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Abstract  

 

The growing demand for cement production to support the rapid growth of the construction industry has 

resulted in a significant contribution to global carbon emissions due to the high energy requirements of cement 

production. Addressing this issue requires the development of eco-friendly cement modifiers/additives. 

Graphene, known for its exceptional properties, has emerged as a versatile material in various domains, 

including construction. Its incorporation into cement has exhibited promising prospects, surpassing 

geopolymer performance and enhancing cement quality. Nevertheless, challenges persist, such as inadequate 

dispersion in concrete mixtures and quality control issues during large-scale production. Harnessing the 

potential of graphene oxide can revolutionize cement performance and contribute to a more sustainable 

construction industry. Addressing dispersion challenges and ensuring successful large-scale production are 

pivotal steps towards realizing these benefits. This comprehensive review investigates the potential of graphene 

oxide in the construction sector, specifically focusing on its capacity to reinforce cementitious composites and 

highlighting the associated implementation challenges, paving the way for more sustainable cement production 

with a touch of scientific excellence. 
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Abstrak  

 

Meningkatnya permintaan produksi semen untuk mendukung pesatnya pertumbuhan industri konstruksi 

berkontribusi signifikan terhadap emisi karbon global karena kebutuhan energi yang tinggi dari produksi 

semen. Untuk mengatasi masalah ini diperlukan pengembangan modifier/aditif semen yang ramah lingkungan. 

Grafena, yang dikenal karena sifatnya yang luar biasa, merupakan bahan serbaguna di berbagai bidang, 

termasuk konstruksi. Penambahannya ke dalam campuran semen meningkatkan kualitas semen dan 

menunjukkan prospek menjanjikan, yang melampaui kinerja geopolimer. Namun, masih ada tantangan dalam 

penerapannya di lapangan seperti dispersi yang tidak memadai dalam campuran beton dan masalah kontrol 

kualitas pada produksi skala besar. Potensi grafena oksida dapat dimanfaatkan untuk revolusi kinerja semen 

dan berkontribusi pada industri konstruksi yang lebih berkelanjutan. Mengatasi tantangan mengenai dispersi 

dan memastikan keberhasilan produksi skala besar merupakan langkah penting untuk mewujudkan manfaat 

ini. Tinjauan komprehensif ini menelisik potensi grafena oksida di sektor konstruksi, dengan fokus pada 

perannya menambah kekuatan komposit semen dan membahas tantangannya dalam implementasi di 

lapangan,meretas jalan bagi produksi semen yang lebih berkelanjutan dengan sentuhan keunggulan ilmiah.  
 

Kata kunci: Komposit semen, grafena, grafena oksida, perkuatan semen berkelanjutan 

 

Introduction  
 

The global construction industry has witnessed 

substantial growth, leading to a significant rise in 

cement and concrete consumption. In 2021, annual 

cement production worldwide reached 4.4 billion 

metric tons, marking a 5% increase from the 

previous year (US Geological Survey, 2022). 

Cement production is a major contributor to global 

warming due to its high energy requirements and 
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CO2 emissions, responsible for emitting 5-8% of 

global CO2 emissions (Ellis et al., 2020). Each ton 

of cement produced releases 0.628 to 0.92 tons of 

CO2 emissions (Ige et al., 2022), Therefore, it is 

imperative to explore environmentally friendly 

alternatives to cement.  

 

One proposed solution is to reduce clinker 

manufacturing (Maglad et al., 2022), and use 

supplementary cementitious materials (SCM) 

instead (Antunes et al., 2022; Juhart et al., 2021). 

SCM enhances concrete quality, reducing 

maintenance and the need for early replacement 

Geopolymers, with their superior availability, easier 

processing, and reduced energy consumption and 

emissions (Liu et al., 2020; Maglad et al., 2022), 

represent a promising option, with consideration for 

the environmental impact of their raw materials. 

