
linear curve in FE analysis.

CONSITUTIVE MODEL AND BOND-SLIP
DIFFERENTIAL EQUATION

Consider a differential length dx of
reinforcement embedded in concrete as
shown in Fig.2, then the force due to bond
between steel reinforcement and the
surrounding concrete must be same as the
change of axial force on steel or the
concrete cross-section.

v

dxc+dc

s

 c

s+ ds

vc

dx s



Fig.2 Stresses in differential element of RC member.

Considering equilibrium of forces in the
longitudinal direction

-dc(x)Ac = ds(x)As = v(x)Usdx ............ (5)

Where :
v = bond stress
c = Stress in concrete
s = Stress in concrete
Us = Perimeter of cross-section of

reinforcing bar =ds

ds = Diameter of steel bar
x = Longitudinal coordinate of the

member
Dividing Eq.5 by Asdx

)(4)(
)(

xv
sdsA
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
 ...............(6)

Assuming that the cross-section remains
constant then the slip v or relative
displacement between steel and concrete is
equal to the difference of strain between
steel and concrete. From Fig.2

v = s-c- ........................................(7)

or…… 0  csdx
dv

..........................(8)
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where :
v = relative displacement between steel

and concrete
c = displacement in concrete
s = displacement in steel
 = displacement due to shrinkage
0 = Shrinkage strain
c = Strain in concrete
s = Strain in steel
In Eq.8, s and c can be replaced by steel
stress and concrete stress respectively and

n=modular ratio=
cE
sE

Es = modulus of elasticity of steel
Ec = modulus of elasticity of concrete
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sEdx

dv
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Hanswille used the following constitutive
model defined in exponential form for bond
stress and relative displacement or slip

v(x) = AfcwvN(x) ................................ (10)

where A and N are constants and are
obtained empirically, and fcw=compressive
strength of cube of concrete. Using the
value of v(x), we get
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Now the solution of v=0 and 0
dx
dv
 , will

give the length of slip region v(x) :
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The boundary condition described above
means that at a location where there is no
slip between steel reinforcement and the
concrete is taken as the origin of coordinate
system.

FIRST CRACK

In a RC member subjected to axial force,
when the stress attains the tensile strength
of concrete, the first crack appears and then
the stress of concrete and steel at the
cracking region changes and a relative
displacement (slip v) between steel and
concrete is produced. The stress condition
as shown in Fig.3 is produced. The length of
the region where crack produces relative
displacement is denoted here by LER and is
called introduction length or transmission
length.
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Fig.3 Stress of concrete and steel reinforcement after first crack
in a RC member subjected to axial tensile force
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To describe the stress c(x) and s(x) of
concrete and steel in the region of length
LER, these quantities are represented as a
function of slip. The coordinate system
chosen is shown in Fig.3. At the origin of
this coordinate system, no slip is produced
between steel and concrete, i.e. at x = 0,

0
dx
dv

From Eq.9, for x=0, we have

  00)0()0(1
  cns

sEdx
dv

......... (13)

s(x) at x=LER is s,r and s(x) at x=0 is s,I.
When at x=LER, s(x) is s,r then c(0)=fct.
Equating the total force at the crack and at
the section x=0
s,rAs = Acc + Ass or s,r = c + s

At x = 0, s,r = c(0) + s(0)
And then we find
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INITIAL CRACKING STATE

In a reinforced concrete member subjected
to axial tensile force, when the stress
attains the tensile strength of concrete, the
first crack appears and the relative slip
between steel reinforcement and
surrounding concrete is produced. In this
method for crack width evaluation, the
same constitutive relation between the bond
stress v and the slip v was used as used by
Hanswille’s theory, given in Eq.10. In this

equation, N is not a non-dimensional
parameter but dimensional one. If the unit
of length is cm, then Hanswille reported that
A=0.58 and N=0.3 are standard values for a
deformed bar.

After first cracking of concrete, further
increase of the axial force increases the
number of cracks and accordingly
deformation due to cracking, and thus
spacing between adjacent cracks reduces.
Hence, depending upon the spacing
between the cracks, two cracking states can
be defined, one is initial cracking state and
the second one is stabilized cracking state.

In the initial cracking state as shown in
Fig.4(a), the transmission length of two
adjacent cracks do not overlap each other
and there is a state I region between two
adjacent cracks. Since there is no relative
slip in the state-I region, there is no
interaction between two adjacent cracks,
i.e. the opening of one crack does not affect
the width of around cracks.

Further increase of axial force causes the
generation of more cracks till the spacing
between cracks become so small so that the
transmission lengths of cracks overlap each
other. This is called stabilized cracking state
as shown in Fig.4(b). In this state, the
opening of one crack affects the widths of
around cracks. Crack width expression in
both cracking states is given by w=2v at the
crack position.