 

Graphene and graphene oxide (GO) have found 

extensive applications in various fields, (Dideikin & 

Vul’, 2019) including medicine (Ławkowska et al., 

2022), biomedical applications (Blessy Rebecca et 

al., 2022), wastewater treatment (Obayomi et al., 

2022; Paton-Carrero et al., 2022), energy storage 

(Velasco Davoise et al., 2022), and water filtration 

(Barker et al., 2020; Gayen et al., 2023; Khaliha et 

al., 2022; Zambianchi et al., 2022). In construction, 

graphene oxide can address the shortcomings of 

cement-based materials, such as brittleness and high 

permeability, and enhance mechanical strength up 

to 120 GPa (Xu, 2018). Moreover, graphene oxide 

can stabilize silty soil and soft clay for building 

foundations, making it a promising material for 

construction projects (Fattah et al., 2021; Mahmood 

et al., 2021; Yuan et al., 2023) 

 

Nevertheless, graphene, like other carbon-based 

nanomaterials, is water-insoluble, posing 

challenges for even distribution in cement mixes 

(Suo et al., 2022; Zhao et al., 2020a). In contrast, 

graphene oxide (GO), composed of single-layer 

sp2-hybridized carbon atoms with oxygen-

containing groups, exhibits good hydrophilicity and 

cost-effectiveness, making it a popular choice for 

concrete mixes (Krystek et al., 2021; Aliyev et al., 

2019; Suo et al., 2022). The presence of oxygen-

containing groups enhances GO's dispersibility, 

reducing van der Waals forces between GO sheets 

(Wang & Yao, 2020). 

 

However, industrial-scale production of high-

quality graphene is challenging, and most graphene 

nanoplatelets (GNP) derived from graphite are in 

the form of flake graphene or low-quality graphite 

microplatelets (Zhu et al., 2018). The degree of 

functionalization and size diversity of GO products 

can impact their dispersibility and interfacial 

bonding, influencing the mechanical durability of 

GO-reinforced cementitious composites (GRCC) 

(Backes et al., 2020; Santhiran et al., 2021). Thus, it 

is essential to develop cost-effective methods for 

using graphene-based nanoparticles as 

reinforcement in cementitious composites, 

balancing performance and product properties for 

practical infrastructure development. 

 

This paper offers a comprehensive overview of 

graphene oxide's characteristics, multifunctional 

properties, and its reinforcement mechanism in 

cementitious composites. It also explores the 

opportunities and challenges of utilizing graphene 

oxide in the construction industry. 

 

Method 
 

Analyzing 150 publications from 2013 to 2023 

across various academic databases (e.g., Google 

Scholar, Science Direct, MDPI, Research Gate, IOP 

Science, and NCBI), this study underscores GO's 

hydrophilic and cost-effective attributes as a 

valuable means of enhancing cementitious 

composite mechanical and durability properties. 

The paper also delves into the opportunities and 

challenges in construction applications and suggests 

potential research directions. 

 

Graphene Oxide (GO) 

 

As a nanomaterial, GO, with dimensions under 100 

nm, consists of a single layer of carbon, oxygen, and 

hydrogen atoms, featuring additional hydroxyl 

groups attached to its carbon network (Murali et al., 

2022). This single-layer substance results from 

oxidizing graphite crystals, creating oxygenated 

graphene sheets with various oxygen-containing 

groups (C=O, –OH, –COOH, and –CH(O)CH) that 

modify van der Waals forces between GO particles 

(Suo et al., 2022; Wang et al., 2017). GO exhibits 

remarkable properties, including a high tensile 

strength (up to 120 GPa), a large specific surface 

area (2630 m2/g), and high thermal conductivity 

(5300 W/m2K), making it a state-of-the-art 

nanomaterial (Lu et al., 2018). Compared to 

traditional reinforcement materials, GO effectively 

manages nanoscale crack propagation (Pan et al., 

2015). Unlike carbon nanofibers and nanotubes, GO 

can act as a chemical modifier for cement hydration, 

enhancing composite properties beyond traditional 

cementitious composites. 

 

Dispersion 

 

Graphene nano-platelets (GNP) tend to aggregate 

due to van der Waals interactions stemming from 

their substantial specific surface area, potentially 

harming composite quality. To alleviate this, GNP 

must be uniformly dispersed within the cement 
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matrix (Zhu et al., 2017). High-shear mixing, 

although time-consuming and less effective, can 

mechanically separate graphene sheets, while other 

methods like ultrasonic treatment, ball milling, 

shear mixing, calendaring, and intense agitation are 

also employed (Kang et al., 2017; Zhu et al., 2017). 

However, GO, which possesses superior 

dispersibility compared to GNP, is more commonly 

used (Zheng et al., 2017).  

 

 

Figure 1. The relation of the oxygen and 
epoxy/hydroxyl ratio variation in a 3 by 3 

matrix. Balls illustrate structures that stick with 
carbon (grey), oxygen (red), and hydrogen 

atoms (white) (Adapted from Lin & Grossman, 
2015). 

 
The presence of oxygen-containing functional 

groups on GO sheets enhances their water 

solubility, as depicted in Figure 1, resulting in a 

stable dispersion primarily composed of single-

layered sheets (Aliyev et al., 2019; Hou et al., 2015; 

Suo et al., 2022; Lin & Grossman, 2015).  

 

Synthesis method 
 

Graphene can be synthesized from graphite using 

various methods (Figure 2), including chemical, 

electrochemical, microbial, and chemical vapour 

deposition (CVD) (Brisebois & Siaj, 2020; Tene et 

al., 2020).  Hummer's Method (HM) is the most 

widely employed approach for producing graphene 

oxide (GO) by oxidizing graphite crystals with 

potassium permanganate, sulfuric acid, and sodium 

nitrate (Brisebois & Siaj, 2020, Ikram et al., 2020; 

Jiříčková et al., 2022). While HM has drawbacks, 

including the generation of toxic gases and ion 

residues in wastewater, modifications such as 

nitrate-free, two-step, co-oxidant, and low-room-

temperature methods have been proposed (Ikram et 

al., 2020) (Yu et al., 2016; Chen et al., 2019). 

However, HM remains suitable for large-scale GO 

production (Brisebois & Siaj, 2020; Jiříčková et al., 

2022).   

At the industrial level, factors such as reaction 

conditions, raw materials, purification, and quality 

control require attention (Ikram et al., 2020; Lowe 

& Zhong, 2016). Strategies involve modifying 

production techniques to control the degree of 

oxidation, shorten reaction time, and enhance the 

number of oxygen functional groups in GO, thereby 

reducing production costs (Yu et al., 2016; Liu et 

al., 2016; Park et al., 2017). Sonochemical and 

electrochemical methods offer faster, manageable 

large-scale production alternatives (Ikram et al., 

2020). 

 

 
Figure 2. Production scheme using graphite 

powder as initial material. The provided image 
shows graphene oxide (GO), graphene oxide 

with citric acid (GO+CA), and reduced graphene 
oxide (rGO) (Tene et al., 2020) 

 

Reinforcing Mechanism of Graphene Oxide 

 

Extensive research has examined the impact of 

graphene oxide (GO) on cementitious materials, 

uncovering its capacity to enhance mechanical 

properties through distinct mechanisms. These 

encompass the establishment of nucleation sites, 

decreased permeability through void-filling, and the 

fortification of the C-S-H matrix through interfacial 

bonding (Table 1). 

 

Nucleation Effect 

 

Graphene oxide (GO), with its nanoscale 

dimensions and large surface area, creates multiple 

nucleation sites on cement particles, promoting 

hydration product development (Figure 3) (Meng et 

al., 2021). This is facilitated by GO's small size and 

high specific surface area  (Pan et al., 2015; Wu et 

al., 2021). During cement hydration, the carbon-

carbon sp2-bonded networks in GO act as 

nucleation sites due to their significant heat 

generation (Qureshi & Panesar, 2020). Oxygen-

containing functional groups, crucial during early 

hydration, increase water and ion adsorption, 

accelerating cement hydration (Li et al., 2017; Zhu 

et al., 2017). This heightened water adsorption not 

only reduces the water-to-binder ratio but also 

supports curing and causes spontaneous shrinkage. 
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Table 1. Graphene reinforcing mechanism 

Properties Description References 

Potential 

nucleation 

sites 

GO is dispersed on the surface of cement particles. Meng et al., 2021 

GO has ultrahigh specific surface area. Pan et al., 2015; Wu et al., 2021 

GO has more oxygen functional group which 

increase water adsorption and cumulative heat 

during hydration process. 

Han et al., 2017; Li et al., 2017; Lu & 

Ouyang, 2017 

Nanoscale 

size 

GO fills the voids in cement matrix and reduce 

internal bleeding by giving a greater homogeneity. 