The crack width wR for the first crack is
derived as given by Eq.18 for isIs  ,
with rs,  and rs,  are given in Eq.14

and


 ctf
rs  , respectively.
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Fig.4: Stress distributions in cracked steel reinforced concrete member.

is=Average strain at the boundary between
initial cracking state and stabilized cracking
state. is is obtained from the average steel
strain s,m in the initial cracking state. We
have
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where  is defined as
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and

I,sII,sII,s 
At the boundary of initial and stabilized
cracking states, =1
thus s,II=s,r and s,II=s,r=s,II-s,I
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 is a non-dimensional factor defining crack
spacing in terms of transmission length.

Hanswille has considered the possibility of
stress drop due to further cracking in the
initial cracking state and thus he has also
proposed expression for crack width other
than first crack, thus giving crack width less
than first crack. As long as initial cracking
state prevails, the crack width expression
for first crack gives the maximum crack
width. This procedure is intended to
evaluate the maximum crack width. Thus, in
our proposed method, we assume a
constant stress state in the initial cracking
state as shown in Fig.1.

STABILIZED CRACKING STAGE

In the stabilized cracking stage, we have:
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and =a/LER is the non dimensional crack
spacing. Hanswille proposes the following
expression as a mean value of m on the
basis of the statistical experimental data.
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When evaluating the crack width, it is
needed to know sII  from FE analysis.

sII  is the stresses in steel in state II as

defined in Fig. 4(b). The relationship
between sII  and the average stresses in

FE analysis can be derived from the
equilibrium condition.

Nc=Axial force of RC slab
At uncracked location, the force will be
shared by concrete and steel reinforcement.

ssAccAcN
tAcN







......................... (22)

At crack, the force is taken by only
reinforcing steel, and the resulting stresses
on the reinforcing bars is sII.

sA
cN

sII  ........................................ (23)

Putting the value of Nc from Eq.2.40 into
Eq.2.41 we get the relation

sc
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sII   .............................. (24)

Or…… scsII 


 
1

...................... (25)

Thus the Eq.24 can be used for getting the
value of sII  from c  and s . The c
and s  are obtained from out put of FEM

analysis. The average strain derived from
the bond-slip differential is given by
Hanswille, as follows:
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From this average strain expression, we can
specify the average stress-strain of a RC
member, which is used in the FE analysis.

AN EXAMPLE

Finally, we have conclusion that stress-
strain relationship to model RC member for
FEM has three stages i.e.: un-cracked stage,
initial cracking stage, and stabilized cracking
stage (see fig.1a). In the un-cracked stage
(line 0-a), range of strain is 0 ≤  ≤ sI and

average stress is
 








1
1 nctf . In the
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initial cracking state (line a-b) range of
average strain is sI ≤  ≤ is where is is
average strain at the boundary between
initial cracking state and stabilized cracking
state. In this point =1 and =2, then.
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,rs . And in the Stabilized

cracking state range of average strain is is
≤     = sm and equations below are
hold:
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In this condition 0C  therefore
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, IIs  and IIsS ,  , where

 IIsrs ,,   Yield strength of

reinforcement.

Following is an example of calculation using
data as below: Modulus of elasticity of steel
E = 210000 N/mm2, Compressive strength
of concrete = cy = 40 N/mm2 , Tensile
strength of concrete fct = 2.69 N/mm2,
Reinforcement ratio  = 0.0191, Modular
ratio no = 7, Bond slip constant A = 0.291
(in mm), Bond slip constant N = 0.3,
Shrinkage strain of concrete o = 0. The
calculation result can be presented as a
table and figures as shown below:

Ave.
strain

Ave.RC
stress
(Mpa)

Ave.reinf.
stress
(Mpa) Note

0,00000 0,00000 0,00000 Point 0
0,00009 2,99250 0,35291 Point A
0,00032 2,99250 1,27677 Point B
0,00035 2,99872 1,39261
0,00042 3,18614 1,65887
0,00048 3,37356 1,87031
0,00053 3,56099 2,07046
0,00058 3,74841 2,26533 Stabilized

0,00062 3,93583 2,45719 cracking
0,00067 4,12325 2,64715    state
0,00072 4,31067 2,83583
0,00077 4,49809 3,02361
0,00082 4,68551 3,21075
0,00086 4,87293 3,39741
0,00091 5,06035 3,58372
0,00096 5,24777 3,76975
0,00101 5,43519 3,95558
0,00101 5,45393 3,97416
0,00102 5,51015 4,02987

Table 1.: Calculation result
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