Diagne et al., 2021; Martínez-García et 

al., 2022 

GO reduces pore diameter and permeability. C-S-

H gel pore concentration densifies the hydrated 

cement matrix. 

Wu et al., 2021; Zeng et al., 2021 

GO has peak value of addition; excessive usage 

may produce more pore. 

Lu et al., 2016; Yuan et al., 2014; 

Zhao et al., 2020c 

Interfacial 

bond 

advantages 

Hydroxyl groups in GO accompany hydrogen 

bonds as main sources of interfacial bond by 

forming van der Waals interaction with C-S-H. 

Bahraq et al., 2022; Chen et al., 2017; 

Wan & Zhang, 2020; Wang et al., 

2020 

GO increases interfacial frictional resistance by 

performing mechanical interlocking. 

Chen et al., 2017; Kai et al., 2019; 

Wang et al., 2020 

GO creates more crack bridging. Belmonte et al., 2016; Ovid’ko, 2015; 

Ramírez et al., 2018 

Furthermore, ion adsorption accelerates nucleation 

and enhances C-S-H gel aggregation, improving 

cement compactness (Han et al., 2017). 

 

 
Figure 3. Graphene oxide nucleation in cement 
paste and its effect on hydration heat increase 

(Meng et al., 2021) 

 

Filling Effect  

 

In cementitious composites, pores of varying sizes 

in the hydrated cement paste matrix influence 

mechanical properties (Hilal, 2016; Wu et al., 

2021). Graphene-based materials, with their 

nanoscale dimensions (Figure 4), fill these voids 

effectively, reducing internal bleeding 

(Gholampour et al., 2017; Diagne et al., 2021), 

enhancing aggregate paste bonding, and promoting 

structural uniformity (Martínez-García et al., 2022). 

Mercury intrusion porosimetry (MIP) measures 

pore size by immersing samples in mercury under 

pressure (Hilal, 2016). Zeng et al. (2021) report a 

37.3% reduction in pore diameter and an 80.2% 

decrease in the permeability coefficient. This 

improves the microstructure, doubles C-S-H gel 

pores, reduces porosity, and enhances filling effects 

(Wu et al., 2021). However, excessive filler content 

can lead to issues like overlapping graphene sheets, 

increased composite viscosity, and larger void pores 

due to agglomeration, posing risks to mechanical 

properties (Yuan et al., 2014; Lu et al., 2016; Zhao 

et al., 2020b). 

 

 

Figure 4. Visualization of (a) uniformly 
dispersed GO and (b) aggregated/overlapping 

GO sheets in cement mortar 
 (Gholampour et al., 2017) 

 

Toughening Effect 

 

Graphene oxide (GO) contains oxygen functional 

groups that can create robust interfacial bonds with 

calcium hydroxide or C-S-H gel in cement (Bahraq 

et al., 2022; Chen et al., 2017; Wang et al., 2020). 

These connections are commonly formed through 

the ionic interaction of calcium in C-S-H with the 

oxygen-functional groups on GO sheets and the 

hydrogen bonds between water molecules in C-S-H 

and the hydroxyl groups of GO (Chen et al., 2017;  
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Wan & Zhang, 2020). Molecular dynamics (MD) 

simulations have shown that hydroxyl groups 

exhibit stronger interactions with C-S-H compared 

to carboxyl groups due to more stable chemical 

interactions at the COOH/C-S-H interface (Hou et 

al., 2015). The interaction between C-S-H and GO 

flakes is illustrated in Figure 5 (Babak et al., 2014). 

Additionally, the presence of hydroxyl groups 

roughens the GO surface and initiates mechanical 

interlocking, enhancing interfacial frictional 

resistance (Wang et al., 2020).  

 

Pull-out simulations indicate that mechanical 

interlocking plays a pivotal role in the shear strength 

between GO and the C-S-H matrix (Kai et al., 

2019). Moreover, the interfacial resistance is 

influenced by disproportionate adhesion forces near 

the crack surface (Chen et al., 2017). This research 

also reveals that GO's interfacial shear strength can 

reach hundreds of MPa, up to nine times higher than 

that of GNP, due to van der Waals interactions with 

C-S-H. Consequently, GO's strong interfacial 

bonding enhances the mechanical properties of 

cementitious composites (Wan & Zhang, 2020). 

 

 

Figure 5. Nucleation formation of C-S-H by the 
GO flakes (Babak et al., 2014) 

 

GO not only reinforces but also enhances the 

durability of composites by controlling cracks. 

Typically, cracks branch and deflect. However, 

adding GO disrupts the bamboo-like fracture 

pattern observed in pure epoxy resin (Wang et al., 

2013). In graphene-reinforced cementitious 

composites, the increased occurrence of crack-

bridging demonstrates strong interfacial bonding, 

aided by the smaller size of GO (Ramírez et al., 

2018; Belmonte et al., 2016). 

 

Graphene's character as an impermeable 

nanomaterial with complex shapes makes it difficult 

to pull out, further contributing to crack-bridging 

(Ovid’ko, 2015) This crack-bridging effect absorbs 

more energy, effectively increasing crack path 

length, which delays crack initiation and impedes 

propagation, thereby enhancing toughness, as 

shown in Figure 6 (Wang et al., 2021; Rehman et 

al., 2017). The toughening effect is also influenced 

by interfacial sliding, observable in pull-out failures 

under SEM (Liu et al., 2020). 

Working Performance 

 

Introducing graphene oxide (GO) as a nanomaterial 

modifier increases cement viscosity and reduces 

workability significantly (Devi & Khan, 2020a; Lv 

et al., 2013). This viscosity rise can hinder the final 

mechanical properties of the composite matrix, 

making it challenging to work with fresh cement 

composites, particularly when their fluidity is 

insufficient (Pan et al., 2015). 

 

 
(a) 

   

 
(b) 

 

Figure 6. Graphene crack bridging (a) and 
graphene crack propagation (b), where green 

lines indicate the longitudinal growth of cracks, 
and red circles indicate the presence of 

graphene (Rehman et al., 2017) 

 

GO incorporation consistently decreases fluidity, 

with a clear inverse relationship between GO 

concentration and paste fluidity. GO's 2D structure 

and hydrophilic functional groups demand more 

water to wet the surface and reduce available free 

water for mixing (Suo et al., 2020; Li et al., 2018). 

This decrease in workability impedes cement 

hydration reactions and can result in GO sheet re-

agglomeration, especially at higher GO 

concentrations (Birenboim et al., 2019). 

 

Direct GO addition to cement paste leads to 

flocculation and reduced fluidity. The dispersion of 

GO in the cement matrix correlates with fluidity and 

compressive strength, influenced by GO 

concentration and water-to-cement ratio. Adjusting 

the w/c value can balance fluidity and compressive 
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strength, aided by superplasticizers like 

polycarboxylate ethers (PCEs), which enhance 

fluidity efficiently, as shown in Figure 7 (Lv et al., 

2015; Suo et al., 2020) by dispersing cement grains 

and releasing trapped water (Stephens et al., 2016), 

making PCE a practical solution making PCE a 

practical solution (Guo et al., 2019).  

 

 

Figure 7. Graph of w/c Relation to Compressive 
Strength (adapted from Suo et al., 2020) 

 

Mechanical Properties 

 

The addition of GO offers several benefits to the 

mechanical properties of cement-based materials  

(Liu et al., 2020, 2021; Murali et al., 2022; Suo et 

al., 2022; Zhao et al., 2020a). GO, when combined 

with a compatible surfactant in cement slurry, 

stabilizes its dispersion and enhances flexural 

strength (Chuah et al., 2018). Studies have 

consistently shown that the strategic addition of GO 

to cementitious composites can influence the 

structure of hydration products, resulting in 

improved mechanical properties (Lv et al., 2015). 

The abundance of nucleation sites in GO accelerates 

the hydration process, leading to the refinement and 

increased cementation of CH crystals with other 

hydration products like C-S-H gel, contributing to 

enhanced strength (Yang et al., 2017). 

 

GO's crack-bridging mechanism inhibits 

microcrack expansion due to its interlocking with 

C-S-H (Murali et al., 2022). SEM observations 

confirm that cracks, typically straight, cannot 

penetrate graphene sheets (Pan et al., 2015). For 

instance, adding 0.05 wt% GO yields a strong 

interfacial bond between GO and the cement matrix, 

resulting in a 33% increase in compressive strength 

and a 59% increase in flexural strength of cement 

sandstone after 28 days. Low GO content (0.03 

wt%) gradually improves flexural and tensile 

strength by up to 60.7% and 78.6%, respectively, 

within 28 days, reaching a peak in compressive 

strength (47.9% improvement within 28 days).The 

peak in compressive strength is attributed to the 

flocculation of hydrated cement crystals around 

GO, while a decline is linked to GO agglomeration, 

reducing its surface area and matrix aggregation  

(Gholampour et al., 2017; Lu et al., 2019). 

Controlled growth of cement hydration products 

and aggregation contributes to the increased 

mechanical strength of cement mortar (Lv et al., 

2013). Therefore, it's important to consider key 

aspects when using GO, as summarized in Table 2. 

While most research has focused on cement paste 

and mortar (Zhao et al., 2020a), similar patterns 

have been observed in concrete, where an optimal 

amount of GO addition leads to strength 

improvements, as shown in Figure 8. GO's filling 

effect reduces pore volume, inversely affecting 

porosity, microstructure density, and the 

compressive-to-indirect tensile strength ratio in 

cement-based materials (Wang et al., 2015; Chen et 

al., 2013).  A 0.05% GO mass addition results in a 

maximum increase of 57% in compressive strength 

and 48% in flexural strength, with reduced porosity 

(Ullah et al., 2021).  

 

 

Figure 8. Mechanical Properties Enhancement 
of Concrete (a) Wu et al. (2019; (b) Jyothimol et 
al. (2020); (c) Chen et al. (2020); (d) Chu et al. 
(2020); (e) Yeke & Yu (2021); (f) Lu & Ouyang 
(2017); (g) Ellala (2022); (h) Hong et al. (2022). 

 

Blocking Transport Channels in Concrete 

 

Transport channels in concrete, including gel pores, 

capillary pores, interfaces, and cracks, are 

responsible for the penetration of corrosive agents 

such as CO2, chloride ions, alkalis, and acids. 

Graphene oxide (GO), due to its hydrophobic 

nature, can be applied to concrete either by mixing 

it into the matrix or coating cement products, 

serving as a protective barrier against these 

corrosive substances. 

 

Application of GO by Mixing 

 

When added to cement composites at 0.03%, GO 

reduces water absorption by 14.5%, but at 0.04%, 

water sorptivity increases due to GO nanosheet 

agglomeration (Indukuri & Nerella, 2021). Larger 

amounts of GO, like 0.06 wt%, can reduce the 

relative permeability of cement mortar by up to 

80.6% (Zeng et al., 2021).  
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Table 2. Utilization Consideration of Graphene Oxide 

Properties Description References 

GO addition 

reduces 

workability 

GO increases viscosity significantly which caused 

by hydrophilic functional groups 

Devi & Khan, 2020a; Li et al., 2018; Lv et al., 

2013; Suo et al., 2020 

Low fluidity may cause entrapped air spaces  Pan et al., 2015 

Low workability prevents cement hydration 

reaction and cause GO re-agglomeration 

Birenboim et al., 2019 

Workability can be improved by adding 

superplasticizers 

Lv et al., 2015; Stephens et al., 2016; Wang et 

al., 2015; Zhao et al., 2020a 

Peak 

addition 

ratio 

GO improves compressive, flexural, and tensile 

strength of concrete, however, excessive addition of 

GO reduces mechanical performance 

Chen et al., 2020; Chu et al., 2020; Hong et al., 

2022; Jyothimol et al., 2020; Lu & Ouyang, 

2017; Wu et al., 2019; Yeke & Yu, 2021 

Mechanical performance decreased due to GO 

agglomeration and aggregation 

Gholampour et al., 2017; Indukuri & Nerella, 

2021; Lu et al., 2019; Yuan et al., 2014 

Capitalizing 

GO unique 

properties 

Mixing GO into cement matrix reduces corrosive 

substance intrusion 

Guo et al., 2019; Indukuri & Nerella, 2021; 

Korucu et al., 2019; Muthu et al., 2021b; Zhao 

et al., 2020b 

Covering concrete surface using GO reduces 

capillary adsorption and permeability 

Korayem et al., 2020 

GO composite emulsion provides better 

waterproofing performance 

Chen et al., 2021; Moshiri et al., 2020; Shi et 

al., 2022; Yu et al., 2019 

Increased incorporation of GO decreases capillary 

action, reduces sorptivity, and enhances resistance 

to water penetration. This is attributed to GO 

clustering, which disrupts the cement matrix 

microstructure and depends on the water-cement 

ratio and GO size (Devi & Khan, 2020a). GO's 

resistance to carbon dioxide, linked to improved 

microstructure and reduced porosity, slows down 

carbonation (Mohammed et al., 2018). 

Thermogravimetric analysis (TG) showed how GO 

stabilizes C-S-H during early carbonization (Long 

et al., 2018). GO significantly decreases 

carbonation depth by 60% to 81.3% over 6 to 18 

months (Devi & Khan, 2020b). GO also enhances 

resistance to chloride ingress. For example, 0.11 

wt% GO reduces the average chloride transport 

depth by 28.6% (Zhao et al., 2020c). In a 28-day 

concrete sample, 0.03% GO results in a chloride 

penetration depth of 11.83 mm and minimal weight 

loss in corrosive environments (Indukuri & Nerella, 

2021). GO similarly improves resistance to acid 

attack, reducing mass loss and sectional area in the 

presence of nitric acid, hydrochloric acid, and 

sulfuric acid (Muthu et al., 2021a; 2021b; Korucu et 

al., 2019).  

 

Application of GO by Coating  

 

In addition to being mixed in the concrete matrix, 

GO has been tested as a coating emulsion. GO 

coatings reduce capillary adsorption and 

permeability (Korayem et al., 2020). GO/silane 

composite emulsions exhibit stable waterproofing, 

especially for cracked concrete (Chen et al., 2021) 

forming a hydrophobic layer through silane 

hydrolysis and producing a C-S-H gel. Silane also 

undergoes condensation reactions with hydroxyl 

groups in ettringite, reducing pore size and porosity 

(Moshiri et al., 2020; Shi et al., 2022). Thicker 

coatings have better penetration resistance, and an 

increased percentage of epoxy strengthens the 

connection between GO and epoxy molecules (Yu 

et al., 2019).  

 

Current challenges 

 

Graphene and its derivative, graphene oxide (GO), 

encounter obstacles to broader adoption. Market 

constraints, awareness, and evolving technology are 

among the key challenges (Meister et al., 2017). 

Carbon nanotubes (CNTs) pose stiff competition as 

alternatives to graphene, with upcoming 

technologies poised to surpass existing ones. 

Quality and cost are significant concerns in the 

construction industry, with graphene's price being a 

limiting factor, at approximately $85-100 per metric 

ton of concrete, even with modest usage. Internal 

factors, including quality control, processing, and 

the supply chain, along with product proficiency 

and cost-effectiveness, contribute to the challenge. 

The diverse graphene production methods and a 

lack of standards make ensuring product quality and 

addressing long-term health and environmental 

issues difficult (Santhiran et al., 2021; Arvidsson et 

al., 2022; Murali et al., 2022; Pryce et al., 2022). 

Uncertainty about graphene characterization and 

application procedures obscures its cost-benefit 

ratio (Zhao et al., 2020a). While GO offers 

numerous advantages, its price must be competitive, 

and more efficient processing methods need 

development (Lowe & Zhong, 2016). Concerns 

about the health risks of graphene exposure persist, 

necessitating further research (Ansari et al., 2019; 

Lin et al., 2020).  
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Conclusions  
 

The increasing interest in graphene oxide (GO), a 

prevalent graphene derivative, has provided 

valuable insights into its potential. While the quest 

for an efficient method for large-scale production 

continues, GO's role in enhancing cement-based 

materials has been extensively explored. GO's 

nanoscale features reduce porosity and pore size, 

while its substantial surface area expedites 

hydration and fosters strong interconnections 

between C-S-Hs and GO in composites, hindering 

crack propagation and enhancing density. The 

precise GO dosage for optimal mechanical 

properties remains to be determined, but generally, 

an addition of 0.05 wt% of GO demonstrates 

significant strength improvements. Furthermore, 

GO's utility extends to addressing transport-related 

issues, such as improving resistance to corrosive 

environments. Nonetheless, the widespread use of 

GO in construction faces challenges tied to cost, 

quality, and promotion. Industrial-scale production 

necessitates improved quality control, and 

awareness campaigns are essential to highlight GO's 

merits and stimulate further exploration and 

application in the construction sector. 
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